Способ контроля состояния конструкции летательного аппарата и устройство для его осуществления

Изобретения относятся к измерительным системам. При движении летательного аппарата (ЛА) по аэродрому до момента взлета и от момента посадки до остановки ЛА измеряют температуру и давление в каждой шине шасси, сравнивают текущие величины давления и температуры в каждой шине с заданной величиной, сравнивают текущие величины давления и температуры в m сдвоенных шинах стоек шасси между собой, записывают информацию о давлении и температуре в каждой шине в бортовой накопитель информации. При разнице величин давления или температуры в каждой из шин и в m сдвоенных шинах на величину более заданной, обеспечивают информирование об этом экипажа ЛА. Устройство содержит установленные на борту ЛА два устройства обнаружения, устройство сбора информации, бортовое устройство, блок сигнализации аварийного состояния, блок питания, блок датчиков, индикатор тревоги. Блок датчиков состоит из блока концевых выключателей шасси ЛА, датчика движения, высотомера. В устройство дополнительно введены информационные датчики, по одному на каждое колесо шасси. Повышается качество контроля технического состояния шин шасси ЛА. 2 н. и 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к измерительным системам, а именно, к средствам контроля состояния конструкции и шасси летательного аппарата, и может быть использовано в различных транспортных средствах (самолетах, вертолетах, беспилотных летательных аппаратах и др.).

Наиболее близким к изобретению является способ контроля состояния конструкции летательного аппарата [1], заключающийся в мониторинге ряда зон летательного аппарата в режиме постоянного времени, для чего используют множество пьезоэлектрических датчиков на каждую зону, устанавливают пьезоэлектрические датчики на частях конструкции, предназначенных для мониторинга, определяют условия, в которых производятся измерения, определяют верхнюю и нижнюю границы порога, за пределами которого принимают решение об измерении сигнала, при этом упомянутый порог изменяют в зависимости от того, находится ли летательный аппарат в полете или на стоянке, указанные сигналы являются результатом присутствия акустической волны в конструкции в месте установки пьезоэлектрических датчиков, осуществляют измерение сигнала в течение около 100 микросекунд при каждом акустическом событии, определяют число переходов сигналом порога, причем выделяют сигнал, который находится в частотном диапазоне от 20 кГц до 2 МГц, преобразуют полученные акустические сигналы в аналоговые электрические сигналы, считывают и обрабатывают сигналы, поступающие от датчиков в цифровой блок обработки сигнала во время полезного срока службы летательного аппарата на земле и в воздухе, для постоянного считывания подтверждают исправную работу совокупности пьезоэлектрических датчиков, соединенных с устройством сбора информации, подают сигнал тревоги в случае обнаружения неисправности пьезоэлектрического датчика, или обрыва шины связи, или сбоеоборудования, обеспечивают постоянное питание элементов устройства мониторинга, в обшивке планера летательного аппарата в районе шасси (на стойках шасси летательного аппарата) устанавливают микрорадары, число которых соответствует числу шин шасси летательного аппарата, так, чтобы в диаграмму направленности каждого микрорадара попадала строго определенная «своя» шина, излучают в направлении каждой из шин радиолокационный сигнал и принимают отраженный от шин сигнал при движении летательного аппарата по аэродрому до момента взлета и от момента посадки до остановки летательного аппарата, производят анализ выбранных гармоник отраженного сигнала, определяют техническое состояние каждой шины в отдельности и системы шин шасси в целом в периоды взлета и посадки летательного аппарата на основе определения параметров состояния шин в процессе анализа выбранных гармоник отраженного сигнала, записывают информацию о параметрах состоянии каждой шины в защищенный бортовой накопитель информации, подают сигнал тревоги при переходе параметров любой из шин в неисправное состояние, обеспечивают информирование экипажа (оператора) летательного аппарата о текущем техническом состояния шин летательного аппарата и возникновении неисправности в период его взлета или посадки.

Наиболее близким к изобретению является система мониторинга конструкции самолета [1] содержащая установленные на борту летательного аппарата первое устройство обнаружения, устройство сбора информации, бортовое устройство, блок сигнализации аварийного состояния, блок питания, первое устройство обнаружения состоит из множества пьезоэлектрических датчиков, установленных на частях конструкции и предназначенных для непрерывного мониторинга каждой зоны летательного аппарата и измерения сигнала в течение около 100 микросекунд при каждом акустическом событии, определяемом величиной верхнего и нижнего порога, причем сигнал находится в частотном диапазоне от 20 кГц до 2 МГц, бортовое устройство, обеспечивает безопасность работы установленного на борту летательного аппарата первого устройства обнаружения, причем первый и второй выходы первого устройства обнаружения соединены соответственно с первым входом устройства сбора информации и первым входом блока сигнализации аварийного состояния, выход которого соединен со вторым входом устройства сбора информации, выход бортового устройства соединен с входом первого устройства обнаружения, второй выход блока питания соединен со вторым входом блока сигнализации аварийного состояния, первый выход блока питания соединен с входом бортового устройства, второе устройство обнаружения, блок датчиков, индикатор тревоги, причем первый, второй и третий входы второго устройства обнаружения соединены соответственно с первым, вторым и третьим выходами блока датчиков, выходы второго устройства обнаружения соединены с группой третьих входов устройства сбора информации, первый выход которого соединен со входом бортового накопителя информации, а второй выход - со входом индикатора тревоги, блок датчиков состоит из блока концевых выключателей шасси летательного аппарата, датчика движения, высотомера, второе устройство обнаружения содержит элемент НЕ, элемент И, последовательно соединенные n - микрорадаров, n -усилителей, n - аналоге - цифровых преобразователей, причем первый, второй и третий входы второго устройства обнаружения являются первым, вторым входами элемента И, входом элемента НЕ, выход которого соединен с третьим входом элемента И, выход которого соединен со вторыми входами n - микрорадаров, выходы n - аналого-цифровых преобразователей являются выходами второго устройства обнаружения.

Недостатком известных способа и устройства является их недостаточная информативность из-за отсутствия мониторинга величин давления и температуры внутри шин шасси в процессе движения по аэродрому, взлета и посадки летательного аппарата.

Технической задачей изобретения является расширение функциональных возможностей системы за счет мониторинга величин давления и температуры шин шасси летательного аппарата при движении летательного аппарата по аэродрому до момента взлета и от момента посадки до остановки летательного аппарата, а также повышение безопасности полетов.

Решение технической задачи достигается тем, что в способе контроля состояния конструкции летательного аппарата, заключающемся в мониторинге ряда зон летательного аппарата в режиме постоянного времени, для чего используют множество пьезоэлектрических датчиков на каждую зону, устанавливают пьезоэлектрические датчики на частях конструкции, предназначенных для мониторинга, определяют условия, в которых производятся измерения, определяют верхнюю и нижнюю границы порога, за пределами которого принимают решение об измерении сигнала, при этом упомянутый порог изменяют в зависимости от того, находится ли летательный аппарат в полете или на стоянке, указанные сигналы являются результатом присутствия акустической волны в конструкции в месте установки пьезоэлектрических датчиков, осуществляют измерение сигнала в течение около 100 микросекунд при каждом акустическом событии, определяют число переходов сигналом порога, причем выделяют сигнал, который находится в частотном диапазоне от 20 кГц до 2 МГц, преобразуют полученные акустические сигналы в аналоговые электрические сигналы, считывают и обрабатывают сигналы, поступающие от датчиков в цифровой блок обработки сигнала во время полезного срока службы летательного аппарата на земле и в воздухе, для постоянного считывания подтверждают исправную работу совокупности пьезоэлектрических датчиков, соединенных с устройством сбора информации, подают сигнал тревоги в случае обнаружения неисправности пьезоэлектрического датчика, или обрыва шины связи, или сбое оборудования, обеспечивают постоянное питание элементов устройства мониторинга, в обшивке планера летательного аппарата в районе шасси (на стойках шасси летательного аппарата) устанавливают микрорадары, число которых соответствует числу шин шасси летательного аппарата, так, чтобы в диаграмму направленности каждого микрорадара попадала строго определенная «своя» шина, излучают в направлении каждой из шин радиолокационный сигнал и принимают отраженный от шин сигнал при движении летательного аппарата по аэродрому до момента взлета и от момента посадки до остановки летательного аппарата, производят анализ выбранных гармоник отраженного сигнала, определяют техническое состояние каждой шины в отдельности и системы шин шасси в целом в периоды взлета и посадки летательного аппарата на основе определения параметров состояния шин в процессе анализа выбранных гармоник отраженного сигнала, записывают информацию о параметрах состоянии каждой шины в защищенный бортовой накопитель информации, подают сигнал тревоги при переходе параметров любой из шин в неисправное состояние, обеспечивают информирование экипажа (оператора) летательного аппарата о текущем техническом состояния шин летательного аппарата и возникновении неисправности в период его взлета или посадки, дополнительно при движении летательного аппарата по аэродрому до момента взлета и от момента посадки до остановки летательного аппарата измеряют температуру и давление в каждой шине шасси, сравнивают текущие величины давления и температуры в каждой шине с заданной величиной, сравнивают текущие величины давления и температуры в m сдвоенных шинах стоек шасси между собой, записывают информацию о давлении и температуре в каждой шине в защищенный бортовой накопитель информации, при разнице величин давления или температуры в каждой из шин и в m сдвоенных (строенных) шинах на величину, более заданной, обеспечивают информирование об этом экипажа (оператора) летательного аппарата.

Заявляемый способ реализуется в устройстве контроля состояния конструкции летательного аппарата, которое содержит установленные на борту летательного аппарата первое устройство обнаружения, устройство сбора информации, бортовое устройство, блок сигнализации аварийного состояния, блок питания, первое устройство обнаружения состоит из множество пьезоэлектрических датчиков, установленных на частях конструкции и предназначенных для непрерывного мониторинга каждой зоны летательного аппарата и измерения сигнала в течение около 100 микросекунд при каждом акустическом событии, определяемом величиной верхнего и нижнего порога, причем сигнал находится в частотном диапазоне от 20 кГц до 2 МГц, бортовое устройство, обеспечивает безопасность работы установленного на борту летательного аппарата первого устройства обнаружения, причем первый и второй выходы первого устройства обнаружения соединены соответственно с первым входом устройства сбора информации и первым входом блока сигнализации аварийного состояния, выход которого соединен со вторым входом устройства сбора информации, выход бортового устройства соединен с входом первого устройства обнаружения, второй выход блока питания соединен со вторым входом блока сигнализации аварийного состояния, первый выход блока питания соединен с входом бортового устройства, второе устройство обнаружения, блок датчиков, индикатор тревоги, причем первый, второй и третий входы второго устройства обнаружения соединены соответственно с первым, вторым и третьим выходами блока датчиков, выходы второго устройства обнаружения соединены с группой третьих входов устройства сбора информации, первый выход которого соединен со входом бортового накопителя информации, а второй выход - со входом индикатора тревоги, блок датчиков состоит из блока концевых выключателей шасси летательного аппарата, датчика движения, высотомера, второе устройство обнаружения содержит элемент НЕ, элемент И, последовательно соединенные n - микрорадаров, n -усилителей, n - аналого-цифровых преобразователей, причем первый, второй и третий входы второго устройства обнаружения являются первым, вторым входами элемента И, входом элемента НЕ, выход которого соединен с третьим входом элемента И, выход которого соединен со вторыми входами n - микрорадаров, выходы n - аналого-цифровых преобразователей являются выходами второго устройства обнаружения, k информационных датчиков, по одному на каждое колесо шасси, соединенных по радиоканалу с блоком приемников, блок приемников, содержащий по одному приемнику на каждую стойку шасси летательного аппарата, вход блока приемников соединен с выходом элемента И, группа выходов блока приемников соединена с четвертой группой входов устройства сбора информации, задатчик постоянных величин, выход которого соединен с пятым входом устройства сбора информации.

Кроме того, информационный датчик колеса шасси летательного аппарата состоит из последовательно соединенных датчика давления и температуры, микроконтроллера, радиопередатчика, вход каждого из которых соединен с выходом источника питания.

Новыми признаками, обладающими существенными отличиями по способу, является следующая совокупность действий:

1. При движении летательного аппарата по аэродрому до момента взлета и от момента посадки до остановки летательного аппарата измеряют температуру и давление в каждой шине шасси.

2. Сравнивают текущие величины давления и температуры в каждой шине с заданной величиной, сравнивают текущие величины давления и температуры в m сдвоенных (строенных) шинах стоек шасси между собой.

3. Записывают информацию о давлении и температуре в каждой шине в защищенный бортовой накопитель информации.

4. При разнице величин давления или температуры в каждой из шин и в m сдвоенных (строенных) шинах на величину более заданной, обеспечивают информирование об этом экипажа (оператора) летательного аппарата.

Новыми элементами, обладающими существенными отличиями по устройству, являются к информационных датчиков, блок приемников, задатчик постоянных величин и связи между известными и новыми элементами устройства.

Заявляемые способ и устройство являются результатом научно-исследовательской и экспериментальной работы.

На фиг.1 приведена функциональная схема устройства, на фиг.2 - функциональная схема второго устройства обнаружения.

Устройство содержит установленное на борту летательного аппарата первое 1 и второе 2 устройство обнаружения, устройство 3 сбора информации, блок 4 сигнализации аварийного состояния, бортовое устройство 5, блок 6 питания, блок 7 датчиков, индикатор 8 тревоги, задатчик постоянных величин 19.

Второе устройство 2 обнаружения состоит из элемента НЕ 9, элемента И 10, последовательно соединенных n - микрорадаров 11, n -усилителей 12, n - аналого-цифровых преобразователей 13, блок приемников 18, Блок 7 датчиков состоит из блока 14 концевых выключателей шасси летательного аппарата, датчика 15 движения, высотомера 16, k информационных датчиков, по одному на каждую шину шасси 17.

Способ контроля состояния конструкции летательного аппарата реализуется следующим образом.

Самолеты оборудуются системой постоянного контроля, осуществляемого на протяжении всего полезного срока службы самолета. Как правило, этот полезный срок службы включает в себя фазы полета и фазы стоянок в аэропорту или в техническом ангаре. Система контроля является электронной системой с питанием от бортовой сети. Постоянное электрическое питание, поддерживаемое во время фаз стоянок, позволяет произвести исследования по всем событиям, произошедшим с самолетом. При ударах или столкновениях, а также больших усилиях, которым подвергается конструкция самолета, в местах ударов или столкновений или в зоне напряжения происходит излучение звуковой волны. Поэтому в чувствительных местах упомянутых критических частей (узлов) устанавливаются наборы пьезоэлектрических датчиков. Эти датчики соединены с электронной системой и выдают на нее сигнал сразу при возникновении какого-либо события.

При применении способа измеряют мощные импульсы механических волн, спектральные составляющие которых на практике находятся в пределах от 20 кГц до 2 МГц. Акустическая схема позволяет анализировать в режиме реального времени данные: характеристики импульсов (высокочастотных сигналов) во временной области. Можно также предусмотреть анализ их частотных характеристик. Она позволяет также локализовать акустические источники по зоне или ячейке, распознавать и классифицировать акустические источники в реальном времени и автоматически фильтровать и сохранять в памяти акустические импульсы в зависимости от их характеристик и выделять из них данные, характерные для определенного явления.

Пьезоэлектрические датчики устанавливают в зонах, включающих: купол радиолокационной антенны; передние кромки крыльев и хвостового оперения.

При этом, первое 1 устройство обнаружения, состоящее из множества пьезоэлектрических датчиков, обеспечивает непрерывный мониторинг каждой зоны летательного аппарата и измерение сигнала в течение около 100 микросекунд при каждом акустическом событии, определяемом величиной верхнего и нижнего порога, при этом упомянутый порог изменяют в зависимости от того, находится самолет в полете или на стоянке.

Сигналы с первого и второго выхода первого 1 устройства обнаружения поступают соответствено на первые и вторые входы устройства 3 сбора информации непосредственно и через блок 4 сигнализации аварийного состояния.

При этом устройство 3 сбора информации считывает и обрабатывает сигналы, поступающие от пьезоэлектрических датчиков во время полезного срока службы летательного аппарата на земле и в воздухе, подтверждает исправную работу совокупности пьезоэлектрических датчиков, а также подает сигнал тревоги в случае обнаружения неисправности пьезоэлектрического датчика, или обрыва шины связи, или сбое оборудования.

Устройство 1 сбора информации, поступающей от датчиков, включает в себя: преобразователь акустического сигнала в аналоговый электрический сигнал, цифровой блок обработки сигнала, супервизор (контроллер), обеспечивающий сбор и передачу данных в запоминающее устройство, детектирование неисправностей системы и координирование своевременного считывания данных цифровым блоком обработки данных, поступающих в буферные запоминающие устройства и массовые запоминающие устройства (ЗУ) сверхбольшой емкости, позволяющие системе собирать большие количества данных, устройство диагностики, связанное с супервизором и конфигурированное для постоянной загрузки, записи, считывания и обработки сигналов, поступающих от пьезоэлектрических датчиков во время полезного срока службы самолета на земле и в воздухе, вывода данных на дисплей, конфигурацию и калибровку оборудования, включая пороговые значения параметров оборудования в зависимости от того, находится самолет в полете или на земле, времена релаксации после события, передачи данных в массовое ЗУ, а также для подтверждения исправной работы указанного множества пьезоэлектрических датчиков.

Бортовое устройство 5, обеспечивает безопасность работы установленного на борту летательного аппарата первого устройства обнаружения, при этом сигнал с выхода бортового устройства поступает на вход первого устройства обнаружения.

Для обеспечения постоянного питания системы мониторинга осуществляют постоянный контроль подачи электрической энергии и, в случае необходимости, подключают аварийную батарею, при этом напряжение питания со второго выхода блока 6 питания поступает на второй вход блока 4 сигнализации аварийного состояния, а напряжение с первого выхода блока 6 питания поступает на вход бортового устройства 5.

Шасси летательного аппарата являются неотъемлемой частью его конструкции. Наиболее уязвимым элементом современных шасси, как показывает практика, являются шины. Достаточно часто неисправности шин летательных аппаратов приводят к предпосылкам к летным происшествиям, авариям и катастрофам. Одной из причин такого положения вещей является отсутствие мониторинга технического состояния шин летательного аппарата в основные периоды их реального функционирования - движения по аэродрому, взлета и посадки летательного аппарата, а также отсутствие информирования экипажа (оператора) летательного аппарата о текущем техническом состояния шин летательного аппарата и возникновении их неисправности в периоды движения по аэродрому, взлета или посадки. Предлагаемые способ и устройство позволяют осуществлять комплексный мониторинг состояния шин шасси летательного аппарата. Для этого в периоды выруливания на ВПП и взлета летательного аппарата сигналы соответственно от блока 14 концевых выключателей шасси летательного аппарата, датчика 15 движения, высотомера 16, входящих в состав блока 7 датчиков поступают на первый, второй и третий входы второго 2 устройства обнаружения и соответственно на первый и второй входы элемента И 10, непосредственно и на третий вход элемента И 10, через элемент НЕ 9.

Кроме того, сигналы с k информационных датчиков 17 по радиоканалу поступают на вход блока приемников 18 носовой и основных стоек шасси летательного аппарата. Приемники 18 начинают принимать сигналы информационных датчиков 17 после срабатывания элемента И 10, т.е. после начала движения летательного аппарата. С выхода блока приемников 18 сигналы поступают на IV группу входов устройства 3 сбора информации. На V вход устройства 3 сбора информации поступают сигналы от задатчика 19 постоянных величин, несущие информацию о заданных величинах давления и температуры в шинах колес носовой и основных стоек шасси летательного аппарата. Устройство 3 сбора информации считывает и обрабатывает сигналы, поступающие от k информационных датчиков 17, подтверждает исправную работу информационных датчиков 17, а также подает сигнал тревоги в случае обнаружения неисправности информационного датчика, обрыве шины связи, сбое оборудования. Кроме того, устройство 3 сбора информации сравнивает текущие величины давления и температуры в каждой шине с заданной величиной, сравнивает текущие величины давления и температуры в m сдвоенных (строенных) шинах колес стоек шасси между собой, передает информацию о давлении и температуре в каждой шине в защищенный бортовой накопитель информации, при разнице величин давления или температуры в каждой из шин колеса и в m сдвоенных (строенных) шинах колес на величину более заданной, формирует сигнал на своем II выходе для информирования об этом экипажа (оператора) летательного аппарата (появляется сигнал на входе индикатора 8 тревоги).

В режиме выруливания на ВПП и взлета летательного аппарата, из блока 7 датчиков выдается определенная комбинация сигналов на первый, второй и третий входы элемента И10, срабатывание которого обеспечивает излучение n - микрорадаров 11 в направлении шин, за счет выдачи разрешающего сигнала с выхода элемента И 10, на вторые входы n - микрорадаров 11. Кроме того, срабатывание элемента И10 приводит к тому, что приемники 18 начинают принимать сигналы с k информационных датчиков 17. Отраженные от шин сигналы усиливаются n - усилителями 12, переводятся из аналогового вида в цифровой n - аналого-цифровыми преобразователями 13 и поступают на n-третьи входы устройства 3 сбора информации. Кроме того, сигналы с выходов приемников 18 поступают на 4 вход устройства 3 сбора информации.

Устройство 3 сбора информации обрабатывает поступающие сигналы по алгоритму [2], основанному на анализе выбранных гармоник отраженных сигналов и заключающемуся в осуществлении выбора диапазона гармоник отраженных сигналов на основе оценки усредненной энергии гармоник, оценки центра массы распределения гармоник и определения параметров, связанных с шиной, определении параметров или аномалий: балансировка и юстировка в диапазоне от 1-й до 2-й гармоники, расслоение ленты протектора и неравномерный износ протектора в диапазоне от 3-й до n - гармоники, где n - фундаментальная гармоника, связанная с шаблоном протектора, износ протектора, определяется в диапазоне от n-й до m-й гармоники, где т - является верхним обертоном энергии шаблона протектора. Кроме того, устройство 3 сбора информации определяет величины давления и температуры в каждой шине шасси, сравнивает текущие величин давления и температуры в каждой шине с заданной величиной, сравнивают текущие величины давления и температуры в m сдвоенных (строенных) шинах стоек шасси между собой. Сравнение величин давления и температуры в m сдвоенных (строенных) шинах стоек шасси между собой и с заданной величиной необходимо, т.к. при эксплуатации сдвоенных (строенных) шин шасси самолета нередки случаи, когда в одной из них давление значительно снижается. Заметить это без манометра достаточно сложно, особенно когда воздух теряет внутренняя шина. Но главная неприятность заключается в том, что внешние признаки эксплуатации шин с пониженным давлением (темные полосы, трещины) могут полностью отсутствовать. Когда же давление будет доведено до нормативного, ранее «спущенная» шина может попросту взорваться. Также, в случае, когда давление в одной из шин сдвоенных (строенных) шин отличается от других на величину более заданной возможен взрыв шины в момент посадки (взлета) самолета. В результате обработки сигналов устройство 3 сбора информации определяет текущее техническое состояние параметров каждой шины шасси летательного аппарата, включая давление и температуру, и информация об этом записывается в накопитель устройства 3 сбора информации и в защищенный бортовой накопитель информации. После взлета летательного аппарата и уборки шасси срабатывает блок концевых выключателей, и n - микрорадаров 11 прекращают излучение, а приемники 18 прекращают принимать излучение m информационных датчиков 17.

Перед посадкой летательного аппарата летчик (оператор) выпускает шасси. После выпуска шасси опять срабатывает блок 14 концевых выключателей шасси летательного аппарата, и при посадке летательного аппарата восстанавливается излучение n - микрорадаров 11 в направлении шин, которое продолжается до заруливания летательного аппарата на стоянку, а также восстанавливается работа приемников 18. После остановки самолета исчезает сигнал на втором входе элемента И 10, что приводит к прекращению излучения n - микрорадаров 11 и прекращению работы приемников 18. Устройство 3 сбора информации в результате обработки поступившей информации определяет текущее техническое состояние каждой шины шасси летательного аппарата и информация об этом вновь записывается в накопитель устройства 3 сбора информации и в защищенный бортовой накопитель информации.

Таким образом, в результате применения предлагаемого способа и устройства осуществляется комплексный мониторинг технического состояния шин шасси летательного аппарата на этапах его движения по аэродрому, взлета и посадки, что в настоящее время не осуществляется никаким другим устройством. Сущность комплексный мониторинга заключается в том, что оценивается с помощью обработки поступающих от шин отраженных сигналов n - микрорадаров 11 внешнее состояние шины и такие ее дефекты как балансировка и юстировка, расслоение ленты протектора, неравномерный износ протектора, повышенный износ протектора. С помощью сигналов с k информационных датчиков оценивается внутреннее состояние шин (давление и температура внутри шины). Кроме того, в результате анализа записанной информации за цикл полетов появляется возможность оценки изменения технического состояния каждой шины в течение этого цикла с учетом времени года, погодных условий, состояния аэродромов, географии полетов. При переходе любой из шин в неисправное состояние (расслоение протектора, повышенный износ, разбалансировка, повышенные (пониженные) давление и температура, и т.д.) на втором выходе устройства 3 сбора информации формируется сигнал, который поступает на вход индикатора 8 тревоги, который при его поступлении информирует экипаж (оператора) о возникшей неисправности.

При возникновении аварии (катастрофы) в процессе взлета или посадки летательного аппарата при использовании предлагаемого устройства появляется возможность за счет анализа информации из защищенного бортового накопителя информации оценить качество функционирования и техническое состояние шин шасси, величины давления и температуры в них, до момента и в момент аварии (катастрофы).

Таким образом, использование предложенных способа и устройства позволит повысить качество контроля технического состояния конструкции летательного аппарата за счет мониторинга технического состояния шин шасси на этапах движения по аэродрому, взлета и посадки, а также безопасность полетов за счет информирования экипажа (оператора) о возникновении неисправности в системе шин шасси летательного аппарата.

Источники информации

1. Патент РФ на изобретение №2385456, кл. G01N 29/14, 27.03.2010 г. (прототип).

2. Патент США на изобретение US 7082819 (ЕР 1542035).

1. Способ контроля состояния конструкции летательного аппарата, заключающийся в мониторинге ряда зон летательного аппарата в режиме постоянного времени, для чего используют множество пьезоэлектрических датчиков на каждую зону, устанавливают пьезоэлектрические датчики на частях конструкции, предназначенных для мониторинга, определяют условия, в которых производятся измерения, определяют верхнюю и нижнюю границы порога, за пределами которого принимают решение об измерении сигнала, при этом упомянутый порог изменяют в зависимости от того, находится ли летательный аппарат в полете или на стоянке, указанные сигналы являются результатом присутствия акустической волны в конструкции в месте установки пьезоэлектрических датчиков, осуществляют измерение сигнала в течение около 100 мкс при каждом акустическом событии, определяют число переходов сигналом порога, причем выделяют сигнал, который находится в частотном диапазоне от 20 кГц до 2 МГц, преобразуют полученные акустические сигналы в аналоговые электрические сигналы, считывают и обрабатывают сигналы, поступающие от датчиков в цифровой блок обработки сигнала во время полезного срока службы летательного аппарата на земле и в воздухе, для постоянного считывания подтверждают исправную работу совокупности пьезоэлектрических датчиков, соединенных с устройством сбора информации, подают сигнал тревоги в случае обнаружения неисправности пьезоэлектрического датчика, или обрыва шины связи, или сбое оборудования, обеспечивают постоянное питание элементов устройства мониторинга, в обшивке планера летательного аппарата в районе шасси (на стойках шасси летательного аппарата) устанавливают микрорадары, число которых соответствует числу шин шасси летательного аппарата, так, чтобы в диаграмму направленности каждого микрорадара попадала строго определенная «своя» шина, излучают в направлении каждой из шин радиолокационный сигнал и принимают отраженный от шин сигнал при движении летательного аппарата по аэродрому до момента взлета и от момента посадки до остановки летательного аппарата, производят анализ выбранных гармоник отраженного сигнала, определяют техническое состояние каждой шины в отдельности и системы шин шасси в целом в периоды взлета и посадки летательного аппарата на основе определения параметров состояния шин в процессе анализа выбранных гармоник отраженного сигнала, записывают информацию о параметрах состояния каждой шины в защищенный бортовой накопитель информации, подают сигнал тревоги при переходе параметров любой из шин в неисправное состояние, обеспечивают информирование экипажа (оператора) летательного аппарата о текущем техническом состоянии шин летательного аппарата и возникновении неисправности в период его взлета или посадки, отличающийся тем, что дополнительно при движении летательного аппарата по аэродрому до момента взлета и от момента посадки до остановки летательного аппарата измеряют температуру и давление в каждой шине шасси, сравнивают текущие величины давления и температуры в каждой шине с заданной величиной, сравнивают текущие величины давления и температуры в m сдвоенных (строенных) шинах стоек шасси между собой, записывают информацию о давлении и температуре в каждой шине в защищенный бортовой накопитель информации, при разнице величин давления или температуры в каждой из шин и в m сдвоенных (строенных) шинах на величину, более заданной, обеспечивают информирование об этом экипажа (оператора) летательного аппарата.

2. Устройство для осуществления способа контроля состояния конструкции летательного аппарата содержит установленные на борту летательного аппарата первое устройство обнаружения, устройство сбора информации, бортовое устройство, блок сигнализации аварийного состояния, блок питания, первое устройство обнаружения состоит из множества пьезоэлектрических датчиков, установленных на частях конструкции и предназначенных для непрерывного мониторинга каждой зоны летательного аппарата и измерения сигнала в течение около 100 мкс при каждом акустическом событии, определяемом величиной верхнего и нижнего порога, причем сигнал находится в частотном диапазоне от 20 кГц до 2 МГц, бортовое устройство обеспечивает безопасность работы установленного на борту летательного аппарата первого устройства обнаружения, причем первый и второй выходы первого устройства обнаружения соединены соответственно с первым входом устройства сбора информации и первым входом блока сигнализации аварийного состояния, выход которого соединен со вторым входом устройства сбора информации, выход бортового устройства соединен с входом первого устройства обнаружения, второй выход блока питания соединен со вторым входом блока сигнализации аварийного состояния, первый выход блока питания соединен с входом бортового устройства, второе устройство обнаружения, блок датчиков, индикатор тревоги, причем первый, второй и третий входы второго устройства обнаружения соединены соответственно с первым, вторым и третьим выходами блока датчиков, выходы второго устройства обнаружения соединены с группой третьих входов устройства сбора информации, первый выход которого соединен с входом бортового накопителя информации, а второй выход - со входом индикатора тревоги, блок датчиков состоит из блока концевых выключателей шасси летательного аппарата, датчика движения, высотомера, второе устройство обнаружения содержит элемент НЕ, элемент И, последовательно соединенные n микрорадаров, n усилителей, n аналого-цифровых преобразователей, причем первый, второй и третий входы второго устройства обнаружения являются первым, вторым входами элемента И, входом элемента НЕ, выход которого соединен с третьим входом элемента И, выход которого соединен со вторыми входами n микрорадаров, выходы n аналого-цифровых преобразователей являются выходами второго устройства обнаружения, отличающееся тем, что в блок датчиков дополнительно введены k информационных датчиков, по одному на каждое колесо шасси, соединенных по радиоканалу с блоком приемников, блок приемников, содержащий по одному приемнику на каждую стойку шасси летательного аппарата, вход блока приемников соединен с выходом элемента И, группа выходов блока приемников соединена с четвертой группой входов устройства сбора информации, задатчик постоянных величин, выход которого соединен с пятым входом устройства сбора информации.

3. Устройство для осуществления способа контроля состояния конструкции летательного аппарата по п.2, отличающееся тем, что информационный датчик колеса шасси летательного аппарата состоит из последовательно соединенных датчика давления и температуры, микроконтроллера, радиопередатчика, вход каждого из которых соединен с выходом источника питания.



 

Похожие патенты:

Изобретение относится к электрическим испытаниям на восприимчивость к электромагнитному полю промышленной частоты (ЭМППЧ) изделий электрооборудования автотранспортных средств (АТС).

Изобретение относится к области транспортного машиностроения, а именно к конструкциям испытательных стендов, связанных с доводкой и определением ресурса автомобилей, строительно-дорожных машин, колесных тракторов.

Стенд содержит опорную раму (1), на которой закреплен своими концами отрезок ленты (2), имитирующей ленту промежуточного линейного привода, опирающийся на две желобчатые опоры (3, 4).

Изобретение предназначено для исследования системы колесо-рельс. Катковый стенд содержит раму (1), установленную в бетонном фундаменте, на основании рамы (4), на разрыве рельсового пути (3), закреплен имитатор рельсового пути (5), содержащий два катка (6), установленные в опорах, выполненных на подшипниках качения (8).

Изобретение относится к области транспортного машиностроения и может быть использовано для моделирования динамических процессов в тяговом приводе локомотива с электропередачей.

Изобретение относится к автомобилестроению, к области обеспечения безопасности автомобиля, водителя и пассажиров. Краш-испытания проводят в два этапа.

Изобретение относится к конвейеростроению, а именно к стендам для исследования параметров улавливания оборвавшейся ленты наклонного конвейера с желобчатыми опорными роликоопорами на грузонесущей ветви конвейерной ленты при использовании подвесных канатных ловителей, которые отличаются от других типов ловителей простотой конструкции и надежностью срабатывания при обрыве конвейерной ленты.

Изобретение относится к подкрановым конструкциям с тяжелым интенсивным режимом работы мостовых кранов. .

Изобретение относится к испытанию и техническому диагностированию машин, в частности к устройствам для измерения силы тяги на крюке транспортной машины. Динамометр для тяговых испытаний машин содержит опорный и прижимной диски с проушинами, цилиндр с размещенной в нем камерой сжатия, заполненной маслом, поршень со штоком, манометр и датчик давления. Полость камеры сжатия сообщена с полостью манометра, а также с датчиком давления. Опорный диск выполнен в виде корпуса, в котором размещен цилиндр с камерой сжатия, заполненной маслом, и поршень со штоком. Шток выполнен в виде толкателя и установлен в корпусе соосно с поршнем и с возможностью взаимодействия с ним. Прижимной диск выполнен в виде шкворня тормозного устройства, который имеет возможность взаимодействия с толкателем. В корпусе выполнены две проушины, одна из которых под шкворень тормозного устройства в виде продольной прорези, а другая под шкворень испытываемой машины - в виде отверстия. Достигается упрощение конструкции динамометрического устройства. 1 ил.

Изобретение относится к области транспортных средств (ТС), более конкретно к способам определения акустических характеристик салонов ТС, и может быть использовано при акустической доводке проектируемых образцов ТС. Способ определения акустических характеристик салона ТС заключается в измерении в дорожных условиях уровня шума в салоне и сравнении его с нормативным значением, выборе ТС с салоном, удовлетворяющим нормативному уровню шума, проведении его дополнительных дорожных испытаний с записью источников шума шасси, установлении выбранного ТС на площадке и облучении его со стороны внешней поверхности пола салона записанным шумом, измеряя при этом уровень шума в салоне и получая спектральные характеристики. После чего облучают опытный образец салона тем же шумом и по разности уровней и спектров определяют достаточность либо недостаточность звукоизолирующих свойств пола опытного салона. Достигается оперативность получения данных по звукоизолирующим свойствам конструктивных элементов салона и минимизация затрат. 1 ил.

Изобретение относится к электрическим испытаниям электрооборудования на восприимчивость к электромагнитному воздействию. Способ испытаний микропроцессорной системы управления двигателем автотранспортного средства на восприимчивость к электромагнитному воздействию, в котором испытуемую систему управления в составе транспортного средства подвергают импульсному воздействию электромагнитного излучения с помощью генератора грозового разряда. Испытуемую систему подвергают воздействию заданного количества несинхронизированных импульсов электромагнитного излучения, при этом количество импульсов электромагнитного излучения рассчитывают из формулы. Решение позволяет более достоверно оценить электромагнитную стойкость системы управления двигателем. 1 ил.

Изобретение относится к наземным имитационным испытаниям космических аппаратов (КА), а именно многозвенных маложестких механических систем изделий космической техники. Устройство для обезвешивания многозвенной механической системы КА содержит закрепленные на КА поворотные секции, расположенные в плане над соответствующими звеньями механической системы и связанные с ними посредством регулируемых пружин обезвешивания, трансформируемую опорную конструкцию из горизонтальных несущих штанг с кронштейнами, поворотные секции. Наименее удаленная от КА несущая штанга закреплена на КА, а наиболее удаленная от КА несущая штанга посредством опорной стойки опирается на пол помещения. Трансформируемая опорная конструкция снабжена фиксаторами взаимного положения несущих штанг, несущие штанги снабжены Г-образными упорами, опирающимися на пол помещения, кронштейны размещены на несущих штангах с возможностью взаимодействия и фиксации с поворотными секциями в их наиболее удаленных от космического аппарата концах. КА с закрепленным на нем устройством для обезвешивания многозвенной механической системы устанавливают на место проведения испытаний, проводят установку и фиксацию необходимой конфигурации опорной трансформируемой конструкции в горизонтальной плоскости, последовательно фиксируют положения поворотных секций системы обезвешивания в горизонтальной плоскости. Изобретение позволяет повысить функциональные и эксплуатационные характеристики устройств для испытаний многозвенных маложестких механических систем изделий космической техники. 2 н. и 3 з.п. ф-лы, 8 ил.

Изобретение относится к методам испытаний, в частности к методам неразрушающего контроля. Определяют дефектность изделия методом неразрушающего контроля (критические размеры χкp дефектов в режиме эксплуатации и допустимые в эксплуатации размеры [χ]d.э. дефектов, Nобн, вероятность обнаружения дефектов Pвод сущ, исходную дефектность Nисх, остаточную дефектность Nост до начала эксплуатации, остаточную дефектность изделия после ремонта, если таковой проводился, выявленных дефектов существующими методами контроля). Определяют остаточную дефектность на момент достижения времени контроля при исходной периодичности Псущ, которая изменится из-за подроста дефектов во время эксплуатации. Величину перемещения остаточной дефектности определяют расчетным путем в зависимости от механизма и условий эксплуатации. Полученную новую кривую принимают за предельную кривую остаточной дефектности, которую нельзя превысить при новой периодичности Пнов. Предельную кривую остаточной дефектности используют для определения требований к новому ЭНК. Достигается увеличение периодичности эксплуатационного неразрушающего контроля без снижения надежности изделия. 1 з.п. ф-лы, 8 ил.

Изобретение относится к методам испытаний, в частности к методам неразрушающего контроля. Гамма-процентный ресурс изделия определяют по результатам ультразвукового, вихретокового, радиографического и прочих методов неразрушающего контроля дефектов материала изделия или группы изделий. Способ основан на оценке остаточной дефектности с использованием тест-образца со скрытыми дефектами. Достигается возможность оценки реальной дефектности изделия после контроля и ремонта выявленных дефектов и определения фактического уровня гамма-процентного ресурса изделия до того, как оно разрушится или повредится в эксплуатации. 1 з.п. ф-лы, 5 ил.

Изобретение относится к методам испытаний, в частности к методам неразрушающего контроля. Гамма-процентный ресурс изделия определяют по результатам ультразвукового, вихретокового, радиографического и прочих методов неразрушающего контроля дефектов материала изделия или группы изделий. Способ основан на оценке остаточной дефектности. Достигается возможность оценки реальной дефектности изделия после контроля и ремонта выявленных дефектов и определение фактического уровня гамма-процентного ресурса изделия до того, как оно разрушится или повредится в эксплуатации. 1 з.п. ф-лы, 5 ил.

Изобретение относится к области обеспечения надежности и безопасности сосудов и трубопроводов давления во время их эксплуатации. Определяют критические размеры трещин в режиме нормальной эксплуатации. Затем методами механики разрушения и сопротивления материалов находят такое давление и температуру испытаний, при которых полученные значения размеров критических трещин не дорастают за увеличенный интервал периодичности испытаний до размеров критических трещин в режиме нормальной эксплуатации. Достигается обеспечение увеличенного интервала времени между испытаниями без снижения надежности изделия. 5 ил.

Изобретение относится к способу определения крутильной податливости гидромеханической трансмиссии. Способ включает нагружение слоя грунта траками гусеничного трактора с гидромеханической трансмиссией, неподвижно зафиксированного посредством силоизмерительного устройства, плавное увеличение нагрузки, регистрацию значения касательного усилия грунтозацепа трака на грунт, измерение деформации грунта, построение графика зависимости деформации грунта от касательного усилия грунтозацепа трака на грунт, определение по точке излома прямой графика предельного касательного усилия грунтозацепа трака на грунт, регистрацию угла поворота ведущей звездочки трактора, построение графика зависимости угла поворота ведущей звездочки трактора от касательного усилия грунтозацепа трака на грунт. По точке излома прямой графика определяют полный угол поворота ведущей звездочки. Рассчитывают угол поворота ведущей звездочки, соответствующий величине предельной упругой деформации сдвига грунта. Определяют суммарный угол закручивания трансмиссии φTP как разность полного угла поворота ведущей звездочки трактора и угла поворота ведущей звездочки. Суммарную крутильную податливость гидромеханической трансмиссии определяют из соотношения l K = ϕ T P P K O ⋅ r K , где rK - радиус ведущей звездочки трактора, P K O - касательное усилие грунтозацепа трака на грунт, соответствующее суммарному углу закручивания трансмиссии φTP. Технический результат заключается в возможности определения динамических характеристик трансмиссии. 2 ил.

Изобретение относится к области испытания автомобиля. Проводят серию измерений уровня шума автомобиля, движущегося по мерному участку в режиме разгона, производят запись полученных значений, получают диаграмму значений записанного уровня шума автомобиля и определяют значение его скорости при пересечении микрофонной линии. Проводят серию измерений уровня шума автомобиля, движущегося по мерному участку накатом со скоростью, равной наперед заданному значению, таким образом, чтобы скорости, полученные при пересечении автотранспортным средством микрофонной линии, в обеих сериях измерений совпадали. Получают диаграмму записанных значений уровня шума автотранспортного средства, движущегося накатом. Проводят идентификацию шума, производимого шинами в общем уровне шума движущегося АТС, путем сравнения значений общего уровня шума АТС, полученных в режиме разгона со значениями уровня шума АТС, полученных в режиме наката с применением поправки на расстояние, определяющей зависимость изменения уровня шума от расстояния между источником шума и шумомером. Достигается определение вклада шума шин в общем шуме, производимом транспортным средством во время движения. 3 ил.
Наверх