Способ испытания железобетонных шпал и стенд для его реализации

Изобретение относится к области машиностроения и может быть использовано, в частности, при аттестации, сертификации и исследовании продукции заводов, выпускающих шпалы. Сущность: максимальную нормированную нагрузку на шпалу задают отдельно в ее наиболее нагруженных сечениях. Проводят испытания целой шпалы, при этом шпалу нагружают одновременно тремя электрогидравлическими следящими каналами нагружения, два из которых действуют на подрельсовые части шпалы сосредоточенно, а третий действует распределенно через рычажную систему на среднюю часть шпалы от реакции грунта. На всех трех электрогидравлических каналах нагружения синхронизируют нагрузки с помощью компьютера с соответствующим программным обеспечением. Стенд содержит три независимых электрогидравлических следящих канала нагружения, включающих три гидроцилиндра, три сервоклапана, три динамометра, три регулятора и три механических системы. Все электрогидравлические следящие каналы нагружения запитаны от маслонасосной станции с управлением от одной ЭВМ. Технический результат: возможность одновременного нагружения целой неразрезанной шпалы, как это происходит в реальных условиях, сокращении сроков и уменьшении затрат на проведение сертификационных испытаний на статическую прочность и циклическую выносливость целых (неразрезанных) шпал. 7 ил.

 

Изобретение относится к области машиностроения и может быть использовано, в частности, при аттестации, сертификации и исследовании продукции заводов, выпускающих шпалы.

Известны способ и испытательная машина для проведения испытаний шпал, принятые за прототип, в соответствии с которым шпалы разрезают на три части так, что при одноканальном нагружении проводят нагружение каждой части на испытательной машине строго нормированной нагрузкой. Для этого сертификационные испытания шпал на выносливость при циклическом нагружения проводили по стандартной методике (ОСТ 32.152-2000 Шпалы железобетонные предварительно напряженные для железных дорог колеи 1520 мм Российской Федерации. Технические условия). Максимальная нормированная нагрузка цикла задавалась в наиболее нагруженных (контролируемых) сечениях шпалы (фиг.1) Наиболее нагруженными зонами шпалы в условиях эксплуатации являются подрельсовые части, воспринимающие нагрузку от колес вагона (сечения 1-1, 3-3) и средняя часть шпалы (сечение 2-2), в котором действует реактивная сила от грунта под шпалой, направленная вверх. При этом испытывают не целую шпалу, а отдельные части (образцы) шпал, которые получают или путем разрезки целых шпал на отдельные части, или установкой разделительных перегородок для формирования шпал. Полученные таким образом части шпал устанавливают на испытательную машину и испытывают как двухопорную балку по пульсирующему циклу при строгом соотношении величин нормированных нагрузок и расстояний между опорами, т.е. при фиксированном значении максимального изгибающего момента в подрельсовых и среднем сечениях. Схемы нагружения образцов показаны на фиг.2. Испытательная машина содержит один электрогидравлический следящий канал нагружения, включающий в себя гидроцилиндр, сервоклапан, динамометр, регулятор и механическую систему.

Недостатками способа и используемой испытательной машины являлось то, что не испытывались места сопряжения отдельных частей шпалы друг с другом, не было имитации работы целой шпалы, большие сроки проведения испытаний.

Задачей изобретения является разработка способа испытания целой шпалы и создание стенда для его реализации.

Технический результат заключается в одновременном нагружении целой неразрезанной шпалы, как это происходит в реальных условиях, сокращении сроков и уменьшении затрат на проведение сертификационных испытаний на статическую прочность и циклическую выносливость целых (неразрезанных) шпал.

Решение задачи и технический результат достигаются тем, что в способе испытания железобетонных шпал на статическую прочность и циклическую выносливость, заключающемся в том, что максимальную нормированную нагрузку задают отдельно в наиболее нагруженных сечениях шпалы, при этом проводят испытания целой шпалы, шпалу нагружают одновременно сразу тремя электрогидравлическими следящими каналами нагружения, два из которых действуют на подрельсовые части шпалы сосредоточенно, а третий действует распределение через рычажную систему на среднюю часть шпалы от реакции грунта, при этом на всех трех электрогидравлических каналах нагружения синхронизируют нагрузки с помощью компьютера с соответствующим программным обеспечением.

Решение задачи и технический результат достигаются также тем, что в стенде для испытания железобетонных шпал на статическую прочность и циклическую выносливость, установлены три независимых электрогидравлических следящих канала нагружения, включающих три гидроцилиндра, три сервоклапана, три динамометра, три регулятора и три механических системы, два электрогидравлических следящих канала нагружения установлены с возможностью воздействия на подрельсовые части шпалы сосредоточенно, а третий установлен с возможностью воздействия на среднюю часть шпалы от реакции грунта распределение через рычажную систему, причем все электрогидравлические следящие каналы нагружения запитаны от маслонасосной станции с управлением от одной ЭВМ.

На фиг.1 представлена схема расчетных (контрольных) сечений

На фиг.2 представлена схема нагружения фрагментов шпал при циклических испытаниях

На фиг.3 представлена расчетная схема нагружения для целой шпалы

На фиг.4 представлена эпюра изгибающих моментов

На фиг.5 представлена схема нагружения натурной шпалы, реализованная на стенде

На фиг.6 представлена блок-схема стенда для испытания шпал

На фиг.7 представлен общий вид стенда

Стенд для испытания железобетонных шпал содержит три гидроцилиндра 1 (фиг.6), три сервоклапана 2, три динамометра 3, включенные в три механические системы 6 и подключенные к входам трех регуляторов 5, составляющих три независимых электрогидравлических следящих канала нагружения, запитанных от маслонасосной станции (МНС) 7, и управляемых от одной ЭВМ 8. Механическая система среднего электрогидравлического следящего канала нагружения содержит рычажную систему 4, которая позволяет на среднюю часть испытываемой шпалы 9 прикладывать распределенную нагрузку.

Предложенный способ заключается в следующем. Максимальную нормированную нагрузку на шпалу 9 задают отдельно в ее наиболее нагруженных сечениях 1-1, 2-2, 3-3 (фиг.1), проводят испытания целой шпалы, при этом шпалу нагружают сразу тремя электрогидравлическими следящими каналами нагружения, два из которых действуют на подрельсовые части шпалы сосредоточенно, а третий действует распределение через рычажную систему 4 на среднюю часть шпалы от реакции грунта, при этом на всех трех электрогидравлических каналах нагружения синхронизируют нагрузки с помощью компьютера 8 с соответствующим программным обеспечением.

Стенд для испытания целой шпалы работает следующим образом. От ЭВМ 8 сигнал на нагружение поступает на регуляторы 5, которые дают команду сервоклапанам 2 на подачу рабочей жидкости (масла) от МНС 7 к гидроцилиндрам. Усилия, развиваемые гидроцилиндрами 1 через механические системы 6 и динамометры 3 передаются на испытываемую шпалу, закрепленную на двух опорах, при этом динамометры 3 замеряют усилия, развиваемые гидроцилиндрами и подают электрические сигналы на регуляторы 5, которые следят за правильностью отработанной программы и регулируют открытие сервоклапанов 2, поддерживая заданную нагрузку.

Реализованная на стенде схема нагружения (Фиг.5) отличается от расчетной (Фиг.3) тем, что на стенде поперечная сила Р2 и реакции от опор Р2.1, Р2.2, Р2.3 воспроизводятся с помощью рычажной системы. В этом случае шпала работает как двухопорная балка, нагруженная системой поперечных сил, для которой реакции опор и величины изгибающих моментов в контрольных сечениях соответствуют эпюре на Фиг.4.

Таким образом, благодаря применению одновременно трех электрогидравлических следящих каналов нагружения, работающих синхронно и управляемых от ЭВМ, обеспечивается высокая точность задания и поддержания усилий, приходящихся на целую шпалу во время испытаний, существенно сокращаются сроки и затраты на проведение сертификационных испытаний на статическую прочность и циклическую выносливость целых (неразрезанных) шпал.

1. Способ испытания железобетонных шпал на статическую прочность и циклическую выносливость, заключающийся в том, что максимальную нормированную нагрузку на шпалу задают отдельно в ее наиболее нагруженных сечениях, отличающийся тем, что проводят испытания целой шпалы, при этом шпалу нагружают одновременно тремя электрогидравлическими следящими каналами нагружения, два из которых действуют на подрельсовые части шпалы сосредоточенно, а третий действует распределенно через рычажную систему на среднюю часть шпалы от реакции грунта, при этом на всех трех электрогидравлических каналах нагружения синхронизируют нагрузки с помощью компьютера с соответствующим программным обеспечением.

2. Стенд для испытания железобетонных шпал на статическую прочность и циклическую выносливость, содержащий электрогидравлический следящий канал нагружения, включающий в себя гидроцилиндр, сервоклапан, динамометр, регулятор и механическую систему, отличающийся тем, что стенд содержит три независимых электрогидравлических следящих канала нагружения, включающих три гидроцилиндра, три сервоклапана, три динамометра, три регулятора и три механические системы, при этом два электрогидравлических следящих канала нагружения установлены с возможностью воздействия на подрельсовые части шпалы сосредоточенно, а третий установлен с возможностью воздействия на среднюю часть шпалы от реакции грунта распределенно через рычажную систему, причем все электрогидравлические следящие каналы нагружения запитаны от маслонасосной станции с управлением от одной ЭВМ.



 

Похожие патенты:

Изобретение относится к исследованию прочностных свойств твердых материалов путем приложения к ним повторяющихся или пульсирующих усилий, более конкретно, путем воздействия на испытываемый образец циклических нагрузок.

Изобретение относится к исследованию механических свойств материала, в частности к определению технологических параметров процессов (усилий, напряжений, деформаций, перемещений).

Изобретение относится к испытательной технике, к испытаниям на прочность. .

Изобретение относится к испытательной технике, к испытаниям на прочность. .

Изобретение относится к испытательной технике, к испытаниям на прочность. .

Изобретение относится к области экспериментальной техники и может быть использовано в стендах прочностных испытаний конструкций. .

Изобретение относится к области исследования трибологических свойств металлических покрытий путем электрохимического растворения микроучастка поверхности образца с целью оценки линейного износа.

Изобретение относится к испытательной технике. .

Изобретение относится к области исследования и анализа твердых материалов путем определения их прочностных свойств, а именно определения коррозии и трещин в металлических запорных элементах - напорных клапанах высокого давления гидрорезного оборудования в процессе их циклического нагружения во время работы насоса, и может быть использовано для оценки их работоспособности. Сущность: образцы запорных элементов подвергают циклической нагрузке давлением воды с интервалом между циклами нагружения 0,05-0,1 с. Технический результат: возможность достоверного определения ресурса работы запорного элемента гидрорезного оборудования за счет осуществления процесса максимально приближенным к реальным условиям. 1 ил., 1 табл.

Изобретение относится к области машиностроения и может быть использовано, в частности, при аттестации, сертификации и исследовании продукции заводов, выпускающих трехниточные шпалы и шпалы с разной шириной колеи. Стенд содержит три независимых следящих электрогидравлических привода, включающих три гидроцилиндра, три сервоклапана, три динамометра, три регулятора и три механических системы, одна из которых содержит рычажную систему, все приводы запитаны от маслонасосной станции и управляются от одной ЭВМ. Один из следящих электрогидравлических приводов закреплен неподвижно, а два других вместе с поперечными балками имеют свободу перемещения. Одна опора шпалы напротив неподвижного привода имеет фиксированное положение, а вторая опора шпалы может менять положение в зависимости от схемы нагружения. Технический результат: возможность проводить испытания любой шпалы с шириной колеи от 1067 до 1520 мм. 4 ил.

Изобретение относится к испытательной технике и испытаниям на усталостную прочность при кручении. Стенд содержит сервогидравлическое нагружающее устройство (СНУ), элемент коленчатого вала (1), один конец которого жестко крепится через фланец отбора мощности к вертикальной неподвижной стойке (7). Напрессованный с натягом на свободный конец вала каток (2) имеет возможность свободно кататься по опорной плите (5), которая жестко крепится к столу СНУ. Сопряженная с катком (2) поверхность опорной плиты (5) повторяет форму опорной поверхности катка (2). К катку (2) крепится рычаг (4), на который через сферический упор (6), присоединенный к СНУ, передается эксцентричная нагрузка от поршня СНУ, под действием которой жестко связанный с рычагом (4) каток (5) может совершать качательное движение вокруг оси, совпадающей с продольной осью коленчатого вала (1) и передавать крутящий момент элементу коленчатого вала (1). Технический результат заключается в обеспечении задания произвольного закона нагружения. 1 ил.

Изобретение относится к испытательной технике, к устройствам для исследования энергообмена при деформировании и разрушении блочного горного массива. Стенд содержит опорную раму, размещенные в ней захват для образца и захват для контробразца, два гидравлических механизма в виде цилиндров с силовыми поршнями, связанными с соответствующими захватами, два источника давления, связанных с соответствующими гидравлическими механизмами, пульсаторы, связанные с гидравлическими механизмами и включающие эксцентрики, приводы вращения эксцентриков и толкатели, кинематически связанные с поршнями соответствующих гидравлических механизмов. Гидравлические механизмы снабжены дополнительными коаксиально выполненными поршнями по количеству изменяемых ступеней давления, размещенными в цилиндрах соосно соответствующим толкателям, фиксаторами для соединения дополнительных поршней друг с другом, фиксаторами для соединения дополнительных поршней с соответствующими цилиндрами и фиксаторами для соединения дополнительных поршней с соответствующими толкателями. Источники давления соединены с полостями, расположенными между силовыми и соответствующими дополнительными поршнями. Технический результат: возможность проведения испытаний как при плавно, так и при ступенчато изменяемых амплитуде и уровне поджимающих и сдвигающий нагрузок, а также увеличение объема информации при исследованиях. 1 ил.

Изобретение относится к области экспериментальной техники и может быть использовано преимущественно в стендах прочностных испытаний натурных конструкций, в том числе авиационных. Система служит для управления по меньшей мере одним исполнительным устройством, снабженным по меньшей мере одним датчиком обратной связи и содержащим блок управления, аналого-цифровые и цифроаналоговые преобразователи, устройства по формированию и обработке дискретных сигналов управления, и включает автоматизированную систему управления верхнего уровня (АСУ верхнего уровня), через интерфейс соединенную с автоматизированной системой управления нижнего уровня (АСУ нижнего уровня). Система построена по блочно-модульному принципу, при этом автоматизированная система нижнего уровня выполнена с возможностью осуществления программной переконфигурации в зависимости от объема решаемых задач, определяемого командами АСУ верхнего уровня. Система размещена или непосредственно на гидравлическом нагружателе, или на расстоянии возможного взаимодействия с ним и содержит интерфейсный модуль, двусторонней связью соединенный с блоком управления, разделенным на модуль решающей части, в качестве которой используют микроЭВМ с операционной системой реального времени (ОСРВ), и модуль оперативной части, реализованный, например, на базе быстродействующей программируемой логической интегральной схемы (ПЛИС). При этом связь между АСУ нижнего уровня, АСУ верхнего уровня и элементами схемы, включая клапан управления, датчики обратной связи, выполнена в виде проводного и/или беспроводного высокоскоростного канала передачи данных. Технический результат заключается в повышении надежности, вариативности и гибкости системы, а также снижении энергозатрат при проведении прочностных испытаний за счет блочно-модульного построения автоматизированной системы управления. 5 ил.
Наверх