Система охлаждения активной зоны и отражателя ядерного реактора бассейного типа

Изобретение относится к ядерным реакторам бассейнового типа. Система охлаждения активной зоны и отражателя реактора содержит активную зону и отражатель, расположенные в заполненном теплоносителем бассейне реактора. Активная зона и отражатель размещены в корпусе, выполненном в виде короба с двумя обечайками и нижней опорной решеткой с отверстиями. Активная зона расположена во внутренней обечайке корпуса, а отражатель расположен во внешней обечайке. Высоту внутренней обечайки выбирают из условия обеспечения такого расхода теплоносителя за счет естественной циркуляции, при котором обеспечивается расхолаживание активной зоны без превышения допустимых значений температур оболочек тепловыделяющих элементов. Технический результат - обеспечение расхолаживания активной зоны и отражателя в аварийных ситуациях. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к ядерным реакторам бассейнового типа, а именно к устройствам для охлаждения активной зоны и отражателя с организацией естественной циркуляции теплоносителя.

Из уровня техники известен ядерный реактор исследовательского типа, описанный в а.с. СССР №764533 и являющийся наиболее близким аналогом заявленного изобретения. Реактор содержит заполненный теплоносителем (деминерализованной водой) бассейн, в котором расположена активная зона, окруженная отражателем. Охлаждение активной зоны реактора осуществляется принудительной циркуляцией воды бассейна реактора, причем вода проходит через активную зону в направлении сверху вниз.

Основным недостатком известного реактора является то, что для обеспечения аварийного расхолаживания активной зоны на естественной циркуляции требуется открытие клапана естественной циркуляции. Хотя открытие клапана осуществляется за счет пассивного действия (перепада давления на клапане), возможен его отказ, и соответственно отказ расхолаживания на естественной циркуляции, и как следствие возможно превышение предельных температур оболочек твэлов.

Техническим результатом, достигаемым при реализации предлагаемого изобретения, является обеспечение расхолаживания активной зоны и отражателя в аварийных ситуациях за счет естественной циркуляции, обеспечиваемой конструктивными особенностями активной зоны.

Указанный технический результат достигается за счет того, что активная зона и отражатель размещены в корпусе, выполненном в виде короба с двумя концентричными обечайками и нижней опорной решеткой с отверстиями, причем активная зона расположена во внутренней обечайке корпуса, а отражатель расположен во внешней обечайке. Высоту внутренней обечайки выбирают из условия обеспечения такого расхода теплоносителя за счет естественной циркуляции, при котором обеспечивается расхолаживание активной зоны без превышения допустимых значений температур оболочек тепловыделяющих элементов.

Во внешней обечайке могут быть размещены вертикальные каналы ядерного легирования кремния, при этом высота внутренней обечайки должна быть больше высоты каналов ядерного легирования кремния.

Изобретение поясняется чертежами, где на фиг.1 показан вертикальный разрез корпуса, в котором расположены активная зона и отражатель, а на фиг.2 - горизонтальный разрез корпуса.

В бассейне с теплоносителем (деминерализованной водой) расположена активная зона 1, окруженная отражателем 2. Активная зона 1 с отражателем 2 размещены в корпусе, который предназначен для направления и организации потоков теплоносителя для охлаждения активной зоны 1 и отражателя 2. Корпус представляет собой короб с двумя концентричными прямоугольными обечайками и нижней опорной решеткой 3 с отверстиями под хвостовики изделий активной зоны.

Во внутренней обечайке 4 на опорной решетке 3 размещают тепловыделяющие сборки (ТВС) 6, содержащие тепловыделяющие элементы, и рабочие органы системы управления и защиты (РО СУЗ) 7, а также сменные блоки для бериллиевого отражателя 2. Во внешней обечайке 5 на опорной решетке 3 устанавливают бериллиевые блоки отражателя 2. Во внешней обечайке 5 также могут быть расположены вертикальные каналы 8 ядерного легирования кремния (ЯЖ). Корпус размещен в верхней части бассейна, а нижняя часть бассейна является задерживающей емкостью 9.

Внутренняя обечайка 4 корпуса служит подъемным участком для охлаждения активной зоны 1, внешняя обечайка 5 корпуса служит опускным участком для охлаждения отражателя 2. Высота внутренней обечайки 4 корпуса определяется высотой тягового участка, необходимой для создания естественной циркуляции теплоносителя при аварийных ситуациях. Высота тягового участка выбирается из условия обеспечения такого расхода теплоносителя за счет естественной циркуляции, при котором обеспечивается расхолаживание активной зоны без превышения допустимых значений температур оболочек тепловыделяющих элементов. Эта высота может быть определена при заданных предельных значениях температуры теплоносителя на подъемном и опускном участках контура естественной циркуляции. При наличии во внешней обечайке 5 каналов 8 ЯЛК высота внутренней обечайки 4 также должна обеспечивать исключение падение слитка кремния на ТВС 6 при перегрузочных операциях со слитками. Падение слитка кремния на ТВС 6, размещенные во внутренней обечайке 4 корпуса, может произойти при подъеме слитка из канала 8 ЯЛК, если внутренняя обечайка будет ниже, чем канал ЯЛК.

Охлаждение активной зоны 1 и отражателя 2 реактора при нормальных условиях эксплуатации производится за счет принудительной циркуляции воды бассейна через активную зону 1 сверху вниз.

При развитии естественной циркуляции за счет разной плотности теплоносителя в активной зоне (внутренняя обечайка 4) и внешней обечайке 5 происходит изменение направления расхода в активной зоне 1, и дальнейшее расхолаживание реактора обеспечивается за счет естественной циркуляции теплоносителя. Нагретый в активной зоне 1 теплоноситель поднимается по тяговому участку внутренней обечайки 4 корпуса и поступает во внешнюю обечайку 5 корпуса, где он смешивается с холодной массой теплоносителя. Охлажденный теплоноситель поступает в задерживающую емкость 9 и далее - опять в активную зону 1 реактора. Внутренняя обечайка 4 выше канала 8 ЯЛК, за счет чего предотвращается падение слитка кремния на ТВС 6, размещенные во внутренней обечайке 4, при перегрузочных операциях со слитками. Кроме того, высота обечайки определяется высотой тягового участка, необходимой для создания естественной циркуляции при аварийных ситуациях.

1. Система охлаждения активной зоны и отражателя реактора бассейнового типа, содержащая расположенные в заполненном теплоносителем бассейне реактора активную зону и окружающий ее отражатель, отличающаяся тем, что активная зона и отражатель размещены в корпусе, выполненном в виде короба с внешней и внутренней обечайками и нижней опорной решеткой с отверстиями, причем активная зона расположена во внутренней обечайке корпуса, а отражатель расположен во внешней обечайке, при этом высоту внутренней обечайки выбирают из условия обеспечения такого расхода теплоносителя за счет естественной циркуляции, при котором обеспечивается расхолаживание активной зоны без превышения допустимых значений температур оболочек тепловыделяющих элементов.

2. Система охлаждения по п.1, отличающаяся тем, что во внешней обечайке размещены вертикальные каналы ядерного легирования кремния, при этом высота внутренней обечайки больше высоты каналов ядерного легирования кремния.



 

Похожие патенты:

Изобретение относится к системам безопасности ядерного реактора. Система аварийного расхолаживания ядерного реактора бассейнового типа содержит емкость аварийного расхолаживания, расположенную в бассейне реактора и сообщающуюся посредством трубопровода с подзонным пространством, которое образовано горизонтальной разделительной перегородкой, расположенной ниже активной зоны, и днищем бассейна.

Заявляемое изобретение относится к области атомной энергетики, в частности к системам охлаждения ядерного канального реактора, и может быть использовано для расхолаживания реактора.

Изобретение относится к ядерным реакторам. Ядерный реактор содержит бак (4), в котором расположена активная зона реактора, первичный контур для охлаждения реактора, колодец (6) бака, в котором находится бак (4), кольцевой канал (16), окружающий нижнюю часть бака (4) в колодце (6) бака, резервуар жидкости для заполнения колодца бака, герметичный корпус (22) реактора, камеру (26) сбора пара, генерируемого в верхнем конце колодца (6) бака, отделенную от герметичного корпуса (22), циркуляционный насос (40) и лопастный насос или паровую поршневую машину (32) для приведения в действие циркуляционного насоса (40).

Изобретение относится к ядерным энергетическим установкам, а именно к пассивным системам безопасности. .

Изобретение относится к области энергетики, а именно к повышению безопасности эксплуатации атомных электростанций. .

Изобретение относится к области атомной энергетики, а именно к локализующим системам безопасности на АЭС с двумя защитными оболочками, и может быть использовано в устройствах поддержания разрежения в межоболочечном пространстве в случае отказа вентиляционных систем, требующих электроэнергию для своей работы.

Изобретение относится к области эксплуатации атомных электростанций повышенной безопасности, а именно к системам пассивного отвода тепла (СПОТ) от ядерного реактора, и может быть использовано в этих системах в случаях, когда при работающем ядерном реакторе теплообменники СПОТ должны находиться в нагретом состоянии.

Изобретение относится к области теплоэнергетики, а именно к составам материалов для передачи тепла в условиях пиковых нагрузок. .

Изобретение относится к энергетике и предназначено для использования на атомных электростанциях с ядерными реакторами, охлаждаемыми водой под давлением. .

Изобретение относится к области атомной энергетики и может быть использовано в реакторных установках с жидкометаллическим теплоносителем. .

Изобретение относится к ядерному реактору с жидкометаллическим теплоносителем и способу отвода теплоты от такого реактора. Ядерный реактор 10 с жидкометаллическим теплоносителем содержит корпус 22 реактора, защитную оболочку 23, канал U для воздушного потока и узел 30 нагнетания. В корпусе реактора находятся активная зона 11 и хладагент L для активной зоны 11 реактора. Внешнюю поверхность корпуса окружает защитная оболочка 23. Канал U для воздушного потока обеспечивает отвод теплоты с помощью воздушного потока, проходящего вокруг защитной оболочки 23, а узел 30 нагнетания предназначен для закачки заполнителя в зазор D между корпусом 22 реактора и защитной оболочкой 23. Технический результат - повышение эффективности отвода тепла от корпуса реактора за счет повышения температуры внешней стенки защитной оболочки. 2 н. и 7 з.п. ф-лы, 17 ил.

Группа изобретений относится к ядерной технике, в частности к средствам обеспечения безопасности при хранении отработавших тепловыделяющих сборок (ОТВС) реактора ВВЭР-1000, и предназначено для охлаждения чехлов с ОТВС при запроектной аварии, вызванной осушением бассейнов выдержки. При орошении чехлов с ОТВС распыленной дренчерными оросителями водой, воду в дренчерные распылители подают периодически, причем минимальный расход воды определяют по формуле: G мин=Q/r×F1/F2, где G мин - минимальный массовый расход воды, кг/с; Qот - суммарное тепловыделение ОТВС в отсеке, кВт; R - удельная теплота парообразования воды, кДж /кг; F1 - площадь отсека, м2; F2 - суммарная площадь чехлов с ОТВС в отсеке, м2. Бак аварийного водоснабжения соединен через запорный клапан и подводящий трубопровод непосредственно с системами орошения чехлов с ОТВС и стен, и параллельно через запорный клапан с всасывающим патрубком повысительной насосной станции. Ее нагнетательный патрубок также через запорные клапаны соединен с подводящим трубопроводом и с баком аварийного водоснабжения байпасным трубопроводом. Запорные клапаны снабжены электроприводами и пультом управления, обеспечивающим их открытие и закрытие через заданные промежутки времени. Технический результат - повышение эффективности использования охлаждающей воды за счет прерывистого режима подачи воды на орошение чехлов с ОТВС, обеспечивающего преимущественно пленочный режим кипения охлаждающей воды на стенках чехлов. 2н. и 1 з.п. ф-лы, 2 ил.

Изобретения относится к ядерной технике, в частности к средствам обеспечения безопасности при хранении отработавших тепловыделяющих сборок (ОТВС) реактора ВВЭР-1000 в бассейнах выдержки, и предназначено для охлаждения чехлов с ОТВС и строительных конструкций при запроектной аварии, вызванной осушением бассейнов выдержки. Орошение чехлов с ОТВС осуществляют распыленной водой, подаваемой из резервуара аварийного водоснабжения самотеком, а в оросители дополнительно подают сжатый воздух. В системах орошения монтируют расположенные вдоль стен трубопроводы подачи воды и сжатого воздуха, располагаемыми между рядами чехлов с ОТВС. Присоединенные к ним оросители выполнены в виде акустических форсунок для тонкого распыления воды, которые размещают на расстоянии, меньшем радиуса их действия. В качестве источника сжатого воздуха используется передвижной компрессор. Технический результат - получение пленки воды на охлаждаемых поверхностях, равномерное отведение тепла от ОТВС. 2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к системам локализации аварии на АЭС для улавливания кориума. В расположенной ниже корпуса реактора и предназначенной для охлаждающей жидкости камере установлено средство для приема расплава, выполненное в виде вертикальных труб. Расплав в процессе заполнения камеры подают в трубы, по меньшей мере, частично заполненные карбонатами металлов, которые разлагают до оксидов при нагреве с помощью расплава. В качестве карбонатов металлов, подвергаемых разложению, выбирают карбонаты с двухвалентными катионами: Са, Mg, Fe, Mn, Ва, Sr, Pb, Zn, Cu и др. Устройство для улавливания кориума содержит расположенную ниже корпуса реактора и предназначенную для охлаждающей жидкости камеру, в которой установлены вертикальные трубы для приема расплава. Внутренние полости труб соединены с межтрубным пространством камеры, а верхние концы соединены по своим торцам. Внутренние полости труб содержат проплавляемые вытеснители объема, и, по крайней мере, часть внутренних полостей содержит карбонаты металлов. Карбонаты металлов размещены в проплавляемых вытеснителях объема или выполнены в виде пористых брикетов. Технический результат - безопасное охлаждение кориума. 2 н. и 10 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к расхолаживанию водоохлаждаемого реактора при полном обесточивании. Пар, получаемый в парогенераторе за счет энергии остаточного тепловыделения активной зоны, через быстродействующую редукционную установку направляется в дополнительную паротурбинную установку 17, в которой вырабатывает необходимую электроэнергию для электроснабжения собственных нужд станции. При этом избыточная часть генерируемого пара направляется в смешивающий подогреватель 11, где подогревает воду, поступающую из бака холодной воды 13, полученная горячая вода поступает в бак горячей воды 10 и используется для подогрева питательной воды путем смешения, когда энергии остаточного тепловыделения становится недостаточно, для генерации необходимого количества пара. Технический результат - обеспечение расхолаживания реактора при полном обесточивании, а в штатном режиме - получение дополнительной электроэнергии за счет теплоты, аккумулированной в часы провала электрической нагрузки. 1 ил.

Изобретение относится к способам повышения маневренности и безопасности АЭС. В эксплуатационном режиме в период ночного провала электрической нагрузки, газотурбинная установка (ГТУ) 12 отключается, дополнительная паротурбинная установка 17 работает на пониженном режиме за счет незначительного снижения расхода свежего пара на основную турбоустановку 1. В пиковые часы электрической нагрузки включается в работу ГТУ 12, уходящие газы направляются в котел утилизации (КУ) 13. После питательного насоса 7 часть питательной воды направляется в КУ 13, нагревается там и подается дожимным насосом 14 в тракт питательной воды и, смешиваясь с основным потоком, подается в парогенератор. В результате уменьшения расхода через ПВД 9 уменьшаются отборы пара из основной паровой турбоустановки 1 на подогрев питательной воды. Избыток пара, полученный за счет снижения расхода на отборы, через устройство парораспределения 16 направляется на дополнительную паровую турбоустановку 17. Технический результат - выработка дополнительной энергии на АЭС в эксплуатационном режиме посредством газотурбинной и паротурбинной установок, способных обеспечить электроснабжение собственных нужд АЭС при аварии. 1 ил.

Изобретение относится к подводным модулям для производства электрической энергии. Модуль содержит удлиненный цилиндрический кессон (12), в который интегрирован электрический энергоблок, содержащий кипящий ядерный реактор (30), связанный со средством (37) производства электрической энергии, соединенный при помощи электрических кабелей (6) с внешним пунктом (7) распределения электрической энергии. Кипящий ядерный реактор (30) содержит вторичный контур (36), связанный со средством (37) производства электрической энергии, и вторичный защитный контур (60), параллельно соединенный с этим вторичным контуром и содержащий по меньшей мере один вторичный пассивный теплообменник (61), расположенный снаружи подводного модуля (12) в морской среде. 24 з.п. ф-лы, 5 ил.

Изобретение относится к средствам локализации тяжелой аварии атомного реактора. Прочность конструкции полотна (6) основания ядерного реактора, смонтированного на несущей решетке (7) основания ядерного реактора, не превышает прочность верхней и боковых конструкций ядерного реактора. Аварийным давлением в реакторе полотно (6) основания ядерного реактора разрушается на мелкие части мгновенным прорывом небольших оконных проемов со стороной до 20 см по всей внутренней площади основания реактора. Полотно (6) основания реактора одномоментно выдавливается через несущую решетку (8) по всему внутреннему периметру основания реактора (7). Аварийный расплав через несущую решетку основания реактора сбрасывается в приемное устройство ловушки (2). Заборники расплава (4) равномерно распределяют аварийный расплав по горизонтальным шахтам (3). Горизонтальные шахты (3) расположены посекторно по вертикали вокруг приемного устройства ловушки (2), по всему периметру в пределах основного корпуса блока АЭС (5), поярусно, на необходимую глубину, в достаточном количестве, обеспечивающем гарантированное естественное охлаждение и длительное хранение аварийного расплава, замедление его разогрева, минимизацию образования водорода, предотвращение образования повторной критичности. Технический результат – снижение вероятности разрушения внешнего герметичного контура ядерного реактора (1) при превышении аварийного давления, ядерного взрыва внутри реактора. 2 ил.

Изобретение относится к энергетическим модулям подводного базирования. Модуль содержит удлиненный цилиндрический кессон, в который интегрирован блок производства электроэнергии (12) с кипящим ядерным реактором (30). Блок производства электрической энергии при помощи электрических кабелей (6) связан с внешним пунктом (7) распределения электрической энергии. Кипящий ядерный реактор (30) расположен в сухой камере (19) реакторного отсека (18), связанной с камерой (20), формирующей резервуар для хранения воды защиты реактора. В камере (20) радиальная стенка (53) находится в состоянии теплообмена с морской окружающей средой. Кипящий ядерный реактор (30) содержит реакторный бак (32), установленный в колодце (90) бака, нижняя часть которого соединена с нижней частью камеры (20) через средства (91), формирующие впускной водопровод, установленные вдоль радиальной стенки (53) модуля (12), и верхняя часть которого соединена с соответствующей частью камеры (20), формирующей резервуар, через средства (92), формирующие выпускной водопровод. Технический результат – повышение уровня безопасности реактора при неблагоприятных природных явлениях. 24 з.п. ф-лы, 5 ил.

Изобретение относится к АЭС подводного базирования. Модуль (12) в виде удлиненного цилиндрического кессона содержит блок производства электроэнергии, содержащий кипящий ядерный реактор (30), связанный со средствами (37) производства электрической энергии, соединенными при помощи электрических кабелей (6) с внешним пунктом (7) распределения электрической энергии. Кипящий ядерный реактор (30) расположен в сухой камере (19) реакторного отсека (18), связанной с камерой (20), образующей резервуар для хранения воды защиты реактора. У камеры, по меньшей мере, одна радиальная стенка (53) находится в состоянии теплообмена с морской окружающей средой. Сухая камера (19) реакторного отсека (18) связана с отсеком (21) для размещения средств производства электрической энергии, который содержит средства (100) подачи воды для затопления сухой камеры (19). Средства (100) установлены в его нижней части и содержат водозаборник (101) для морской воды, выполненный в радиальной стенке модуля (12), трубопровод между этим водозаборником и сухой камерой (19) реакторного отсека и вентиль (102) для затопления этой камеры. Технический результат – повышение безопасности энергоблока при авариях. 23 з.п. ф-лы, 5 ил.
Наверх