Акустический способ определения места перетока флюида в заколонном пространстве скважины

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для определения качества цементирования скважин. Акустический способ определения места перетока флюида в заколонном пространстве скважины заключается в равномерном перемещении вдоль скважины акустического преобразователя и отработке полученного на его выходе шумового сигнала, по которому судят о глубине расположения места перетока флюида. При этом в выходном шумовом сигнале акустического преобразователя выделяют стабильную по частоте дискретную составляющую f0 и регистрируют мгновенную доплеровскую частоту f(t) по мере перемещения преобразователя вдоль скважины с равномерной скоростью. В момент, когда мгновенная доплеровская частота f(t) будет равна дискретной составляющей f0, регистрируют время t0 и определяют глубину h0 расположения источника шума по приведенному математическому выражению. Предложенный способ снижает трудоемкость процесса определения места перетока флюида в заколонном пространстве. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано, например, для определения качества цементирования скважин.

Известен способ аналогичного назначения, согласно которому для определения наличия заколонного движения жидкости в скважине создают виброакустические колебания путем закачки в скважину жидкости с последующей многократной регистрацией виброакустических колебаний. При этом определение заколонного движения жидкости в скважине проводят по изменению амплитуд виброакустических колебаний /Патент РФ №2066751, кл. Е21В 47/10, 1996/.

Недостатком известного способа является ограниченность его применения только случаем выявления наличия факта заколонного перетока флюида.

Известен способ того же назначения, принятый за прототип, заключающийся в равномерном перемещении вдоль или параллельно оси скважины с равномерной скоростью V акустического преобразователя и отработке полученного на его выходе шумового сигнала, по которому судят о глубине h0 расположения места перетока флюида.

В прототипе предварительно регистрируют распределение температурных аномалий вдоль ствола скважины с помощью скважинного термометра и выделяют интервалы их отклонений от геотермы. Затем дважды проводят регистрацию шумовых сигналов акустическим преобразователем - при раскрытых и закрытых рычагах-волноводах в местах расположения температурных аномалий (RU 2405936 С2, кл. Е21В 47/14, опубл. 10.12.2010).

Недостатком прототипа является сложность практической реализации способа, вытекающая из необходимости применения в исследованиях помимо акустического еще и термического каротажа, а также необходимости применения специальных рычагов-волноводов в акустическом каротаже.

Техническим результатом, получаемым от внедрения изобретения, является упрощение практической реализации способа.

Данный технический результат достигают за счет того, что в известном акустическом способе, заключающемся в равномерном перемещении вдоль или параллельно оси скважины с равномерной скоростью V акустического преобразователя и отработке полученного на его выходе шумового сигнала, по которому судят о глубине h0 расположения места перетока флюида, предварительно из шумового сигнала выделяют стабильную по частоте дискретную составляющую f0, а на выходе акустического преобразователя по мере его перемещения вдоль или параллельно оси скважины регистрируют мгновенную доплеровскую частоту f(t) и в момент времени t0, в который значение мгновенной доплеровской частоты f(t)=f0, определяют глубину h0 по формуле:

h 0 = V t 0 ( 1 )

Кроме того, из шумового сигнала выделяют стабильную по частоте дискретную составляющую частотой выше 500 Гц.

Изобретение поясняется чертежами. На фиг.1 представлена схема реализации способа; на фиг.2 - траектория частотно-временного следа для пояснения существа способа.

Схема, реализующая способ, включает в себя акустическую каротажную систему, состоящую из спускоподъемного устройства 1 (СПУ 1), кабеля-троса 2 и акустического преобразователя 3. Имеется также вторичная электронная аппаратура 4, выполненная, например, в виде частотного дискриминатора и компьютера, ко входу которой подключен выход преобразователя 3 через кабель-трос 2.

Способ реализуется следующим образом.

Опускают или поднимают с равномерной скоростью V акустический преобразователь 3 с помощью СПУ 1 и кабеля-троса 2. Одновременно регистрируют с помощью вторичной электронной аппаратуры 4 шумовой выходной сигнал на выходе преобразователя 3. Выделяют из шумового выходного сигнала акустического преобразователя 3 стабильную по частоте дискретную составляющую f0 с помощью перестраиваемых полосовых фильтров частотного дискриминатора.

Поскольку между акустическим преобразователем 3 и источником 5 шума (фиг.1) имеет место равномерное движение со скоростью V, то возникает эффект Доплера, проявляющийся в том, что мгновенная доплеровская частота f(t) на выделенной дискретной составляющей f0 будет изменяться со временем t по мере изменения расстояния d между преобразователем 3 и источником 5 шума.

Характер изменения мгновенной доплеровской частоты подчиняется математическому соотношению (Измерительная техника, 1997, №3, с.48-52):

f ( t ) = f 0 [ 1 + V 2 ( t 0 t ) c d 2 + V 2 ( t t 0 ) 2 ] ( 2 ) ,

где c - скорость звука; t0 - момент времени, в который преобразователь 3 будет расположен на траверзном расстоянии от источника 5 шума (по существу, будет расположен напротив источника 5 шума, как представлено на фиг.1).

Характер изменения мгновенной доплеровской частоты f(t) представлен на фиг.2, из которого видно, что на временах t<<t0 и t>>t0 f ( t ) = f 1 = f 2 = f 0 ± f 0 V c .

В момент времени t0, когда преобразователь 3 расположен на траверзном расстоянии от источника 5 шума (напротив источника 5 шума), f(t)=f0.

Вторичная аппаратура 4 фиксирует на компьютере момент времени t0 и по нему определяет глубину h0 по формуле (1).

Высокая точность измерений мгновенной доплеровской частоты f(t) наблюдается при значениях f0>500 Гц.

1. Акустический способ определения места перетока флюида в заколонном пространстве скважины, заключающийся в равномерном перемещении вдоль или параллельно оси скважины с равномерной скоростью V акустического преобразователя и отработке полученного на его выходе шумового сигнала, по которому судят о глубине h0 расположения места перетока флюида, отличающийся тем, что предварительно из шумового сигнала выделяют стабильную по частоте дискретную составляющую f0, a на выходе акустического преобразователя по мере его перемещения вдоль или параллельно оси скважины регистрируют мгновенную доплеровскую частоту f(t) и в момент времени t0, в который значение мгновенной доплеровской частоты f(t)=f0, определяют глубину h0 по формуле h0=Vt0.

2. Акустический способ по п.1, отличающийся тем, что из шумового сигнала выделяют стабильную по частоте дискретную составляющую частотой выше 500 Гц.



 

Похожие патенты:

Изобретение относится к гидрогеологии, бурению и эксплуатации скважин и может быть использовано для проведения геофизических исследований технического состояния скважин.

Изобретение относится к системе и способу минимизации поглощения бурового раствора в пределах подземных пластов-коллекторов. Техническим результатом является снижение потерь материалов и повышение эффективности эксплуатации скважин.

Группа изобретений относится к нефтедобывающей промышленности, а именно к пакерам с электронным измерительным прибором и способам для их реализации. Обеспечивает повышение эффективности эксплуатации скважины.
Изобретение относится к геофизическим способам исследования скважин: каротаж-активация-каротаж, в частности к определению низко проницаемых пластов в бурящейся скважине.

Изобретение относится к нефтегазодобывающей промышленности. Предложен способ оптимизации добычи в скважине, в котором управляют системой искусственного подъема в стволе скважины, отслеживают множество параметров добычи на поверхности и в стволе скважины.

Изобретение относится к способу и системе коррекции траектории ствола скважины. Техническим результатом является использование данных, полученных в режиме реального времени, для уточнения модели напряжений для данного региона, так что траекторию можно непрерывно корректировать для достижения оптимального соотношения с измеренными характеристиками напряжений данного региона.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для добычи углеводородов и проведения исследований и скважинных операций в скважине без подъема насосного оборудования.

Изобретение относится к геофизической технике и может быть использовано при проведении геофизических исследований и ремонтно-изоляционных работ в горизонтальных и наклонно-направленных действующих нефтяных, газовых и гидротермальных скважинах.

Изобретение относится к геофизическим исследованиям в скважине и может быть применено при электромагнитной дефектоскопии многоколонных конструкций стальных труб.

Изобретение относится к оценке уровня жидкости в нефтяных скважинах и может быть использовано для определения и контроля статического и динамического уровней скважинной жидкости, например, в нефтяной скважине.

Способ обеспечивает определение объема отсепарированного попутного нефтяного газа (ПНГ) в установке предварительного сброса воды (УПСВ) или дожимной насосной станции (ДНС). Способ реализуется на основании периодических измерений содержания сероводорода в поступающей на УПСВ или ДНС газожидкостной продукции и разделенных на этих объектах нефти, пластовой воды и ПНГ. По способу количественно замеряют содержание сероводорода в поступающей на УПСВ (ДНС) газожидкостной смеси, нефти и воде. По материальному балансу определяют массовый выход H2S в составе ПНГ. Учитывая массовую концентрацию сероводорода в ПНГ, определяют объем отсепарированного попутного нефтяного газа за единицу времени. Технический результат заключается в возможности измерения объема отсепарированного попутного нефтяного газа без применения счетчиков газа, что повышает точность измерений. 1 табл.

Изобретение относится к гидрологии, бурению и эксплуатации скважин и может быть использовано при проведении геофизических исследований технического состояния скважин. Техническим результатом, получаемым при внедрении изобретения, является расширение эксплуатационных возможностей за счет однозначной интерпретации результатов термического каротажа для случаев присутствия в скважине температурных аномалий от стационарных градиентов температур и перетоков флюида. Данный технический результат достигается за счет того, что обычная термическая каротажная система дополнена термоанемометром, объединенным с термической системой в единую схему. 3 з.п. ф-лы, 2 ил.

Изобретение относится к креплению скважин, в частности к способу определения целостности кольцевого уплотнения обсадной колонны в скважине. Техническим результатом является снижение трудозатрат на обеспечение качественного уплотнения межтрубного пространства в скважине. Предложенный способ определения целостности кольцевого уплотнения в скважине содержит несколько этапов. На первом этапе обеспечивают характеристический отклик, связанный с геологической формацией, обеспечивающей эффективное кольцевое уплотнение вокруг секции обсадной трубы, размещенной в скважине. На втором этапе осуществляют спуск, по меньшей мере, одного скважинного прибора в выбранную скважину, проходящую через геологическую формацию, для получения ответной информации, связанной со свойством геологической формации. На третьем этапе производят сравнение ответной информации от выбранной скважины с характеристическим откликом для определения образования геологической формацией эффективного кольцевого уплотнения вокруг секции обсадной трубы, размещенной в выбранной скважине. 17 з.п. ф-лы, 3 ил.

Изобретение относится к эксплуатации нефтяных и газовых скважин и может быть использовано при контроле коррозионного состояния обсадных колонн (ОК) и насосно-компрессорных труб (НКТ) скважин. Техническим результатом является контроль коррозионного состояния ОК и НКТ скважин прямым методом исследования. Способ заключается в перемещении вдоль контролируемого участка обсадной колонны измерительного скважинного зонда и регистрации его показаний на различных глубинах обсадной колонны, по значениям которых проводят контроль коррозионного состояния обсадных колонн. В качестве перемещаемого вдоль контролируемого участка измерительного скважинного зонда применяют толщиномер. При этом регистрацию показаний толщиномера на различных глубинах обсадной колонны проводят в различные моменты времени в процессе развития коррозионного состояния обсадной колонны с последующим сравнением значений показаний, полученных в различные моменты времени. 9 з.п. ф-лы, 3 ил.

Изобретение относится к бурению скважины и может быть использовано для контроля забойных параметров и каротаже в процессе бурения. Техническим результатом является повышение качества исследования скважины за счет увеличения надежности передачи информации от забоя на поверхность. Предложена забойная телеметрическая система, содержащая соединенные между собой модуль электрогенератора-пульсатора, модуль инклинометра и модуль гамма-каротажа, включающие телеметрические блоки. При этом указанная телеметрическая система дополнительно содержит блок анализа и управления коммутатором и коммутатор, соединенные с указанными модулями. Причем вход блока анализа и управления коммутатором соединен с выходом блока управления пульсациями модуля гамма-каротажа и первым входом коммутатора. А выход блока анализа и управления коммутатором соединен с входом управления коммутатора. Кроме того, второй вход коммутатора соединен с выходом блока управления пульсациями модуля инклинометра, а выход коммутатора соединен с входом пульсатора, установленным в модуле электрогенератора-пульсатора. 6 з.п. ф-лы, 1 ил.

Изобретение относится к способу и устройству для скважинных измерений для контроля и управления нефтяными и газовыми эксплуатационными, нагнетательными и наблюдательными скважинами и, в частности, к способу и устройству для контроля параметров ствола скважины и пласта в месте залегания. Техническим результатом является точный контроль параметров ствола скважины и пласта. Устройство включает беспроводной блок датчика (WSU), расположенный снаружи секции немагнитной обсадной колонны и включающий датчик для измерения давления и/или температуры окружающей среды, при этом блок WSU может быть установлен или позиционирован на любой высоте ствола скважины, а питание блока WSU осуществляется с помощью сбора энергии. Причем частота индукционного сигнала лежит в диапазоне 10-1000 Гц для глубокого проникновения через немагнитную обсадную колонну. Внутренний блок питания датчика (SEU) размещен внутри обсадной колонны ствола скважины и используется для питания блока WSU и связи с ним, при этом блок SEU закреплен на буровой трубе или на конструкции оснащенной скважины с помощью трубы, имеющей резьбу, которая позволяет регулировать его положение по высоте, причем блок SEU преобразует мощность питания постоянного тока, подаваемого по кабелю с поверхности, в переменное электромагнитное поле, обеспечивающее питание для блока WSU, расположенного снаружи обсадной колонны. При этом блоки SEU и WSU используют электромагнитную модуляцию для обеспечения обмена данными между этими двумя компонентами. Причем блоки SEU и WSU выполнены с возможностью их расположения в точности на одной высоте. 2 н. и 50 з.п. ф-лы, 8 ил.

Изобретение относится к области геофизических исследований скважин, а именно к приборам для измерений геофизических и технологических параметров в процессе бурения. Техническим результатом является повышение информативности измерений и точности геонавигации в процессе бурения за счет расположения зонда для измерения удельного электрического сопротивления на максимально близком расстоянии к долоту в наддолотном модуле (НДМ). Устройство по изобретению содержит забойную телеметрическую систему (ЗТС), включающую бурильную колонну, корпус, блок питания, измерительные модули, приемо-передающий модуль, электрический разделитель, выполненный в виде отдельного переводника. НДМ установлен непосредственно над долотом. При этом долото состоит из корпуса с центральным промывочным отверстием, на котором размещен центральный электрод. В свою очередь центральный электрод расположен между изоляторами и электрически изолирован от корпуса, в котором расположены электрические схемы, измерительные датчики, источник питания и передающее устройство. При этом НДМ снабжен зондом измерения удельного электрического сопротивления пласта, включающим измеритель тока, соединенный с низом бурильной колонны и центральным электродом указанного модуля, и измеритель разности потенциалов между низом бурильной колонны и центральным электродом указанного модуля. Кроме того, выходы измерителя тока и указанного измерителя разности потенциалов соединены с выходным узлом передающего устройства НДМ. 4 ил.

Изобретение относится к исследованию скважин и может быть использовано для непрерывного контроля параметров в скважине. Техническим результатом является упрощение конструкции системы наблюдения за параметрами в скважине. Предложена система наблюдения в скважине, включающая датчики, в частности, давления и температуры, кабель, соединяющий скважинную систему наблюдения и устье скважины. При этом устье скважины содержит электрический вывод устья, имеющий телеметрическую систему сбора данных и источник питания для скважинной системы наблюдения. Кроме того, электрический вывод устья содержит командный модуль для скважинной системы наблюдения и модуль хранения данных с микропроцессором. 4 н. и 20 з.п. ф-лы, 4 ил.

Изобретение относится к эксплуатации нефтяных и газовых скважин, в частности к геофизическим исследованиям открытых стволов многозабойных горизонтальных скважин. Техническим результатом является повышение надежности и эффективности работы устройства в открытых стволах многозабойных скважин. Устройство для исследования открытых стволов многозабойных горизонтальных скважин содержит спускаемый в скважину на толкателе, выполненном в виде колонны пустотелых герметичных труб, геофизический прибор, обеспечивающий проведение исследований. При этом на нижнем конце устройства установлен гидравлический отклонитель, обеспечивающий доступ геофизического прибора в открытый ствол многозабойной скважины под действием избыточного давления жидкости в колонне труб. Кроме того, геофизический прибор выполнен автономным и эксцентрично установлен в защитном контейнере. Причем корпус защитного контейнера оснащен окнами для проведения геофизических исследований в открытом стволе горизонтальной многозабойной скважины. А внутри корпуса защитного контейнера выполнен гидравлический канал, сообщающий внутренние пространства колонны пустотелых герметичных труб и гидравлического отклонителя через полое гибкое сочленение. 2 ил.

Изобретение относится к нефтяной промышленности и может быть использовано при гидродинамических исследованиях многозабойных скважин. Предложен способ исследования многозабойной горизонтальной скважины, содержащий этапы, на которых осуществляют спуск в скважину глубинного прибора, проведение гидродинамических исследований и извлечение геофизического прибора из многозабойной горизонтальной скважины. При этом перед спуском глубинного прибора на устье многозабойной горизонтальной скважины на нижний конец колонны труб устанавливают гидравлический отклонитель с легкоразбуриваемой сбивной насадкой с калиброванным отверстием и фиксирующим срезным штифтом. Спускают колонну труб с гидравлическим отклонителем с одновременной промывкой до интервала зарезки исследуемого бокового ствола. Причем в процессе спуска колонну труб оснащают пусковыми клапанами. Затем создают избыточное гидравлическое давление в колонне труб и спускают ее в исследуемый боковой ствол и увеличивают избыточное давление в колонне труб до разрушения срезного штифта и отсоединения сбивной насадки от гидравлического отклонителя. Далее на устье скважины соединяют глубинный прибор с жестким кабелем и спускают его в колонну труб до выхода из колонны и размещения его в исследуемом боковом стволе. После чего вызывают приток жидкости из пласта закачкой газа в межколонное пространство через пусковые клапаны и производят гидродинамические исследования в исследуемом боковом стволе проталкиванием глубинного прибора до его забоя. После проведения гидродинамических исследований последовательно извлекают жесткий кабель с глубинным прибором из колонны труб и колонну труб с гидравлическим отклонителем. Техническим результатом является повышение точности и эффективности проведения гидродинамических исследований в боковых стволах многозабойной горизонтальной скважины. 2 ил.
Наверх