Способ изготовления магнийсиликатного проппанта

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления керамических проппантов, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта - ГРП. Способ изготовления магнийсиликатного проппанта, включающий подготовку исходной шихты, введение в ее состав порообразующей добавки, помол, формирование гранул, их сушку и обжиг, отличающийся тем, что в шихту дополнительно вводят спекающую добавку в виде водорастворимой соли минеральной кислоты, которую растворяют в жидкости, используемой при грануляции, а порообразующую добавку в виде водонерастворимого вещества вводят в шихту на стадии помола, причем спекающая и порообразующая добавки находятся в следующем соотношении, в % сверх массы шихты: порообразующая добавка 0,005-3,0, спекающая добавка 0,2-2,5. Технический результат - снижение плотности проппанта при сохранении прочности. 3 пр., 1 табл.

 

Изобретение относится к нефтегазодобывающей промышленности, а именно, к технологии изготовления керамических проппантов, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта - ГРП.

Проппанты - материалы, используемые для закрепления трещин в раскрытом состоянии. Современные проппанты можно разделить на два вида - кварцевые пески и синтетические проппанты средней и высокой прочности. Первым и наиболее широко используемым материалом для закрепления трещин являются пески, плотность которых составляет приблизительно 2,65 г/см2. Пески обычно используются при гидроразрыве пластов, в которых напряжение сжатия не превышает 40 МПа. В меньшей степени применяются среднепрочные керамические проппанты плотностью 2,7-3,3 г/см3, используемые при напряжении сжатия до 69 МПа. Сверхпрочные высокоплотные проппанты, такие как спеченный боксит, используются при напряжении сжатия до 100 МПа. Однако, этот вид проппантов не находит широкого применения из-за их высокой стоимости и значительной насыпной плотности.

К основным физическим характеристикам проппантов, которые оказывают решающее влияние на проводимость трещины, относятся такие параметры, как прочность, форма гранул (сферичность и округлость) и насыпной вес (плотность).

Прочность является ведущим показателем при подборе проппантов для конкретных пластовых условий с целью обеспечения длительной проводимости трещины на глубине залегания пласта. От округлости и сферичности гранул проппанта зависит плотность его упаковки в трещине, ее фильтрационное сопротивление, а также степень разрушения гранул под действием сжимающих нагрузок. Насыпной вес определяет перенос и расположение проппанта вдоль трещины. Проппанты с высоким насыпным весом труднее поддерживать во взвешенном состоянии в жидкости разрыва при их транспортировании вдоль трещины, поэтому их закачка требует применения особых технологических решений. Заполнение трещины проппантом высокой плотности может быть достигнуто двумя путями - использованием высоковязких жидкостей, которые транспортируют проппант по длине трещины с минимальным его осаждением, либо применением маловязких жидкостей при повышенной скорости их закачки, что в значительной степени удорожает процесс ГРП, особенно применительно к бурно развивающимся в последние годы технологиям добычи сланцевых углеводородов. В связи с этим возрастает актуальность исследований, направленных на разработку новых видов облегченных проппантов и на снижение плотности серийно выпускаемого продукта.

Из всех массово производимых в настоящее время синтетических керамических материалов, используемых в качестве расклинивающих агентов при проведении ГРП, наименьшим насыпным весом (1,5-1,65 г/см3) обладают среднеплотные магнийсиликатные проппанты. В связи с чем указанные материалы являются наиболее перспективными с точки зрения получения низкоплотного продукта. Существует два основных способа снижения насыпного веса керамики: замена части высокоплотного компонента шихты на низкоплотный или введение в материал порообразующих добавок. Применительно к магнийсиликатным проппантам был предпринят ряд небезуспешных попыток снижения их насыпного веса за счет замены части орто/метасиликата магния в шихте на менее плотный кварцевый песок (см., например, патент РФ №2437913). Однако в условиях крупнотоннажного серийного производства смена сырьевой базы и соответствующее изменение технологических параметров производства требует значительных материальных затрат и занимает значительный временной промежуток. Применение порообразующих добавок позволяет без значительных материальных затрат в короткие сроки освоить производство низкоплотного проппанта.

Наиболее близким по технической сущности к заявляемому техническому решению является магнийсиликатный керамический проппант с низкой удельной плотностью (патент США №7521389), в котором шихта для производства гранулированного керамического материала, в частности для керамических проппантов, включает от 20 до 55 масс.% ортосиликата магния, от 20 до 35 масс.% MgO и от 2,5 до 11 масс.% Fe2O3 (см. патент США №7521389). Материал такого легковесного проппанта демонстрирует высокую механическую прочность. Для дальнейшего уменьшения удельной плотности проппанта, путем добавления от 0,3 до 2,4% углерода в качестве газообразующего агента, формируют небольшие поры.

Недостатком известного технического решения является невысокая прочность низкоплотного проппанта, полученного путем введения в состав шихты порообразующей добавки. Это связано с тем, что вследствие равномерного распределения порообразователя по всему объему гранулы проппанта, поры располагаются как внутри так и на поверхности сфер. Поверхностные поры, являясь концентраторами напряжений, при приложении внешней сжимающей нагрузки способствуют зарождению и развитию трещин, в результате чего возрастает разрушаемость проппанта. Такими же недостатками обладает пористый проппант алюмосиликатного состава (патент РФ №2339670), не рассматриваемый в рамках заявляемого технического решения.

Технической задачей, на решение которой направлено заявляемое изобретение является снижение плотности проппанта при сохранении повышенной прочности, осуществляемое за счет формирования у гранул пористого внутреннего объема и плотноспеченной внешней оболочки.

Указанный результат достигается тем, что в способе изготовления магнийсиликатного проппанта, включающем подготовку исходной шихты, введение в ее состав порообразующей добавки, помол, формирование гранул, их сушку и обжиг, в шихту дополнительно вводят спекающую добавку в виде водорастворимой соли минеральной кислоты, которую растворяют в жидкости, используемой при грануляции, а порообразующую добавку в виде водонерастворимого вещества вводят в шихту на стадии помола, причем спекающая и порообразующая добавки находятся в следующем соотношении, в % сверх массы шихты:

порообразующая добавка - 0,005-3,0
спекающая добавка - 0,2-2,5.

Снижение насыпного веса гранул обеспечивается введением в состав шихты порообразующих добавок, в качестве которых могут быть использованы любые традиционно применяемые водонерастворимые вещества, например древесные опилки, графит, карбид бора, карбид кремния, мел, гипс и т.д. Равномерность распределения пор обеспечивается введением порообразователя в шихту по время помола. Основная часть спекающей добавки, введенной в состав шихты вместе с водой, используемой для грануляции, во время сушки диффундирует в наружные слои гранул. После обжига поверхностная пористость значительно уменьшается и поверхностные слои гранул оказываются плотноспеченными, в результате чего прочность гранул остается на достаточно высоком уровне. Кроме того, положительное влияние на разрушаемость оказывает эффект поверхностного сжатия гранул. Внутренняя пористость обеспечивает снижение насыпной плотности проппанта. С целью более равномерного распределения спекающей добавки по поверхности гранул, их сушку совмещают с перемешиванием. Поскольку порообразующие и спекающие добавки при проведении обжига оказывают на керамику разнонаправленное действие, их введение производится на разных стадиях технологического процесса. Подача спекающей добавки в виде раствора в воде, направляемой на грануляцию, ускоряет ее перемещение на поверхность гранулы при сушке. Экспериментальным путем установлено, что в случае введения указанной добавки в твердом виде в шихту во время помола, процесс диффузии добавки к поверхности замедляется и ее концентрация в поверхностных слоях оказывается недостаточной для упрочнения керамических гранул. В заявляемом техническом решении существенное значение имеет лишь растворимость соли минеральной (неорганической) кислоты в воде, с тем, чтобы при термообработке указанная соль вместе с грануляционной водой диффундировала на поверхность гранул и расплавлялась. Соляной расплав, взаимодействуя с магнийсиликатной основой проппанта, образует легкоплавкие соединения переменного состава, которые при дальнейшем повышении температуры окисляются, образуя на поверхности сфер плотный прочный оксидный черепок. В этой связи, для осуществления решаемой изобретением технической задачи, химический состав соли имеет лишь экономическое (стоимостное) значение. Применительно к магнийсиликатным материалам, в качестве спекающих добавок, по экономическим соображениям, обычно используют соединения Me+, Me2+, например, Nа2СО3, NaHCO3, NaCl, LiCl, KNO3, SrCl2, СuSO4, MgSO4 и др. Допускается также применение оксихлоридов алюминия или циркония.

Введение в состав материала порообразующей и спекающей добавок в количестве менее соответственно 0,005 и 0,2 в % сверх массы шихты не оказывает заметного влияния на насыпной вес и прочность обожженного проппанта. Увеличение количества порообразующей добавки свыше 3,0% сверх массы шихты приводит к значительному увеличению пористости гранул, приводящему к снижению прочности проппанта. Увеличение количества спекающей добавки свыше 2,5% сверх массы шихты приводит к образованию заметного количества спеков при проведении обжига.

Примеры осуществления изобретения.

Пример 1.

9900 г магнийсиликатной шихты, содержащей в масс.%: MgO - 27,44, SiO2 - 60,4, Аl2O3 - 3,0, Fe2O3 - 6,9, примеси - остальное и 100 г (1 масс.%) карбида кремния подвергали совместному помолу в лабораторной вибромельнице до фракции менее 30 мкм. Измельченный материал гранулировали на лабораторном тарельчатом грануляторе с применением для сфероидизации 1,5 л воды с растворенными в ней 100 г углекислого натрия. Полученные гранулы фракции 20/40 меш обжигали, рассевали и тестировали согласно требованиям ISO 13503 - 2:2006 (Е) по критериям разрушаемости и насыпного веса. Подобным образом были изготовлены проппанты с различным содержанием порообразующей и спекающей добавок, а также проппант не содержаий указанных добавок. Результаты испытаний приведены в таблице.

Пример 2.

Для изготовления проппанта была использована шихта по патенту США №7521389, содержащая приблизительно 55 масс.% ортосиликата магния, 35 масс.% MgO, 8 масс.% Fe2O3, 2 масс.% SiC. Указанную шихту измельчали в лабораторной вибромельнице до фракции менее 30 мкм, затем часть шихты гранулировали, используя для сфероидизации воду, другую часть гранулировали на водном растворе углекислого натрия с таким расчетом, что его содержание в шихте составило 1% сверх ее массы. Полученные гранулы фракции 20/40 меш обжигали, рассевали и тестировали согласно требованиям ISO 13503-2: 2006 (Е) по критериям разрушаемости и насыпного веса. Результаты испытаний приведены в таблице.

Пример 3.

9900 г магнийсиликатной шихты, содержащей в масс.%: MgO - 27,44, SiO2 - 60,4, Аl2O3 - 3,0, Fe2O3 - 6,9, примеси - остальное и 100 г (1 масс.%) карбида кремния подвергали совместному помолу в лабораторной вибромельнице до фракции менее 30 мкм. Измельченный материал гранулировали на лабораторном тарельчатом грануляторе с применением для сфероидизации водный раствор хлорида кальция с таким расчетом, что его содержание в шихте составило 1,5% сверх ее массы. Полученные гранулы фракции 20/40 меш обжигали, рассевали и тестировали согласно требованиям ISO 13503-2: 2006 (Е) по критериям разрушаемости и насыпного веса. Результаты испытаний приведены в таблице.

Таблица
№ п/п Количество порообразующей добавки, масс.% Количество спекающей добавки, масс.% Насыпной вес, г/см3 Доля разрушенных гранул, масс.%, при давлении 7500 psi
Шихта примера 1
1 0 0 1.65 1.8
2 0.005 0.2 1.6 2.2
3 1.5 1.5 1.4 5.4
4 3.0 2.5 1.25 8.2
5 3.2 2.7 1.22 11.5
Образуется значительное количество спеков
6 0.003 0.15 1.65 1.75
Шихта примера 2 по патенту США №7521389
7 2.0 0 1.28 10.2
8 2.0 1.0 1.27 7.0
9 2.3 1.5 1.22 7.5
10. Шихта примера 3 1,0 1,5 1,42 5.6

Анализ данных таблицы показывает, что проппант, полученный согласно заявляемому изобретению (примеры 2, 3, 4, 8, 9, 10) имеет пониженный насыпной вес при сохранении повышенной прочности, что позволяет использовать при его транспортировке менее вязкие жидкости ГРП и обеспечивает оптимальную укладку гранул в трещине. Заявляемое техническое решение применимо для магнийсиликатных материалов с различным соотношением MgO/SiO2.

Способ изготовления магнийсиликатного проппанта, включающий подготовку исходной шихты, введение в ее состав порообразующей добавки, помол, формирование гранул, их сушку и обжиг, отличающийся тем, что в шихту дополнительно вводят спекающую добавку в виде водорастворимой соли минеральной кислоты, которую растворяют в жидкости, используемой при грануляции, а порообразующую добавку в виде водонерастворимого вещества вводят в шихту на стадии помола, причем спекающая и порообразующая добавки находятся в следующем соотношении, % сверх массы шихты:

порообразующая добавка 0,005-3,0
спекающая добавка 0,2-2,5



 

Похожие патенты:

Группа изобретений относится к композициям, изменяющим проницаемость подземных пластов. Предложена композиция для изменения водопроницаемости подземного пласта, включающая расширяемые полимерные микрочастицы со средним диаметром неувеличенного объема от 0,05 до 5000 мкм, состоящие из структурированных полимеров, которые включают лабильные сшивающие агенты и выбраны из группы, состоящей из звездообразных полимеров, дендритных полимеров, сверхразветвленных полимеров, полимеров с короткоцепочечным ветвлением, полимером с длинноцепочечным ветвлением и любого их сочетания, а также включают акриламид и aкpилaмидoмeтил-пpoпaнcyльфoнал натрия.
Настоящее изобретение относится к эмульсиям и их применению в подземных работах. Композиция стабилизированной эмульсии включает маслянистую текучую среду, текучую среду, являющуюся, по меньшей мере, частично несмешивающейся с маслянистой текучей средой, и стабилизирующий эмульсию агент, включающий первое ионное соединение, растворимое в маслянистой текучей среде или указанной текучей среде, и второе ионное соединение с зарядом противоположного знака относительно первого ионного соединения.
Изобретение относится к буровым растворам на водной основе и может найти применение при бурении нефтяных и газовых скважин, преимущественно при бурении неустойчивых глинистых пород.
Изобретение относится к способам приготовления жидкости для обработки подземных формаций при гидроразрыве пласта и может быть использовано при получении жидкости-носителя для проппанта, в частности, в системах с низкой загрузкой гелянта и для увеличения общей термической стабильности системы, снижения седиментационых свойств проппанта.

Изобретение относится к газонефтедобывающей промышленности, а именно к технологии изготовления керамических проппантов, предназначенных для использования в качестве расклинивающих агентов при добыче газа или нефти методом гидравлического разрыва пласта (ГРП).

Изобретение относится к композициям и способам извлечения углеводородных флюидов из подземного месторождения. Предложена композиция инкапсулированных полимерных микрочастиц для изменения коэффициента водопроницаемости подземного пласта, включающая расширяемые полимерные микрочастицы, заключенные в оболочку из по меньшей мере одного слоя сополимера N-изопропилакриламида и акриламида.

Изобретение относится к композициям и способам извлечения углеводородных флюидов из подземного месторождения. Предложена композиция расширяемых полимерных микрочастиц для изменения коэффициента проницаемости воды в подземном пласте, содержащая взаимопроникающую полимерную сетку (ВПС), включающую один или более акриламидных сополимеров.

Изобретение относится к строительству скважин различного назначения, к ремонтно-изоляционным работам в скважинах, а также используется при ликвидации водопроявлений в процессе бурения скважин.
Изобретения относятся к улучшенному способу вторичной добычи нефти. Технический результат - усовершенствование введения ингибитора отложений на стенках оборудования, повышение эффективности извлечения нефти, увеличение срока службы конструкций.

Изобретение относится к растворам для глушения скважин. Способ обработки подземного пласта включает: закачивание в обсаженный, перфорированный ствол скважины, который рассекает пласт, раствора обращенной эмульсии для глушения скважины, содержащего: маслянистую непрерывную фазу, немаслянистую дисперсную фазу, эмульгирующий агент, по меньшей мере один разлагаемый материал и по меньшей мере один закупоривающий агент; контакт пласта с раствором для глушения скважины и предоставление возможности разлагаемому материалу, по меньшей мере, частично разложиться.

Изобретение относится к технологии комплексной переработки промышленных отходов, а именно к переработке лома огнеупорных материалов с целью получения сферических материалов, которые могут быть использованы в качестве проппантов, мелющих тел, носителей катализаторов, огнеупорных заполнителей и насыпных фильтров.

Изобретение относится к технологии синтетических сверхтвердых материалов, в частности композиционному материалу на основе субоксида бора. .

Изобретение относится к порошковой металлургии, в частности к изготовлению градиентых керамических материалов на основе диоксида циркония. .
Изобретение относится к области получения алмазных композиционных материалов (композитов), состоящих из плотной массы кристаллов алмаза, связанных связующим материалом.

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления керамических расклинивателей нефтяных скважин (проппантов), используемых при интенсификации добычи нефти или газа методом гидравлического разрыва пласта (ГРП).
Изобретение относится к технологии получения высокоплотных керамик из ортофосфатов и ортоарсенатов титана, циркония, гафния, германия и олова. .

Изобретение относится к печи для термообработки керамических изделий. .

Изобретение относится к огнеупорной промышленности, а именно к способам получения порошков электротехнического периклаза для электротехнической изоляции при производстве трубчатых электронагревателей (ТЭНов).

Изобретение относится к улучшенным сферическим керамическим расклинивающим наполнителям для гидроразрыва нефтяных или газовых скважин. .

Изобретение относится к области электротехники, а именно к способам получения газоплотных композитных электролитов со смешанной кислород-ионной и протонной проводимостью. Заявлен способ получения газоплотной керамики на основе оксида церия и церата бария путем спекания порошков состава 0,3BaCe0.8Gd0.2O3-δ-0,7Ce0.8Gd0.2O2-δ, синтезированных методом твердофазного синтеза или методом сжигания нитратов и лимонной кислоты. Перед спеканием в порошки добавляют 1 мол.% Ba2CuO3, что обеспечивает в процессе обжига образование жидкой фазы купрата бария и быстрое спекание и уплотнение керамики при пониженных температурах. Технический результат: снижение температуры спекания и времени выдержки порошков и связанных с этим энергозатрат без ухудшения электрических свойств получаемой керамики. 1 ил., 1 табл.
Наверх