Способ снижения динамических напряжений в рабочих лопатках последней ступени турбины

Способ снижения динамических напряжений в рабочих лопатках последней ступени силовой турбины заключается в том, что угол раскрытия проточной части турбины в меридиональном сечении выбирают в пределах 13…23°, а отношение среднего диаметра рабочего колеса последней ступени силовой турбины к высоте рабочей лопатки на выходе из турбины от 3.5 до 4.0. Минимальную толщину полотна диска последней ступени турбины выбирают равной или большей ширины пера рабочей лопатки последней ступени силовой турбины в корневом сечении. Изобретение позволяет повысить коэффициент полезного действия турбины при достаточной динамической прочности рабочих лопаток последней ступени силовой турбины. 1 ил.

 

Изобретение используется в области проектирования и конструкции газовых, силовых турбин лопаточных машин.

Чтобы повысить мощностной коэффициент полезного действия (КПД) ηт=Lт/(L*ад2/2), существующие силовые газовые турбины должны понижать выходную потерю скорости с2/2, то есть скорость рабочего тела на выходе из силовой турбины путем увеличения площади на выходе из турбины (см. «Основы проектирования турбин», под ред. д.т.н. Копелева С.З. Москва, Машиностроение, 1988 г.). Здесь Lт - полезная работа, отводимая от вала турбины, L*ад - адиабатическая работа расширения, подсчитанная по параметрам заторможенного потока на входе и выходе из турбины, с2 - скорость в выходном сечении рабочего колеса последней ступени турбины. Кроме этого пониженная скорость рабочего тела на выходе из силовой турбины уменьшает гидравлические потери в выходном устройстве, что в свою очередь увеличивает общий КПД газотурбинного двигателя.

Недостатком данного способа является то, что это влечет за собой увеличение угла раскрытия проточной части α и большую высоту рабочей лопатки l на выходе из турбины, приближающуюся к высоте лопаток паровых турбин.

В паровых турбинах, при отношениях среднего диаметра рабочей лопатки d последней ступени к высоте лопатки l в диапазоне d/l=3…4, соответствующем среднему уровню нагрузок (например, паровая турбина К-200-130-7, Ленинградского металлического завода - ЛМЗ (см. А.Д.Трухний «Стационарные паровые турбины», Москва, Энергоиздат, 1990 г., таблица 6.2, стр.247, 248), в диапазоне d/l=2.7...3 (например, паровая турбина К-210-130-3(6), ЛМЗ) с высокими уровнями нагрузок и диапазоне d/l=2.4…2.7 с крайними нагрузками (например, паровая турбина К-1200-240-3, ЛМЗ), для устранения вибрационных напряжений и для обеспечения динамической прочности наряду с применением бандажных, демпфирующих полок на периферии рабочих лопаток, применяют дополнительно кольцевые проволочные связи или кольцевые вставки в один или даже два ряда по высоте лопатки.

Недостаток данного способа приводит к большим гидравлическим потерям и снижению адиабатического КПД турбины.

Задача предлагаемого способа - обеспечить приемлемые адиабатические КПД газовой турбины с уменьшением выходной потери и повышением мощностного КПД турбины при достаточной динамической прочности рабочих лопаток последней ступени силовой турбины.

Решение задачи получения приемлемого адиабатического КПД газовой турбины и повышении мощностного КПД турбины с обеспечением динамической прочности последней рабочей лопатки турбины при угле раскрытия проточной части в меридиональном сечении в пределах 13…23° и соответственно отношении среднего диаметра рабочего колеса последней ступени силовой турбины к высоте рабочей лопатки на выходе из турбины от 3.5 до 4.0, минимальную толщину полотна диска последней ступени турбины выбирают равной или большей, чем ширина пера рабочей лопатки последней ступени силовой турбины в корневом сечении.

Выбор диапазона значения этого угла α в пределах 13°≤α≤23° связан с ограничениями конструктивного порядка, диффузорностью канала и увеличением гидравлических потерь. В свою очередь увеличение угла α приводит к увеличению высоты l рабочей лопатки и уменьшению отношения d/l среднего диаметра на выходе из рабочего колеса к высоте рабочей лопатки в диапазоне d/l=3.5…4.0. Углу раскрытия α=13° соответствует ~ d/l=4.0, а углу раскрытия α=23° соответствует ~ d/l=3.5. Чем больше угол раскрытия проточной части, тем меньше выходная скорость потока газа из турбины, ниже выходная потеря и выше мощностной КПД турбины. С увеличением высоты лопатки для угла раскрытия α=23° по сравнению с α=13° высота рабочей лопатки последней ступени турбины увеличивается на ~ 13% и для обеспечения формы пера и прочности лопатки на ~ 13% увеличивается ширина пера лопатки в корневом сечении.

На фигуре изображена схема силовой турбины с усиленным диском последней ступени турбины:

1 - угол раскрытия проточной части α; 2 - максимальная ширина лопатки b1; 3 - высота лопатки на выходе из турбины 1; 4 - максимальная ширина полотна диска b2; 5 - средний диаметр рабочей лопатки последней ступени турбины; 6 - статор силовой турбины; 7 - рабочее колесо последней ступени турбины.

Обычно мощностной КПД силовых турбин находится в диапазоне 0.8…0.85.

Например: мощностной КПД силовой турбины двигателя НК-16СТ составляет 0.827, а двигателя НК-16-18СТ - 0.8235, при этом у обоих этих двигателей отношение d/l=4.7.

У турбины, изображенной на фигуре, при d/l=3.92, мощностной КПД составляет 0.862, что существенно выше КПД перечисленных двигателей. Однако такое увеличение высоты лопатки на выходе из газовой турбины приводит к повышенным динамическим и вибрационным нагрузкам на рабочую лопатку. Решением этой проблемы является увеличение массы и толщины полотна диска.

Технический результат изобретения заключается в выборе минимальной толщины полотна диска в последних ступенях турбин больше или равной величине максимальной ширины пера рабочей лопатки или ширины рабочей лопатки в корневом сечении.

Действительно, динамические напряжения в рабочих лопатках турбин, особенно в силовых турбинах и турбинах низкого давления, в значительной мере зависят от толщины полотна диска. В практике проектирования, для соблюдения ограничений по динамической прочности, толщину полотна диска выбирают из условия отсутствия резонансов облопаченного колеса турбины с опасными гармониками возбуждающих нагрузок. Допустимость толщины диска при этом назначают в соответствии с результатами анализа дисперсионной или резонансной диаграмм.

Применение предлагаемого изобретения возможно также на ранних стадиях проектирования. В дальнейшем толщина диска может, при необходимости, корректироваться по результатам частотного анализа в сторону увеличения.

Способ снижения динамических напряжений в рабочих лопатках последней ступени силовой турбины, содержащей рабочие колеса, размещенные в статоре, отличающийся тем, что при угле раскрытия проточной части в меридиональном сечении в пределах 13…23° и соответственно отношении среднего диаметра рабочего колеса последней ступени силовой турбины к высоте рабочей лопатки на выходе из турбины от 3.5 до 4.0, минимальную толщину полотна диска последней ступени турбины выбирают равной или большей, чем ширина пера рабочей лопатки последней ступени силовой турбины в корневом сечении.



 

Похожие патенты:

Изобретение относится к способам обеспечения работоспособности лопаток роторов газотурбинных двигателей в условиях вибрации и может найти применение в авиадвигателестроении.
Изобретение относится к авиадвигателестроению и энергомашиностроению и может найти применение при прочностной доводке компрессоров газотурбинных двигателей (ГТД) как авиационного, так и наземного применения, в процессе их стендовых испытаний и эксплуатации.

Изобретение относится к компрессоростроению. .

Вибрационно-демпфирующая прокладка (10) предназначена для размещения между платформой (12) лопасти (6) вентилятора и диском (2) вентилятора. Прокладка имеет радиально внешнюю поверхность (18), оснащенную, по меньшей мере, одной пластиной (16a, 16b) в контакте с платформой лопасти вентилятора, и радиально внутреннюю поверхность (20), сформированную верхней по потоку поверхностью (22), обращенной к диску (2), и нижней по потоку поверхностью (24), отделенной от верхней по потоку поверхности уступом (26). Верхняя по потоку поверхность расположена радиально внутрь относительно нижней по потоку поверхности. Верхняя по потоку поверхность (22) имеет зону (101), выступающую радиально внутрь, начинаясь на некотором расстоянии от своего верхнего по потоку конца (22а). Верхняя по потоку поверхность (22) радиально внутренней поверхности (20) начинается углублением (103), берущим начало от верхнего по потоку конца (22а), и затем переходит в уступ (105), радиально выровненный в направлении внутренней области, в которой начинается выступающая зона (101). Достигается уменьшение износа и задирания контактирующих поверхностей. 2 н. и 5 з.п. ф-лы, 5 ил.

Газотурбинный двигатель включает вентилятор и компрессор низкого давления, рабочие колеса которых установлены на общем валу с помощью осевых болтов с гайками. На осевые болты между гайкой и фланцем крепления рабочего колеса вентилятора к валу установлены балансировочные удлинительные втулки, во внутренней полости которых расположен участок перехода от резьбовой части хвостовика болта к цилиндрической. Головки болтов зафиксированы вокруг своей оси фланцем лабиринта, а в осевом направлении - кольцом, установленным на валу вентилятора с помощью промежуточных втулок. Отношение наружного диаметра балансировочной втулки к диаметру цилиндрической части хвостовика болта составляет 1,2…3, отношение диаметра цилиндрической части хвостовика болта к длине балансировочной втулки 1,0…3, а отношение длины промежуточной втулки к длине головки болта 1…1,2. Изобретение позволяет повысить надежность газотурбинного двигателя за счет исключения дисбаланса ротора вентилятора и повышения прочности затяжки и осевой фиксации болтов крепления рабочих колес вентилятора и компрессора низкого давления к валу вентилятора. 4 ил.

Газовая турбина содержит систему балансировки вращающейся части, включающую балансировочный весовой элемент и крепежный элемент. Балансировочный весовой элемент выполнен с первым и вторым отверстиями, при этом первое и второе отверстия выполнены с возможностью съемной установки крепежного элемента. Крепежный элемент обеспечивает соединение балансировочного весового элемента с вращающейся частью при его установке в первое отверстие. Крепежный элемент размещают во втором отверстии после крепления балансировочного весового элемента без возможности снятия на вращающейся части. При балансировке вращающейся части газовой турбины соединяют с возможностью снятия балансировочный весовой элемент с вращающейся частью в пространственно зафиксированном положении посредством введения крепежного элемента в первое отверстие вращающейся части. Проверяют, сбалансирована ли вращающаяся часть, и если вращающаяся часть сбалансирована, то прикрепляют балансировочный весовой элемент без возможности снятия в пространственно зафиксированном положении к вращающейся части. Вводят крепежный элемент во второе отверстие балансировочного весового элемента, когда балансировочный весовой элемент прикрепляют без возможности снятия в пространственно зафиксированном положении. Группа изобретений позволяет упростить балансировку вращающейся части газовой турбины. 2 н. и 13 з.п. ф-лы, 4 ил.

Турбина включает турбинный диск и другую турбинную часть, между которыми образована полость. Турбинный диск содержит первый и второй выступы. Первый и второй выступы образованы так, что обеспечивается возможность закрепления балансировочного грузика между первым выступом и вторым выступом. Первый выступ содержит уплотнительную секцию, которая способна уплотнять проход текучей среды между турбинным диском и другой турбинной частью турбины. Полость между турбинным диском и другой турбинной частью ограничена радиально внутрь уплотнительной секцией и радиально наружу другим уплотнением. При изготовлении турбинного диска для турбины, имеющей турбинный диск и другую турбинную часть, между которыми образована полость, формируют первый и второй выступы на турбинном диске. Первый и второй выступы формируют так, что обеспечивается возможность закрепления балансировочного грузика между ними. Полость между турбинным диском и другой турбинной частью ограничивают радиально внутрь уплотнительной секцией и радиально наружу другим уплотнением. Группа изобретений позволяет упростить изготовление турбинного диска, имеющего балансировочную и уплотнительную системы. 2 н. и 13 з.п. ф-лы, 4 ил.

Изобретение относится к демпферам для гашения вибраций рабочих лопаток и дисков авиационных газотурбинных двигателей, а именно устройствам демпфирования колебаний рабочих колес типа блиск (моноколес). Устройство демпфирования колебаний рабочих колес газотурбинного двигателя включает демпфирующий элемент, выполненный в виде упругой ленты, плотно свитой в спираль в несколько слоев, скрепленной радиальными штифтами и установленной с натягом на цилиндрической или конической поверхности обода блиска. Упругая лента может имеет переменную по длине ширину и/или толщину. Поперечное сечение упругой ленты имеет желобчатую форму. Упругая лента изготовлена из материала с высоким внутренним трением. Материал с высоким внутренним трением представляет собой композиционный материал. Изобретение повышает прочность и надежность рабочих колес блискового типа газотурбинного двигателя. 4 з.п. ф-лы, 5 ил.

Способ балансировки вращающегося узла (33) газотурбинного двигателя (ГТД) (10), предусматривающий снятие лопатки (56) статора с узла газотурбинного двигателя. Снятие лопатки статора обеспечивает доступ к вращающемуся узлу газотурбинного двигателя. Данный способ включает также по меньшей мере одно из перечисленных ниже действий, а именно: установку, снятие или переустановку балансировочного грузика на вращающемся узле благодаря доступу к данному вращающемуся узлу, обеспечиваемому снятием лопатки статора. Таким образом, можно уменьшить длину ГТД (10) по сравнению с ГТД, имеющими узел непосредственно для установки балансировочного кольца. В результате, это дает возможность уменьшения площади, занимаемой ГТД (10). 3 н. и 7 з.п. ф-лы, 7 ил.

Изобретение относится к области двигателестроения и может быть использовано при комплектовании лопаток рабочих колес турбомашин. Техническим результатом является повышение устойчивости рабочего колеса турбомашины к автоколебаниям при обеспечении уровня дисбаланса рабочего колеса в соответствии с требованиями конструкторской документации. Для каждой лопатки множества определяют частоту собственных колебаний по наиболее опасной форме и измеряют весовую характеристику, определяют комплексный критерий, учитывающий весовые характеристики и частоты собственных колебаний лопаток по наиболее опасной форме, в комплект отбирают лопатки, отклонение значений комплексного критерия которых от его среднего значения не превышает установленной величины, выбирают схему расстановки, при которой разброс значений комплексного критерия рядом стоящих лопаток наиболее близок к его среднему значению, и расставляют лопатки по пазам диска по значениям комплексного критерия. В качестве весовой характеристики используют массу лопатки или статический момент или суммарный статический момент лопатки. 4 з.п. ф-лы, 3 ил., 4 табл.

Изобретение относится к энергетике. Предложен удерживающий кронштейн, содержащий кольцевой корпус, который содержит кольцевую удерживающую скобу, ограничивающую первые сквозные отверстия, и кольцевое основание, ограничивающее вторые сквозные отверстия. Профиль удерживающей скобы имеет фланец, противоположный фланцу соединительный элемент и криволинейную секцию, проходящую между фланцем и соединительным элементом. Профиль основания имеет первую сторону, соответствующую фланцу, и вторую сторону, противоположную первой стороне и соответствующую соединительному элементу. Вторая сторона выполнена с возможностью соединения с соединительным элементом таким образом, что каждое из первых сквозных отверстий выровнено по положению с соответствующим одним из вторых сквозных отверстий. Также представлены варианты элемента турбомашины. Изобретение позволяет повысить надежность конструкции турбомашины. 3 н. и 17 з.п. ф-лы, 8 ил.

Изобретение относится к энергетике. Энергетическая установка (100) содержит кожух (108) с первой секцией (I) кожуха и второй секцией (II) кожуха, причём генератор (110) переменного тока расположен в пределах первой секции (I) кожуха, а газовая турбина (120) расположена в пределах второй секции (II) кожуха. Первая секция (I) кожуха содержит элемент (101) для впуска воздуха, который выполнен с возможностью нагнетания воздушной струи (102) через него в первую секцию (I) кожуха таким образом, что воздушная струя (102) проходит вдоль генератора (110) переменного тока и охлаждает генератор (110) переменного тока. Первая секция (I) кожуха соединена со второй секцией (II) кожуха с возможностью подачи воздушной струи (102) во вторую секцию (II) кожуха. Также представлен способ функционирования энергетической установки. Изобретение позволяет упростить систему в целом, а также позволяет уменьшить затраты материалов и труда на установку и монтаж. 2 н. и 7 з.п. ф-лы, 3 ил.
Наверх