Способ получения биметаллических слитков с износостойким наплавленным слоем

Изобретение относится к металлургии. Способ включает размещение металлической заготовки с зазором от стенки кристаллизатора, установку в зазоре расходуемых электродов, наведение шлаковой ванны и переплав в ней расходуемых электродов. Основной слой изготавливают из легированной стали, содержащей, мас.%: углерод 0,10-0,50, кремний 0,5-1,5, марганец 0,5-1,5, хром 0,5-1,5, фосфор не более 0,025, сера не более 0,025. Расходуемые электроды изготавливают в виде сортового круглого проката диаметром 40-60 мм из стали, содержащей, мас.%: углерод 0,6-1,2, кремний 0,15-1,8, марганец 0,15-0,80, хром 0,7-1,7, фосфор не более 0,025, сера не более 0,025. На поверхности стали основного слоя прикрепляют штанги в виде сортового проката диаметром 30-70 мм из стали, содержащей, мас.%: углерод 1,0-1,5, кремний 0,1-0,5, марганец 0,1-0,5, хром 1,0-7,5, вольфрам 0,5-2,5, ванадий 0,3-1,2, молибден до 0,3, фосфор не более 0,025, сера не более 0,025, обеспечивающие при переплаве образование легированного наплавленного слоя из стали, содержащей, мас.%: углерод 0,7-1,2, кремний 0,1-1,7, марганец 0,15-0,80, хром 0,6-2,0, вольфрам 0,02-1,0, ванадий 0,02-0,2, молибден до 0,3, фосфор не более 0,025, сера не более 0,025. Отношение массы штанг к массе расходуемых электродов составляет 10-20%. Обеспечивается получение биметаллического слитка с износостойким плакирующим слоем с высокой прочностью и сплошностью соединения слоев. 1 з.п. ф-лы, 5 табл.

 

Изобретение относится к металлургии, конкретнее к области специальной электрометаллургии, а именно к производству биметаллических слитков с износостойким наплавленным слоем методом электрошлаковой технологии.

Биметаллические слитки, состоящие из основного слоя из углеродистой, низколегированной или легированной стали и наплавленного (плакирующего) слоя из износостойкой стали, предназначены для последующей прокатки на биметаллические полосы и листы. Основными требованиями, предъявляемыми к таким слиткам, являются высокая прочность и гарантированная сплошность соединения слоев, равномерность толщины наплавленного слоя и его высокая износостойкость при удовлетворительном качестве поверхности. Требования, предъявляемые к геометрическим размерам - толщина заготовки основного слоя должна быть на много меньше его ширины, что облегчает последующую прокатку слитков на листы определенного размера, то есть повышает технологичность и приводит к снижению стоимости.

Известен способ получения биметаллического слитка с износостойким поверхностным слоем методом литейного плакирования, включающим заливку стали одного состава в изложницу (например, стали 60), в которой установлены одна или две плиты из стали другого состава (например, стали 10 или 20).

((Кобелев А.Г., Лысак В.И., Чернышев В.Н., Быков А.А., Востриков В.П. Производство металлических слоистых композиционных материалов С.82-88 2002 - г.Москва Издательство «Интермет Инжиниринг»)

Недостаток этого способа заключается в том, что при получении биметаллического слитка не достигается достаточная равномерность толщины получаемого слоя, а также низкий уровень прочности сцепления слоев и высокая вероятность возникновения отслоения полученного слоя в процессе дальнейшей горячей прокатки.

Известен способ получения биметаллического слитка, состоящего из основного и плакирующего слоев, включающий размещение в кристаллизаторе с зазором от одной из его стенок металлической заготовки, являющейся одним из слоев биметаллического слитка, установку расходуемых электродов в этом зазоре, наведение на поддоне в зазоре между стенкой кристаллизатора и заготовкой шлаковой ванны и переплав в ней расходуемых электродов с формированием второго слоя биметаллического слитка, отличающийся тем, что перед наведением шлаковой ванны электроды в зазоре относительно заготовки устанавливают на расстоянии, составляющем 0,3-0,5 расстояния от нижнего торца электродов до поддона, нагрев шлака и переплав расходуемых электродов ведут при мощности, составляющей 0,8-0,9 рабочей расчетной мощности, до высоты слитка, равной 1,0-2,5 ширины зазора, после чего увеличивают мощность до рабочей расчетной, а расстояние от электродов до заготовки увеличивают до величины, составляющей 0,6-1,1 расстояния от нижнего торца электродов до уровня металлической ванны. В кристаллизаторе размещают металлическую заготовку из материалов основного слоя биметаллического слитка или из материала плакирующего слоя биметаллического слитка. Изобретение обеспечивает повышение выхода годного и качества биметалла с основным слоем из низколегированной кремнемарганцевой стали и плакирующим слоем из высоколегированной хромоникелевой стали.

(Патент RU2083700, МПК C22B 9/18, B22D 19/02, опублик. 10.07.1997)

При указанных показателях мощности и других параметрах известного способа невозможно получить биметалл с износостойким поверхностным слоем.

Наиболее близким аналогом заявленного изобретения является способ получения биметаллического слитка, включающий размещение металлической заготовки, являющейся одним из слоев биметаллического слитка, с зазором от стенки кристаллизатора, установку в этом зазоре расходуемого электрода, наведение шлаковой ванны и переплав в ней расходуемого электрода с формированием наплавленного слоя биметаллического слитка при регламентированных значениях скорости формирования наплавленного слоя и сопротивления шлаковой ванны. Изобретение направлено на обеспечение равномерности толщины и химического состава наплавленного слоя из корозионностойкой стали, повышение качества поверхности биметаллического слитка при сохранении высокого качества соединения слоев. (Патент РФ 2087561, МПК C22B 9/18, опубл. 20.08.1997, прототип).

Способ обеспечивает высокую прочность сцепления и гарантированную сплошность соединения слоев (сталь 08Х18Н10Т + сталь 10), равномерность толщины наплавленного слоя при удовлетворительном качестве поверхности при наплавке заготовок толщиной более 350 мм и шириной менее 1000 мм. Однако его использование для получения биметаллических заготовок толщиной менее 350 мм и шириной более 1000 мм, более технологичных при производстве биметаллических листов, не обеспечивает требуемого качества соединения слоев: имеют место расслои или зоны с низкой прочностью сцепления слоев. При последующей прокатке таких слитков на листы возможно образование значительных по площади отслоений плакирующего слоя.

Задача, решаемая изобретением, заключается в обеспечении высокого качества биметаллических слитков с износостойким наплавленным слоем, предназначенных для последующей прокатки на листы и в рулоны высокой прочности и гарантированной сплошности соединения слоев, равномерной толщины плакирующего слоя и его высокой износостойкости, прочностных характеристик,

Техническим результатом изобретения является получение биметаллического слитка с износостойким плакирующим слоем при обеспечении высокой прочности и сплошности соединения слоев, а также высоких прочностных характеристиках биметалла в целом и высокого качества поверхности плакирующего слоя и низкой стоимости получаемой биметаллической продукции.

Указанный технический результат достигается тем, что в способе получения биметаллического слитка с износостойким наплавленным слоем, включающим размещение металлической заготовки, являющейся одним из слоев биметаллического слитка, с зазором от стенки кристаллизатора, установку в этом зазоре расходуемых электродов, наведение шлаковой ванны и переплав в ней расходуемых электродов с формированием наплавленного слоя биметаллического слитка, согласно изобретению, основной слой изготавливают из легированной стали, содержащей, мас.%:

углерод 0,10-0,50,

кремний 0,5-1,5,

марганец 0,5-1,5,

хром 0.5-1.5,

фосфор не более 0,025,

сера не более 0,025,

железо и неизбежные примеси - остальное,

расходуемые электроды изготавливают в виде сортового круглого проката диаметром 40-60 мм из стали, содержащей мас.%:

углерод 0,6- 1,2,

кремний 0,15-1,8,

марганец 0,15-0,80,

хром 0.7-1.7,

фосфор не более 0,025,

сера не более 0,025,

железо и неизбежные примеси - остальное,

на поверхности стали основного слоя прикрепляют штанги в виде сортового проката диаметром 30-70 мм из стали, содержащей мас.%:

углерод 1,0-1,5,

кремний 0,1-0,5,

марганец 0,1-0,5,

хром 1,0-7,5,

вольфрам 0,5-2,5,

ванадий 0,3-1,2,

молибден до 0,3,

фосфор не более 0,025,

сера не более 0,025,

железо и неизбежные примеси - остальное,

при этом отношение массы штанг к массе расходуемых электродов составляет 10-20%, в процессе переплава расходуемых электродов происходит одновременный переплав штанг, обеспечивающий дополнительное легирование формирующегося наплавленного слоя элементами, входящими в состав стали переплавляемых штанг с получением наплавленного слоя из стали, содержащей, мас.%:

углерод 0,7-1,2,

кремний 0,1-1,7,

марганец 0,15-0,80,

хром 0.6 - 2,0,

вольфрам 0,02 - 1,0,

ванадий 0,02 - 0,2,

молибден до 0,3,

фосфор не более 0,025,

сера не более 0,025,

железо и неизбежные примеси - остальное.

Сталь расходуемых электродов дополнительно содержит, мас.%: ванадий 0,15-0,50, вольфрам до 0,2, молибден до 0,2, титан до 0,03.

Сущность изобретения заключается в следующем.

Использование в качестве основного слоя биметаллического слитка легированной стали указанного состава с ограниченным содержанием серы и фосфора способствует обеспечению высоких показателей прочности и износостойкости биметаллического материала в целом.

Расходуемые электроды изготавливают в виде сортового круглого проката диаметром 40-60 мм из стали, содержащей мас.%: углерод 0,6-1,2, кремний 0,15-1,8, марганец 0,15-0,80, хром 0.7-1.7, фосфор не более 0,025, сера не более 0,025, железо и неизбежные примеси - остальное. Размеры расходуемых электродов и химический состав стали, из которых они изготовлены, выбраны на основании полученных экспериментальных результатов.

Штанги в виде сортового проката диаметром 30-70 мм из стали, содержащей мас.%: углерод 1,0-1,5, кремний 0,1-0,5, марганец 0,1-0,5, хром 4,0-7,5, вольфрам 0,5-2,5, ванадий 0,3-1,2, молибден до 0,3, фосфор не более 0,025, сера не более 0,025, железо и неизбежные примеси - остальное, прикрепляют к поверхности стали основного слоя, при том, что отношение массы штанг к массе расходуемых электродов составляет 10-20%. В процессе переплава расходуемых электродов происходит одновременный переплав штанг, обеспечивающий дополнительное легирование формирующегося плакирующего слоя элементами, необходимыми для образования в нем наноразмерных частиц. Необходимое количество штанг, их размер и химический состав рассчитано таким образом, чтобы получить в формирующимся плакирующем слое содержание основных карбидообразующих элементов в количестве, достаточном для образования наноразмерных карбидов и обеспечении высоких показателей износостойкости плакирующего слоя.

Использование штанг из высоколегированных сталей вместо изготовления электродов из таких сталей обеспечивает низкую стоимость получаемой биметаллической продукции. Это связано с тем, что к расходуемым электродам для наплавки предъявляются более высокие требования к их геометрическим параметрам, качеству поверхности и другим показателям, в то время как для переплавляемых штанг соблюдение таких требований не обязательно.

Плакирующий слой биметаллического слитка, состоящий из стали, содержащей, мас.%: углерод 0,7-1,2, кремний 0,1-1,7, марганец 0,15-0,80, хром 0.6-2,0, вольфрам 0,02-1,0, ванадий 0,02-0,2, молибден до 0,3, фосфор не более 0,025, сера не более 0,025, железо и неизбежные примеси - остальное, обеспечивает высокий уровень износостойкости.

В результате совокупности вышеуказанных действий и регламентировании химического состава сталей основного слоя, электродов, штанг, наплавленного слоя, обеспечивается достижение заявленного технического результата: получение биметаллического слитка с износостойким плакирующим слоем при обеспечении высокой прочности и сплошности соединения слоев, а также высоких прочностных характеристиках биметалла в целом и высоко качества поверхности наплавленного слоя и низкой стоимости получаемой биметаллической продукции.

Примеры конкретного выполнения способа

Для получения биметаллического слитка наплавку заготовки основного слоя из легированной стали (химический состав стали указан в таблице 1) толщиной 470 мм, шириной 650 мм вели на установке ЭШН. В зазор, образованным поверхностью заготовки основного слоя и кристаллизатором, заливали предварительно расплавленный флюс марки АНФ-29. В образовавшуюся шлаковую ванну вводили расходуемые электроды, собранные из сортового круглого проката диаметром 40-60 мм. Химический состав стали электродов, их размеры приведены в таблице 2. К заготовке основного слоя предварительно прикрепляли штанги, представляющие собой сортовой прокат. Размер штанг, отношение массы штанг к массе расходуемых электродов и химический состав стали, из которой выполнены штанги, приведены в таблице 3.

После расплавления флюса начинали электрошлаковый переплав электродов с формированием наплавленного слоя.

По разработанной технологии изготовили 5 слитков. После наплавки проводили ультразвуковой контроль указанных слитков для контроля сплошности соединения слоев в соответствии с требованиями ГОСТ 10885-85 «Сталь листовая горячекатаная двухслойная коррозионно-стойкая. Технические условия» и ГОСТ 22727-88 «Прокат листовой. Методы ультразвукового контроля»

Химический состав наплавленного слоя и свойства биметаллического слитка (результаты ультразвукового контроля) представлены в таблице 4.

Полученные слитки были прокатаны на стане 2800 на биметаллические листы толщиной 10 мм.

Для оценки служебных свойств биметалла от отожженных листов были отобраны образцы, на которых определяли механические свойства и твердость плакирующего слоя, после термической обработки, имитирующей термическую обработку готовых изделий: закалки от температуры 950°C с низкотемпературным отпуском при 200°C. Механические свойства и показатели твердости плакирующего слоя, полученные на образцах после закалки и отпуска, представлены в таблице 5.

За показатели износостойкости приняты твердость плакирующего слоя и предел прочность биметаллического проката после закалки и отпуска. Экспериментально установлено, что износостойкость можно считать высокой, если значение твердости составляет не менее 62 HRC, а значение предела прочности - не менее 950 Н/мм2.

Для варианта 3 из-за низкого содержания марганца в стали основного слоя получено низкое значение предела прочности.

Для варианта 1 из-за получения низкого содержания вольфрама и ванадия в стали плакирующего слоя получена его низкая твердость после закалки и отпуска.

Таким образом, удовлетворительную технологичность в сочетании с высоким ресурсом эксплуатации имеют варианты 2, 4 и 5 (слитки 2,4,5), соответствующие формуле изобретения.

1. Способ получения биметаллического слитка с износостойким плакирующим слоем, включающий размещение металлической заготовки, являющейся одним из слоев биметаллического слитка, с зазором от стенки кристаллизатора, установку в этом зазоре расходуемых электродов, наведение шлаковой ванны и переплав в ней расходуемых электродов с формированием наплавленного слоя биметаллического слитка, отличающийся тем, что основной слой изготавливают из легированной стали, содержащей, мас.%:

углерод 0,10-0,50
кремний 0,5-1,5
марганец 0,5-1,5
хром 0,5-1,5
фосфор не более 0,025
сера не более 0,025
железо и неизбежные примеси остальное,

используют расходуемые электроды, изготовленные в виде сортового круглого проката диаметром 40-60 мм из стали, содержащей, мас.%:
углерод 0,6-1,2
кремний 0,15-1,8
марганец 0,15-0,80
хром 0,7-1,7
фосфор не более 0,025
сера не более 0,025
железо и неизбежные примеси остальное,

на поверхности стали основного слоя прикрепляют штанги в виде сортового проката диаметром 30-70 мм из стали, содержащей, мас.%:
углерод 1,0-1,5
кремний 0,1-0,5
марганец 0,1-0,5
хром 1,0-7,5
вольфрам 0,5-2,5
ванадий 0,3-1,2
молибден до 0,3
фосфор не более 0,025
сера не более 0,025
железо и неизбежные примеси остальное,

при этом отношение массы штанг к массе расходуемых электродов составляет 10-20%, и осуществляют переплав штанг, с обеспечением в процессе переплава расходуемых электродов дополнительного легирования формирующегося плакирующего слоя элементами, входящими в состав стали, переплавляемых штанг, с получением плакирующего слоя из стали, содержащей, мас.%:
углерод 0,7-1,2
кремний 0,1-1,7
марганец 0,15-0,80
хром 0,6-2,0
вольфрам 0,02-1,0
ванадий 0,02-0,2
молибден до 0,3
фосфор не более 0,025
сера не более 0,025
железо и неизбежные примеси остальное

2. Способ по п.1, отличающийся тем, что сталь расходуемых электродов дополнительно содержит, мас.%:

ванадий 0,15-0,50
вольфрам до 0,2
молибден до 0,2
титан до 0,03



 

Похожие патенты:

Способ относится к литейному производству. Нижнюю часть стального анодного токоподводящего штыря, извлеченного из самообжигающегося анода электролизера и имеющего температуру 600-950°C, устанавливают в литейную форму и выполняют на ней защитную оболочку путем заливки жидкого металла в литейную форму.

Изобретение относится к области металлургии, а именно к ролику для поддержки и транспортировки горячего материала, в частности полученной непрерывной разливкой стальной заготовки на рольганге или в установке непрерывной разливки.
Изобретение относится к области восстановления изношенных деталей из алюминиевых сплавов, например для восстановления с упрочнением колодцев корпусов шестеренных насосов типа НШ или НШ-У.

Изобретение относится к технологии ремонтного производства, в частности, к технологии восстановления шеек стальных коленчатых валов двигателей внутреннего сгорания.

Изобретение относится к способам восстановления и упрочнения деталей машин с введением добавочного металла применением электромеханических процессов и получения износостойкого, разнородного покрытия с антифрикционными свойствами, и может быть использовано в ремонтном производстве и машиностроении.

Изобретение относится к устройству для восстановления деталей электрошлаковой наплавкой, имеющих большой износ, например бил молотковых мельниц или коронок зубьев ковшей экскаватора.

Изобретение относится к способам восстановления изношенных поверхностей деталей машин цилиндрической формы. .
Изобретение относится к восстановлению деталей с большим износом электрошлаковым способом, например бил молотковых мельниц, коронок рыхлителей и др. .
Изобретение относится к восстановлению изношенных деталей электрошлаковой наплавкой, например, бил молотковых мельниц, зубьев ковшей экскаваторов и др. .
Изобретение относится к восстановлению деталей с большим износом электрошлаковым способом, например бил молотковых мельниц, зубьев ковшей экскаваторов и др. .
Изобретение относится к машиностроительной промышленности. На поверхность детали наносят слой шихты, содержащей, мас.%: карбид бора 25-35, фторид натрия 1-3, буру 9-12, сормайтовую крупку 50-65, толщиной от 0,5 до 5,0 мм. Деталь нагревают в индукторе токами высокой частоты при удельной мощности 1,5-3,0 кВт на 1 см2 поверхности детали с частотой 40-80 кГц в течение 1,5-5 минут до оплавления поверхности слоя шихты. На поверхности наплавленного слоя образуется стеклообразная шлаковая корочка. По окончании нагрева деталь с наплавленным слоем охлаждают на воздухе до температуры ниже 200°C и удаляют стеклообразную шлаковую корочку. Обеспечивается повышение износостойкости детали. 1 табл., 1 пр.

Устройство может быть использовано при восстановлении сваркой или наплавкой деталей машин из высоколегированных сталей. Секционный кристаллизатор выполнен с возможностью перемещения относительно наплавляемой детали и включает расположенные по высоте и изолированные друг от друга токоподводящую, промежуточную и формирующую секции. Кольцевой разомкнутый электромагнит предназначен для воздействия магнитным полем на жидкий наплавляемый металл. Промежуточная секция выполнена со сквозными прорезями. Кристаллизатор установлен в зазоре кольцевого разомкнутого электромагнита, прикрепленного у основания формирующей секции. Высота стенки электромагнита и высота стенки формирующей секции кристаллизатора относятся как 1:2-1:3. Первый независимый источник электрического питания, предназначенный для нагрева сварочной ванны, подключен к токоподводящей секции. Второй, предназначенный для создания кругового магнитного поля, подключен к промежуточной секции. Третий - к кольцевому разомкнутому электромагниту. Устройство обеспечивает повышение ударной вязкости наплавленного металла за счет введения легирующих добавок из межкристаллитного пространства в кристаллическую решетку металла при одновременном повышении прочности металла до высоколегированной высокопрочной стали за счет переноса всех исходных легирующих добавок в наплавленный металл. 1ил., 1 табл., 5 пр.

Изобретение может быть использовано для восстановления деталей электрошлаковой наплавкой. После закрепления детали и кокиля расплавляют расходуемый электрод в виде пакета, собранного и сваренного из нескольких металлических прутков, выровненных по торцу. Используют прутки, выполненные из подходящего по размеру и химическому составу проката, на который наносят шихту. По крайней мере один из прутков выдвинут из пакета и имеет заточенный конец, на упомянутый пруток не наносят шихту. Изобретение обеспечивает расширение номенклатуры восстанавливаемых деталей, упростит подачу шихты в расплав. 1 ил., 1 табл.

Изобретение относится к способу обработки материала энергетическим лучом и способу образования изделия направленной кристаллизацией. Осуществляют выращивание подложки (24) по мере кристаллизации ванны (28) расплава под слоем (30) расплавленного шлака. Энергетический луч (36) используют для расплавления порошка (32) или полой подаваемой проволоки (42) с наполнителем (44) из порошкообразного сплава под слоем шлака. Слой шлака является по меньшей мере частично прозрачным (37) для энергетического луча и он может быть частично оптически поглощающим или проницаемым для энергетического пучка, чтобы поглощать достаточно энергии, оставаясь расплавленным. Как и при обычном процессе ЭШС, слой шлака изолирует расплавленный материал и защищает его от реакции с воздухом. Состав порошка может быть изменен по оси (А) кристаллизации результирующей детали (60), чтобы обеспечить функционально градиентное направленно-кристаллизованное изделие. 2 н. и 16 з.п. ф –лы, 5 ил., 1 табл.
Изобретение относится к области металлургии и может быть использовано при восстановлении рабочей поверхности стенок кристаллизатора без его разборки. Способ включает очистку рабочей поверхности стенок кристаллизатора, дробеструйную обработку изношенных участков, примыкающих к углам кристаллизатора и расположенных в нижней части рабочих поверхностей стенок, изготовленных из меди или ее сплавов, и высокоскоростное газопламенное напыление на них жаропрочного износостойкого покрытия в виде механически активированного порошка cBN-Ni3Al-Si-C-Co-Y при следующем соотношении компонентов, мас.%: cBN 21-34, Ni3Al 37-40, Si 9-12, С 3-5, Со12-15,Y 5-7, начиная с глубины износа не менее 250-450 мкм, толщиной, не превышающей величину износа. Высокоскоростное газопламенное напыление упомянутого покрытия осуществляется в защитной среде аргона на слой NiAl толщиной 100-150 мкм, обладающий эффектом памяти формы, нанесенный на изношенные стенки катализатора. Изобретение позволяет проводить операцию восстановления без разборки кристаллизатора, а также повысить износостойкость покрытия и адгезию покрытия к рабочей поверхности кристаллизатора. 1 з.п. ф-лы, 3 пр.
Наверх