Реакционная емкость и способ ее эксплуатации

Настоящее изобретение относится к реакционной емкости нового типа, то есть к кювете, пригодной для применения в автоматических анализаторах, и к способу инкубации кювет. В частности, настоящее изобретение относится к кювете и к способу инкубации в соответствии с преамбулами независимых пунктов Формулы изобретения. Заявленная кювета (10) для автоматизированного инкубатора (30), отличающаяся тем, что кювета (10) включает, по меньшей мере, две емкости (20), соединенные разделительной стенкой (22), количество которых составляет на одну меньше, чем количество емкостей (20), и скобы (24), при этом скобы (24) расположены на самой крайней емкости (20), при этом конструкция скоб (24) позволяет изгибать кювету (10) так, что она принимает изогнутую форму. Заявленный способ эксплуатации кюветы включает транспортировку кюветы (10) при помощи скоб (24) в инкубатор (30), изгибание кюветы (10) с образованием изогнутой формы, загрузку кюветы (10) в отверстие (34) инкубатора (30), в котором она фиксируется за счет своих упругих свойств, и извлечение кюветы (10) из отверстия (34) после проведения анализа. Технический результат, достигаемый от реализации заявленного изобретения, заключается в том, что благодаря манипуляциям по загрузке и извлечению, выполняемым в соответствии со способом эксплуатации, включающим только одно направление и перемещение, делает способ удобным и надежным за счет облегчения помещения и центрирования кюветы в отверстии для ввода в инкубатор. При этом благодаря скобам и эластичности в направлении вертикальной оси, кювета согласно настоящему изобретению может быть с успехом помещена в устройства для автоматического анализа образцов. Подходящие показатели пластичности кюветы позволяют вводить ее в инкубатор и фиксировать в инкубаторе, не повреждая уязвимые оптические поверхности кюветы. Аналогично скобы способствуют точному изгибанию кюветы таким образом, что она по всей своей длине контактирует со стенками отверстия для ввода в инкубатор. Благодаря пластичности в направлении вертикальной оси кюветы, не требуются ни соединительные элементы специальной формы, ни точная механика. По этой же причине кюветы одного типа могут применяться в инкубаторах разных типов, что значительно снижает средства, затрачиваемые пользователем. Также достаточная длина скоб и разделительные стенки, разделяющие емкости кюветы согласно настоящему изобретению, гарантируют равномерное распределение температуры при проведении серии испытаний в кювете. Таким образом, отсутствие теплопередачи от одного образца к другому повышает точность и надежность определений. 2 н. и 12 з.п. ф-лы, 6 ил.

 

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится к реакционной емкости нового типа, тоесть к кювете, пригодной для применения в автоматических анализаторах, и к способу инкубации кювет. В частности, настоящее изобретение относится к кювете и к способу инкубации в соответствии с преамбулами независимых пунктов Формулы изобретения.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

Как известно, в автоматических анализаторах применяют кюветы одноразового использования (одноразовые) и многократного использования, изготовляемые как в виде отдельных кювет, так и виде наборов кювет. Кюветы представляют собой емкости, в которые для проведения анализа помещают анализируемый образец и, возможно, другие используемые в анализе вещества. В перерывах между проведением анализов кюветы многократного использования подвергают очистке, в то время как в кюветы одноразового использования за весь срок их службы помещают лишь один образец. Очистка кювет в перерывах между проведением анализов представляет собой трудоемкий процесс, сложности которого объясняются как свойствами применяемых для очистки материалов, так и свойствами потенциально опасных удаляемых веществ. Таким образом, в особенности при проведении большого числа анализов, предпочтительно применение одноразовых кювет, которые после использования выбрасывают в отходы, и о которых по меньшей мере точно известно, что перед использованием они были чистыми.

Известны кюветы одноразового использования, изготовляемые в виде непрерывной цепочки кювет, которая может быть изогнута относительно двух осей с образованием спиралевидной структуры, пригодной для перемещения при ее фиксации на движущихся кольцевых элементах, находящихся внутри анализатора,. Аналогично, также известны колонки, составляемые из кювет, которые можно перемещать при помощи специальных выступов на кюветах, между которыми могут проходить конвейерные элементы, например, зубчатые ремни. Как известно, прикрепление кюветы к набору кювет в аналитическом устройстве происходит за счет внешнего соединительного элемента кюветы, имеющего определенную форму, например, штифтового соединения, так что приемные средства аналитического устройства, включающие гибкие разделительные стенки, удерживают кювету на месте.

Тем не менее, устройства, известные из предшествующего уровня техники, имеют ряд недостатков. Кюветы, известные из предшествующего уровня техники, обычно подходят только для одного конкретного вида применения, то есть, они непригодны для использования в анализаторах и инкубаторах различных типов. Известные пары кювета/ инкубатор включают множество точных манипуляционных механизмов и, таким образом, не отличаются ни надежностью конструкции, ни стабильностью работы. Кроме того, обычно такие пары могут быть использованы лишь в определенном анализе, что означает, что одна серия испытаний может включать только анализы определенного типа, обычно фотометрические анализы. Именно этим объясняются необоснованные задержки при получении результатов анализов конкретного пациента или образца. Аналогично, большое количество манипуляций приводит к тому, что кюветы, содержащие образцы, контактируют с различными элементами, что приводит к изнашиванию внешних поверхностей кювет. В некоторых случаях, избыточное изнашивание приводит к ухудшению оптических свойств прозрачных емкостей. Износ в эксплуатации проявляется особенно сильно при промывке емкостей, но этот недостаток присущ только кюветам для многократного использования.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Задача настоящего изобретения состоит в устранении по меньшей мере части вышеуказанных проблем и создании усовершенствованной кюветы и способа ее эксплуатации.

Кювета согласно изобретению включает две емкости, которые соединены разделительной стенкой, и по меньшей мере одну скобу на самой крайней емкости, которая может поддерживать кювету и изгибаться, благодаря своим эластичным свойствам, при надавливании вовнутрь. Разделительные стенки между емкостями кюветы позволяют кювете, обладающей эластичными свойствами, изгибаться относительно ее вертикальной оси. В частности, кювета согласно настоящему изобретению отличается тем, что указано в отличительной части независимого пункта Формулы изобретения, определяющего устройство.

В соответствии со способом эксплуатации кюветы согласно настоящему изобретению, кювету перемещают с ее скоб в инкубатор и сгибают с образованием изогнутой конструкции, после чего кювету загружают в отверстие инкубатора, в котором она фиксируется за счет собственных упругих свойств. После этого, в пространство для образца, находящееся внутри емкости кюветы, помещают анализируемый образец, и затем образец анализируют во время его нахождения в инкубаторе, и, наконец, кювету извлекают из отверстия инкубатора. В частности, способ эксплуатации согласно настоящему изобретению отличается тем, что указано в отличительной части независимого пункта Формулы изобретения, определяющего способ.

Изобретение имеет ряд преимуществ. Благодаря скобам и эластичности в направлении вертикальной оси, кювета согласно настоящему изобретению может быть с успехом помещена в устройства для автоматического анализа образцов. Подходящие показатели пластичности кюветы позволяют вводить ее в инкубатор и фиксировать в инкубаторе, не повреждая уязвимые оптические поверхности кюветы. Аналогично, скобы способствуют точному изгибанию кюветы таким образом, что она по всей своей длине контактирует со стенками отверстия для ввода в инкубатор. Скобы также облегчают помещение и центрирование кюветы в отверстии для ввода в инкубатор.

Манипуляции по загрузке и извлечению, выполняемые в соответствии со способом эксплуатации, включают только одно направление и перемещение, что делает способ удобным и надежным. Благодаря пластичности в направлении вертикальной оси кюветы, не требуются ни соединительные элементы специальной формы, ни точная механика. По этой же причине кюветы одного типа могут применяться в инкубаторах разных типов, что значительно снижает средства, затрачиваемые пользователем. Кроме вышеуказанных преимуществ, достаточная длина скоб и разделительные стенки, разделяющие емкости кюветы согласно настоящему изобретению, гарантируют равномерное распределение температуры при проведении серии испытаний в кювете. Таким образом, отсутствие теплопередачи от одного образца к другому повышает точность и надежность определений.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Ниже представлены некоторые примеры осуществления настоящего изобретения, рассматриваемые в сочетании с сопроводительными графическими материалами:

На Фиг.1 представлено изометрическое изображение кюветы, содержащей 10 емкостей.

На Фиг.2 представлен вид сбоку кюветы, показанной на Фиг.1.

На Фиг.3 представлен вид сверху кюветы, показанной на Фиг.1.

На Фиг.4 представлены инкубатор и кювета, которая может быть помещена в кольцевой элемент инкубатора.

На Фиг.5 представлена загрузочная воронка инкубатора, показанного на Фиг.4.

На Фиг.6 представлена кювета согласно другому примеру осуществления настоящего изобретения, снабженная одинарными выступающими скобами.

СВЕДЕНИЯ, ПОДТВЕРЖДАЮЩИЕ ВОЗМОЖНОСТЬ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Как показано на Фиг.1, кювета 10 включает емкости 20, расположенные в одну линию друг за другом. В настоящем контексте кювета 10 означает элемент, в который помещают образец, включающий по меньшей мере одну емкость 20 в которую образец помещают и хранят по меньшей мере в течение анализа. Емкость 20 представляет собой трубчатый сосуд, заключающий в себе ограниченное пространство 28 для анализируемого образца, ограничиваемое стенками сосуда. Согласно одному из примеров осуществления, емкость 20 имеет скругленное квадратное поперечное сечение, и, в общем случае, имеет такую форму, что стороны отверстия пространства 28 для образца значительно короче, чем высота этого пространства. Пространство 28 для образца также может иметь другую форму. В настоящем контексте, направление самой длинной стороны пространства 28 для образца емкости 20, т.е. высоты, называется вертикальной осью. Соответственно, горизонтальная ось означает ось, перпендикулярную вертикальной оси в декартовой системе координат.

Согласно одному из примеров осуществления изобретения, кювета 10 включает 10 емкостей, которые отделены друг от друга разделительными стенками 22. Разделительная стенка 22 представляет собой соединительную часть, наподобие перешейка, находящуюся между двумя емкостями 20. Как показано на Фиг.1 и Фиг.2, разделительная стенка 22 по существу находится посредине узких граней параллельных емкостей 20, то есть, разделительная стенка 22 простирается от верхнего края кюветы 10 приблизительно до половины боковой поверхности емкости 20. Другими словами, разделительная стенка 22 не соединяет емкости 20 по всей их длине, а соединяет только их верхние половины. Основная идея разделительной стенки 22 состоит в том, что она представляет собой соединительный элемент, который не способствует переносу тепла от одной емкости к другой, а, напротив, изолирует емкости 20 друг от друга. Таким образом, перенос тепла между емкостями 20 остается минимально возможным, что повышает точность анализа.

Одно из основных свойств разделительной стенки 22 - эластичность. Как показано на Фиг.3, разделительные стенки 22 достаточно тонки по сравнению со стенками емкостей 20, в особенности, по сравнению с их вертикальной длиной. Профиль разделительных стенок 22 и эластичность материала, из которого они изготовлены, позволяют кювете 10 изгибаться относительно ее вертикальной оси, т.е. относительно оси, направленной перпендикулярно вверх относительно плоскости, показанной на Фиг.3. В настоящем контексте эластичный материал означает материал, достаточно эластичный для того, чтобы выдерживать деформации, возникающие в процессе его использования. Материал кюветы 10 и, в частности, материал разделительной стенки 22, выбран таким образом, что конструкция может подвергаться деформации изгиба, при которой разделительные стенки 22 подвергаются эластичной деформации, в результате чего, благодаря эластичности материала кюветы 10, в кювете 10 возникают силы, противодействующие изгибу, которые стремятся вернуть кювету в исходное положение. Таким образом, эластичность разделительных стенок 22 является существенной характеристикой, поскольку конструкция по причинам, описанным ниже, должна оставаться эластичной и при воздействии изгибающего напряжения. Кроме эластичности, материал также должен обладать подходящими оптическими свойствами, по меньшей мере в случае емкости 20. Пластик, в особенности, например, акрил, представляет собой достаточно эластичный материал с подходящей яркостью. В альтернативном варианте, кювета 10 может быть изготовлена из более чем одного материала. В этом случае, детали, которые должны обладать упругими свойствами, например, скобы 24 и разделительные стенки 22, могут быть изготовлены из достаточно эластичного материала, например, полиуретана, а детали, которые должны обладать подходящими оптическими свойствами, например, емкости 20, могут быть изготовлены из материала, имеющего хорошие оптические свойства, например, акрила. Кроме того, при выборе материала можно отдавать предпочтение материалам, имеющим хорошие оптические характеристики. Например, предпочтение может быть отдано материалу, достаточно эластичному для рассматриваемого применения, но кювета 10, изготовленная из такого материала, не должна полностью восстанавливать свою форму после изгиба, то есть, во время использования кюветы, разделительные стенки 22 кюветы 10 подвергаются частичной пластической деформации. Таким образом, кювета 10 после использования остается слегка погнутой, что указывает на то, что она уже была в работе, и на то, что повторное проведение определений в такой кювете запрещено.

Как показано на Фиг.1, 2 и 3, внешние емкости 20 снабжены скобами 24. Согласно одному из примеров осуществления изобретения, скобы 24 состоят из двух выступающих элементов (выступов), которые имеют значительно меньшую длину в направлении вертикальной оси кюветы 10, чем сама кювета 10, и которые, благодаря небольшой толщине их стенок, достаточно хрупки. Выступы скобы 24 направлены наружу от верхней части внешнего края самой крайней емкости 20, и при этом выступы закруглены по направлению друг к другу. Внешний край емкости 20 означает боковой край любой из самых крайних емкостей 20, не имеющих разделительной стенки 22. Соответственно, направление наружу означает горизонтальное направление от разделительной стенки 22 к внешнему краю емкости 20.

Скобы 24, как и разделительные стенки 22, изготовлены из эластичного материала, благодаря чему они также могут изгибаться за счет эластичности вдоль самой длинной из своих сторон. Наиболее сильно эластичные свойства скоб 24 выражены в направлении ориентации кюветы 10. Таким образом, выступы скоб 24 противостоят сжатию в направлении емкости 20. Эластичность скоб 24 является важным свойством, поскольку, по причинам, описанным ниже, конструкция должна оставаться эластичной при сжатии. Также важно, чтобы скобы 24 при нажатии вовнутрь не сгибались, контактируя с емкостью 20, но сохраняли расстояние между местом крепления и емкостью 20, препятствуя передаче тепла между ее внешним краем и местом крепления. Если между местом крепления и крайними емкостями 20 кюветы 10 происходит передача тепла, то они получают больше тепла, чем остальные емкости 20. В этом случае, в кювете 10 происходит неравномерное распределение температуры, ухудшающее точность измерения.

Как видно из Фиг.1 и Фиг.2, емкости 20 кюветы 10 могут быть снабжены экранами 26, подходящими для оптического анализа. Согласно одному из примеров осуществления настоящего изобретения, экран 26 представляет собой прозрачную часть нижнего края емкости 20, которая имеет подходящие оптические свойства, требуемые для проведения анализа. Кроме того, экран 26 должен быть достаточно большим для успешного попадания луча, используемого для анализа, в пространство емкости 20, чтобы небольшие ошибки при сдвиге луча, вызываемом перемещением механических деталей анализирующего устройства, не затрудняли проведение измерений. Это позволяет проводить оптические определения таким способом, при котором образец остается в пространстве 28 для образца емкости 20, при минимальном количестве манипуляций и перемещений образца. Для снижения износа экрана 26 при эксплуатации, его чувствительная поверхность может быть слегка заглублена относительно остальной поверхности емкости 20. Эта выемка обеспечивает защиту от большинства царапающих контактов, например, от истирания во время упаковки, которое будет происходить на внешней поверхности емкостей 20, но не затронет экраны 26.

Как показано на Фиг.4, кювета 10 особенно пригодна для проведения анализов в автоматическом инкубаторе 30. Согласно предпочтительному примеру осуществления, инкубатор 30 включает нагреваемый диск 32, во внешнем периметре которого изготовлены отверстия 34, в которые помещают кюветы 10. В середине диска 32 находится подшипник, в котором расположены средства вращения (не показаны), при помощи которых диск 32 может поворачиваться на желаемый угол в нужном направлении. Средства вращения могут, например, включать сервопривод, имеющий высокую точность позиционирования, но также и значительную стоимость. Достаточная точность силовой передачи инкубатора 30 может быть достигнута при непосредственной установке диска на валу экономически эффективного и достаточно точного шагового двигателя, то есть, в этом случае, передача включает лишь самое необходимое количество движущихся деталей и минимальное количество элементов, создающих неточность при передаче. К диску 32 инкубатора 30 также присоединен загрузочный транспортер 38, вдоль которого перемещаются кюветы 10, загружаемые в отверстие 34 диска 32. В простейшем примере осуществления загрузочный транспортер 38 представляет собой канал, имеющий U-образное поперечное сечение, горизонтальный край которого по существу имеет ту же ширину, что и нижний край кюветы 10, а вертикальные края которого по существу не достигают верхнего края кюветы 10. Таким образом, кювета 10 может перемещаться при помощи скоб 24 вдоль загрузочного транспортера 38 таким образом, что скобы 24 кюветы 10 находятся на верхней поверхности вертикальных краев загрузочного транспортера 38, в то время как нижние края емкостей 20 находятся на некотором расстоянии от нижней поверхности загрузочного транспортера 38. Зазор между нижним краем емкости 20 и нижней поверхностью загрузочного транспортера 38 обеспечивает отсутствие касания между нижним краем емкости 20 и нижней поверхностью загрузочного транспортера 38, предотвращая, таким образом, истирание кюветы.

Со стороны загрузочного транспортера 38 диска 32 присоединена загрузочная воронка 40, через которую кюветы 10 загружают в отверстия 34 диска 32. Загрузку производят, используя пресс 36, нижний край которого имеет форму, позволяющую вдавливать кювету 10 в загрузочную воронку 40, в которой она принимает форму, позволяющую ей входить в отверстие 34 и оставаться в фиксированном положении в отверстии 34. Кривизна отверстия 34 совпадает с кривизной диска 32. Благодаря эластичности кюветы 10, она может быть зафиксирована в дисках 32 и отверстиях 34 различных конструкций, имеющих различные радиусы кривизны. Как показано на Фиг.5, загрузочная воронка 40 имеет такую форму, что, проходя через нее, кювета 10 приобретает кривизну, позволяющую фиксировать кювету в отверстии 34. При рассмотрении с направления введения кюветы, приемный край 42 для кюветы 10 загрузочной воронки 40 имеет выпуклую форму, и прижимаемая к нему кювета 10 изгибается, приобретая форму края диска 32. Кривизна приемного края 42 загрузочной воронки 40 может быть плоскостной, т.е. постоянной, или она может меняться в горизонтальном направлении, то есть, при рассмотрении снизу, приемный край 42 может быть плоским с верхнего края и постепенно приобретать выпуклую форму. Таким образом, конструкция кюветы 10 позволяет ей постепенно изгибаться, принимая форму приемного края 42, и при полном изгибе поверхности 42, кювета 10 немедленно принимает требуемую изогнутую форму. Загрузочная воронка 40 также снабжена скобами 24, имеющими приемные боковые края 44, к которым прижимаются внутренние края скоб 24. Таким образом, кювета 10 находится в полном контакте с загрузочной воронкой 40 только в области скоб 24, и только они подвергаются истиранию и царапанию при изгибе. Таким образом, уязвимые поверхности кюветы 10, например, экраны 26 и их окружение, не подвергаются истиранию. Кроме того, боковые края 44 загрузочной воронки снабжены направляющими 46, обеспечивающими плотное прилегание скоб 24 кюветы 10 к внутренним поверхностям боковых краев 44. При прижимании кюветы 10 к нижнему краю загрузочной воронки 40, скобы 24 кюветы вдавливаются вовнутрь, разделительные стенки 22 сгибаются, и кювета 10 плотно прижимается, изгибаясь, к приемной поверхности 42 загрузочной воронки 40, и подготавливается к плотной фиксации внутри отверстия 34 диска 32. При помощи скоб 24, кювета 10 автоматически помещается и центрируется в отверстии 34, даже если диск 32 слегка сдвинут с нужного положения. Разумеется, кювета 10 может иметь и другую конструкцию, при условии, что она имеет описанные выше качества. Например, кювета 10, показанная на Фиг.6 может представлять собой возможный пример осуществления, но лишь в том случае, если она имеет перечисленные выше свойства. Таким образом, если кювета 10 предназначена для помещения в соответствующее прямое отверстие 34 только за счет эластичных свойств имеющихся на ней скоб, кювета 10 также может быть неизогнутой, и может не принимать изогнутую форму.

Канал пресса 36 имеет такую длину, что верхний край кюветы 10 находится на требуемой высоте в тот момент, когда кювета вдавливается в отверстие 36. Соответственно, глубина вдавливания пресса 36, которая может быть запрограммирована для конкретного устройства, определяет вертикальную центровку. Как описано выше, при загрузке кюветы 10 в отверстие 34, наибольшему истирающему воздействию подвергаются скобы 24, а не другие поверхности кюветы. После фиксации кюветы 10 в отверстии 34 инкубатора 30, в пространство 28 для образца может быть помещена жидкость или другое анализируемое вещество. Следует отметить, что, как было указано выше, конструкция кюветы 10 может быть адаптирована для введения в инкубаторы 30, диски 32 и отверстия 34 которых имеют другие размеры. Таким образом, в различные устройства может быть помещена кювета 10 одного размера, что значительно снижает себестоимость определений при минимальных изменениях ее конструкции.

Диск 32 нагревают, поддерживая наиболее подходящие условия анализа, при которых тепло сообщается емкостям 20 и далее подводится к пространствам 28 для образцов через боковые поверхности отверстий 34. Емкости 20 отделены друг от друга разделительными стенками 22, и, таким образом, одинаковый температурный режим соседних емкостей 20 не нарушается. Равномерность распределения температуры повышается за счет наличия достаточно крупных скоб 24, отделяющих внешние края крайних емкостей 20 кюветы 10 от нагретых поверхностей отверстия 34.

Расположение аналитических устройств вокруг инкубатора 30 позволяет не извлекать кювету 10 из отверстия 34 во время проведения анализов. Например, оптические определения могут быть осуществлены непосредственно через экран 26 емкости 20. Таким образом, в емкость 20 кюветы 10, загружаемой с загрузочного транспортера 28 в отверстие 34 инкубатора 30, могут быть при помощи нескольких манипуляторов и смены положения диска 32 помещены требуемые вещества. В этом случае процедура анализа может включать введение порции реагента в пространство 28 для образца емкости 20 при помощи раздаточного устройства для реагента, в которое направляют вещества из хранилища для реагента. Для дозирования реагента необходимо, чтобы диск 32 инкубатора 30 был повернут в нужное положение, так чтобы емкость 20 оказалась в положении, требуемом для дозирования реагента. Основная идея установки состоит в том, что образец, находящийся в кювете 10, перемещается при помощи поворачивающегося диска 32 инкубатора в нужные положения, и при этом количество манипуляций и перемещений остается минимальным. Образцы распределяют аналогичным образом при помощи раздаточного устройства для образцов, в которое их направляют из хранилища для образцов. Реагент и образец могут быть смешаны друг с другом посредством перемещения диска 32 в положение для введения перемешивающего устройства с последующим запуском перемешивающего устройства. Содержимое емкости 20 может быть подвергнуто оптическому анализу, как описано выше, например, при помощи манипуляторного анализатора, который может засасывать образец в пространство для тестирования, измерять напряжение и сравнивать его с эталонным значением. Разбивка и программирование серии испытаний и манипуляций представляют собой операции, известные в данной области техники.

После проведения испытаний во всех используемых емкостях 20, кювета 10 может быть извлечена из отверстия 34 при помощи пресса 36, который применяли для загрузки, и который, в данном случае, выталкивает кювету 10 из отверстия 34 в отдельную приемную емкость или отверстие 50 для отходов инкубатора 30. В альтернативном варианте, пресс 36 может производить загрузку новой кюветы 10 через загрузочную воронку 40 в отверстие 34, и при этом использованная кювета 10 выталкивается новой кюветой в отдельную емкость для отходов или в отверстие 50 для отходов инкубатора 30.

1. Кювета (10) для автоматизированного инкубатора (30), отличающаяся тем, что кювета (10) включает:
- по меньшей мере две емкости (20), соединенные
- разделительной стенкой (22), количество которых составляет на одну меньше, чем количество емкостей (20), и
- скобы (24), отличающаяся тем, что
- скобы (24) расположены на самой крайней емкости (20), и тем, что
- конструкция скоб (24) позволяет изгибать кювету (10) так, что она принимает изогнутую форму.

2. Кювета (10) по п.1 отличающаяся тем, что скобы (24) благодаря своей эластичности могут изгибаться при надавливании вовнутрь.

3. Кювета (10) по п.1, отличающаяся тем, что разделительные стенки (22), благодаря своей эластичности, позволяют кювете (10) изгибаться относительно ее вертикальной оси.

4. Кювета (10) по п.3, отличающаяся тем, что разделительная стенка (22) соединяет параллельные емкости (20) вдоль не более чем половины боковой поверхности кюветы (10) для улучшения равномерности распределения температуры.

5. Кювета (10) по п.1, отличающаяся тем, что скобы (24) кюветы включают гибкие выступы, изогнутые наружу и по направлению друг к другу от верхних краев внешних углов самых крайних емкостей (20), и при этом скобы (24) обладают эластичностью в направлении ориентации и жесткостью при кручении в вертикальном направлении.

6. Кювета (10) по п.1, отличающаяся тем, что кювета (10) изготовлена из материала, обладающего, по существу, хорошими оптическими и эластичными свойствами, например акрила.

7. Кювета (10) по п.1, отличающаяся тем, что кювета (10) изготовлена из двух материалов.

8. Кювета (10) по п.7, отличающаяся тем, что материалы представляют собой отличающиеся друг от друга полимеры, из которых первый материал обладает, по существу, хорошими оптическими свойствами, а второй материал обладает, по существу, хорошими эластичными свойствами.

9. Кювета (10) по п.8, отличающаяся тем, что емкости (20) изготовлены из первого материала, а разделительные стенки (22) и/или скобы (24) изготовлены из второго материала.

10. Кювета (10) по п.8 или 9, отличающаяся тем, что первый материал представляет собой акрил.

11. Кювета (10) по п.8 или 9, отличающаяся тем, что второй материал представляет собой полиуретан.

12. Способ эксплуатации кюветы, включающий:
- транспортировку кюветы (10) при помощи скоб (24) в инкубатор (30),
- изгибание кюветы (10) с образованием изогнутой формы,
- загрузку кюветы (10) в отверстие (34) инкубатора (30), в котором она фиксируется за счет своих упругих свойств, и
- извлечение кюветы (10) из отверстия (34) после проведения анализа.

13. Способ эксплуатации кюветы по п.12, отличающийся тем, что способ включает извлечение использованной кюветы (10) из отверстия (34) путем загрузки в отверстие (34) новой кюветы (10), которая выталкивает использованную кювету (10).

14. Способ эксплуатации кюветы по п.12, отличающийся тем, что способ включает извлечение использованной кюветы (10) из отверстия (34) при помощи пресса (36).



 

Похожие патенты:

Изобретение относится к оборудованию для измельчения биологических проб, в частности для приготовления гомогенизированных проб для тестирования на патогены коровьей губчатой энцефалопатии.

Изобретение относится к установке контроля для отбора проб и определения наличия некоторых веществ, например остатков загрязнений в емкостях, например, в стеклянных или пластмассовых бутылках.

Изобретение относится к системе контроля емкостей для отбора проб и определения наличия остатков загрязнений в емкостях. .

Изобретение относится к сельскому хозяйству , в частности к ветеринарно-санитарной экспертизе меда. .

Изобретение относится к оптической системе регистрации для мониторинга полимеразной цепной реакции (ПЦР) в реальном времени в совокупности камер для образцов с помощью совокупности оптических блоков. Благодаря относительному движению оптических блоков относительно камер для образцов, можно объединять цветовое мультиплексирование и пространственное мультиплексирование для оптической регистрации патогенов в образце в процессе ПЦР и получения количественного результата. 4 н. и 10 з.п. ф-лы, 5 ил.

Настоящее изобретение относится к способу герметизации гранул (т.е. способу герметизации гранул), способу обнаружения молекулы-мишени, матрице, набору и устройству для обнаружения молекулы-мишени. Способ включает (i) этап введения гидрофильного растворителя (42), содержащего гранулы (40), (41′), в пространство (30) между (a) частью нижнего слоя (10), включающей некоторое множество лунок (13), каждая из которых способна хранить только одну гранулу (41), (41′) и которые отделены друг от друга боковой стенкой (12), имеющей гидрофобную верхнюю поверхность, и (b) частью верхнего слоя (20), обращенной к поверхности части нижнего слоя (10), на которой расположено некоторое множество лунок (13). Также способ включает (ii) этап введения гидрофобного растворителя (43) в пространство (30), причем этап (ii) выполняют после этапа (i). Техническим результатом является повышение чувствительности обнаружения молекулы-мишени с низкой концентрацией. 4 н. и 7 з.п. ф-лы, 8 ил.

Настоящее изобретение относится к картриджу для реагентов, используемому в устройстве, предназначенном для выполнения опционально клинико-химического или твердофазного иммуноферментного анализа. Настоящее изобретение относится к картриджу (10) для реагентов, используемому в устройстве, предназначенном для выполнения клинико-химического или твердофазного иммуноферментного анализа, содержащему корпус (11), в котором предусмотрена по меньшей мере одна ячейка (12, 13, 14), содержащая реагент или разбавитель, и в котором также выполнен вырез (15), причем в указанный вырез (15) корпуса (11) вставлена твердая фаза (20), с которой связывается антиген или антитело. В предлагаемом картридже (10) предпочтительно предусмотрены три ячейки (12, 13, 14). Технический результат заключается в том, чтобы обеспечить картридж для реагентов, обеспечивающий возможность определения в одной и той же пробе как иммунологических, так и клинико-химических параметров, а также в уменьшении искажений результатов анализа, а также в упрощении и снижении затрат изготовления и использования картриджа для реагентов. 6 н. и 13 з.п. ф-лы, 6 ил.

Настоящее изобретение относится к упаковке (набору) для манипулирования кюветами, которая может быть применена для загрузки кювет, упакованных в виде такой упаковки, в устройство (инструмент), а также для защиты кювет во время хранения и транспортировки и в качестве подложки для маркировок различных типов. Заявленная упаковка для манипулирования кюветами, включающая: ряд кювет (10), образованных множеством реакционных сосудов, в котором реакционные сосуды (28) расположены вблизи друг друга таким образом, что между ними имеется общая стенка, причем длинные стороны кювет (10) прямые, что позволяет располагать кюветы последовательно в виде непрерывного ряда, в котором длинные стороны последовательно расположенных кювет вплотную прилегают друг к другу, и полосу (100), зафиксированную на поверхности вблизи отверстий реакционных сосудов кювет (10), которая может быть удалена перед использованием, причем полоса соединяет ряд кювет в виде непрерывной упаковки для манипулирования, при этом на обоих концах каждой кюветы (10) имеется скобка (30), имеющая верхнюю поверхность (32), и расстояние между концами скобок определяется шириной упаковки кювет, причем скобки сконструированы для удерживания кюветы при удалении соединительной полосы и высвобождении кювет из упаковки, соединительная полоса (100) перекрывает всю ширину верхней поверхности ряда реакционных сосудов, и на соединительной полосе (100) имеется фиксирующий участок, поверхность которого имеет меньшую ширину, чем расстояние между концами скобок (30). Технический результат заключается в обеспечении максимальной гигиенической и оптической чистоты кювет, а также в предотвращении их механического повреждения, в увеличении надежности получаемых результатов измерений и обеспечении надежного функционирования кювет. 7 з.п. ф-лы, 2 ил.

Изобретение относится к системе обработки образцов для хранения и извлечения больших количеств образцов в автоматизированных библиотеках образцов. Система содержит пробирки (4). Каждая пробирка (4) имеет полое тело (41), закрытый низ (42) и открытый верх (43) для доступа к образцу, содержащемуся в пробирке (4). Система включает в себя микропланшет (1), содержащий по меньшей мере одну отдельную решетчатую вставку (2) и рамку (3). Решетчатая вставка (2) имеет множество ячеек (21). Каждая ячейка (21) содержит одну или более боковых стенок (22), ограничивающих по сторонам сквозное отверстие (201), которое имеет верхнее отверстие (202) и нижнее отверстие (203) и проходит между верхним отверстием (202) и нижним отверстием (203). Рамка (3) ограничивает по сторонам сквозное отверстие (35), имеющее размеры, обеспечивающие доступ сверху и снизу в каждую ячейку (21) прикрепленной по меньшей мере одной решетчатой вставки (2) и позволяющие перемещать такую пробирку (4) в каждую ячейку (21) и из нее через каждое из верхнего отверстия (202) и нижнего отверстия (203) сквозного отверстия (201). Рамка ограничивает по меньшей мере одну отдельную решетчатую вставку только по сторонам у внутренних стенок, которые ограничивают одно сквозное отверстие. Рамка (3) или отдельная решетчатая вставка (2) или обе из них содержат крепежные элементы (23, 31) для прочного прикрепления решетчатой вставки (2) к рамке (3). Отдельная вставка (2) содержит штабелирующие элементы (24, 25) для соединения с решетчатой вставкой (2) по меньшей мере одной другой отдельной решетчатой вставки (28) с формированием штабеля (26) из соединенных решетчатых вставок (2, 28), размещенных одна над другой. Штабелирующие элементы (24, 25) содержат по меньшей мере один упругий сцепляющий элемент (24), выступающий вниз за габариты соответствующей решетчатой вставки (2, 28) и по меньшей мере одно гнездо (25), размещенное таким образом, чтобы вместить с зацеплением упругий сцепляющий элемент (24) расположенной выше решетчатой вставки (28) штабеля (26). Штабель решетчатых вставок (26) прикреплен к рамке (3) крепежными элементами (23, 31) рамки (3) и самой верхней решетчатой вставки (2, 28) штабеля (26). Ячейки (21) решетчатых вставок (2, 28) штабеля (26) совмещены, образуя объединенные сквозные отверстия, вдоль которых может перемещаться пробирка (4). Рамка (3) имеет высоту (33) вставки, превышающую или равную полной высоте (29) штабеля (26). Обеспечивается возможность использования на стандартных микропланшетах вставок с множеством ячеек увеличенного количества с одновременным сохранением конструктивной надежности ячеек. 9 з.п. ф-лы, 19 ил.

Заявленное изобретение относится к средствам для лабораторной диагностики проб биологических материалов. Предложенное распределенное автоматизированное устройство для лабораторной диагностики содержит модули (1) для обработки биологических препаратов, перемещаемых на автоматическом конвейере, и модули (2) для осуществления взаимодействия с приборами (20) для анализа, причем оба упомянутых модуля (1, 2) присоединены к упомянутому автоматическому конвейеру, каждый из упомянутых модулей (1, 2) независим от других модулей (1, 2), причем он обеспечен своей собственной панелью (50) управления, которая позволяет ему функционировать автономно и независимо от центрального блока (5) управления, который обеспечивает рабочий список (6) для каждого узла (3, 4), который динамически считывается и обновляется упомянутым блоком (5) управления, а упомянутый модуль (1, 2) считывает и обновляет упомянутый рабочий список (6). Данное изобретение позволяет обеспечить непрерывное и плавное движение проб и предотвращение остановки всего устройства в случае неисправности одного или нескольких модулей. 4 з.п. ф-лы, 2 ил.
Наверх