Способ извлечения никеля

Изобретение относится к способу извлечения никеля из его растворов цементацией. Способ включает цементацию никеля путем пропускания раствора соли никеля через порошок восстановленного железа. Пропускание раствора ведут со скоростью 0,5-1,0 мл/мин. При этом реакционную смесь подвергают воздействию СВЧ излучения частотой 7,5-10,5 ГГц. Процесс ведут при температуре 20-30°C. Раствор соли никеля неоднократно пропускают через порошок восстановленного железа с одновременным воздействием СВЧ излучения. Техническим результатом является повышение степени извлечения никеля из растворов. 2 з.п. ф-лы, 4 ил.

 

Изобретение касается способа извлечения никеля из его растворов цементацией при пропускании СВЧ излучения через реакционную смесь и может быть использовано в гидрометаллургии.

В настоящее время переработку высокожелезистых никель содержащих руд, в которых содержание железа (III) достигает 50%, а никеля 2-3%, традиционным гидрометаллургическим способом не проводят из-за невозможности разделения в растворе никеля и железа (III), находящегося в преобладающем количестве (Алкацев М.И. Процессы цементации в цветной металлургии. - М.: Металлургия, 1981). При попытке разделения железа и никеля гидролитическим способом образуется аморфный, трудно фильтрующийся гидрооксид железа(III), который занимает весь объем пульпы. Потери никеля с осадком составляют до 60%.

Поэтому способ извлечения никеля из растворов его солей цементацией восстановленным железом при пропускании СВЧ излучения через реакционную смесь является актуальным. При этом получаемый в результате цементации железо-никелевый скрап с определенным молярным или массовым соотношением в нем никеля и железа может быть использован при производстве легированных сталей с заданными характеристиками. Отделенный от скрапа высококонцентрированный раствор железа (III) можно использовать для производства гаммы железооксидных пигментов.

Из анализа литературных источников следует, что ранее исследование процесса цементации никеля восстановленным железом учеными не проводилось. Это связано с тем, что для осуществления процесса цементации необходимо, чтобы разность потенциалов превышала 0,3 В (Дроздов Б.В. Кинетика процесса цементации // Журнал прикладной химии. - 1949. - Т.22. - С.483; Морозенко Э.С, Антонов С.П., Городынский А.В. Кинетика контактного обмена меди и железа в сульфатных электролитах // Украинский химический журнал. - 1975. - Т.41. - 1127), а разность потенциалов между никелем (-0,25 В) и железом (-0,44 В) очень маленькая (меньше 0,3 В) и технологический выход данного процесса очень невысокий (Алкацев М.И. Процессы цементации в цветной металлургии. - М.: Металлургия, 1981).

Данные о возможности применения микроволнового излучения для ускорения процесса цементации никеля в литературе отсутствуют.

Микроволновое или сверхвысокочастотное (СВЧ) излучение - это электромагнитные волны длиной от одного миллиметра до одного метра. Микроволновое излучение появляется в результате преобразования СВЧ-излучателем электрической энергии в сверхвысокочастотное электрическое поле частотой 2450 Мегагерц (МГц) или 2,45 Гигагерц (ГГц), при попадании в которое молекулы и атомы вещества начинают вращаться с частотой в миллионы раз в секунду.

Задачей настоящего изобретения является повышение степени извлечения никеля из растворов цементацией восстановленным железом при пропускании СВЧ излучения через реакционную смесь.

СВЧ излучение используют для более полного извлечения никеля из растворов его солей методом цементации.

Реакция цементации является гетерогенной, поэтому для ее ускорения необходимо, чтобы фактор ускорения воздействовал исключительно на поверхность, где протекает реакция. Таким свойством обладает СВЧ-излучение.

При действии СВЧ излучения разогревается не весь металл, а только его поверхность из-за возникновения скин-эффекта - уменьшения амплитуды электромагнитных волн по мере их проникновения вглубь проводящей среды. В случае, когда порошок металла - цементатора (железа) погружен в раствор соли, разогревается только его поверхность, что в свою очередь ускоряет процесс цементации.

Данный способ имеет следующие преимущества: низкая себестоимость и большая энергоемкость СВЧ излучения, направленность энергии исключительно на поверхность, где протекает реакция.

Предлагаемый способ извлечения никеля поясняется чертежами, представленными на фиг.1-4.

На фиг.1 представлены результаты опытов в таблице 1, на фиг.2 - схема используемого прибора генератора высокочастотного Г4-83, на фиг.3 - вид прибора сверху, на фиг.4 - вид прибора спереди.

На фиг.2, 3, 4 позиции обозначают следующее: 1 - генератор СВЧ; 2 - двойной Т-образный волноводный тройник; 3 - аттенюаторы; 4, 5 - волноводные датчики с контрольным и анализируемым образцами; 6, 7 - неотражающие нагрузки; 8 - детектор; 9 - усилитель; 10 - показывающий прибор; а, б - фланцы крепления измерительного прибора к генератору и детектору соответственно.

Был проведен эксперимент по воздействию СВЧ излучения на процесс цементации никеля восстановленным железом на указанном выше приборе (фиг.1, 2) мощностью 1 Вт. Процесс цементации целесообразно проводить при температуре 20-30°C и скорости пропускания раствора с извлекаемым никелем через порошок восстановленного железа 0,5-1,0 мл/мин. Параллельно были проведены серии опытов, температура их проведения 25°C. Сущность опытов заключалась в следующем. Одинаковые стеклянные трубки диаметром 4 мм наполняли порошком железа. Через все трубки со скоростью 1,0 мл/мин пропускали раствор сульфата никеля с молярной концентрацией 0,100 М. Часть трубок подвергали воздействию СВЧ излучения частотой 7,5-10,5 ГГц, а вторую не облучали. В полученных растворах определяли концентрацию остаточного никеля спектрофотометрическим методом в виде комплекса с диметилглиоксимом. Результаты опытов приведены в таблице 1 (фиг.1). В растворах, которые не подвергались воздействию СВЧ излучения, средняя концентрация никеля оказалась равной 0,074 М. В растворах, которые подвергались воздействию СВЧ излучения, средняя концентрация никеля составила 0,042 М. После двухкратного пропускания раствора через порошок железа с воздействием СВЧ излучения средняя концентрация никеля в растворе составила 0,025 М, без воздействия СВЧ излучения - 0,074 М. После трехкратного пропускания раствора через порошок железа с воздействием СВЧ излучения средняя концентрация никеля составила 0,015 М, без воздействия СВЧ излучения - 0,074 М. Полученные данные свидетельствуют о том, что СВЧ-излучение положительно влияет на кинетику процесса. Это позволяет использовать цементацию для разделения в растворе никеля и железа, получения железо-никелевого скрапа заданного состава и получения концентрированных растворов железа(III) для производства железооксидных пигментов.

1. Способ извлечения никеля из раствора соли никеля, включающий цементацию никеля из раствора соли никеля восстановленным железом, отличающийся тем, что цементацию ведут путем пропускания раствора соли никеля через порошок восстановленного железа со скоростью 0,5-1,0 мл/мин, при этом реакционную смесь подвергают воздействию СВЧ излучения частотой 7,5-10,5 ГГц.

2. Способ по п.1, отличающийся тем, что процесс ведут при температуре 20-30°C.

3. Способ по п.1, отличающийся тем, что раствор соли никеля пропускают через порошок восстановленного железа с одновременным воздействием СВЧ излучения неоднократно.



 

Похожие патенты:
Изобретение относится к металлургии цветных металлов, в частности к извлечению меди из бедных растворов. Способ включает осаждение меди контактированием раствора с медистым клинкером.
Изобретение относится к способу получения золота из мелкодисперсных частиц золотосодержащей породы. .

Изобретение относится к области гидрометаллургии молибдена и может быть использовано для извлечения, концентрирования и очистки молибдена от элементов-спутников (Fe3+, Cu2+, Zn2+, Ni2+, Co2+ , Al3+, Sn4+, Sb3+, РЗЭ 3+ и др.) при переработке различных жидких и твердых молибденсодержащих отходов и промпродуктов.

Изобретение относится к способу выделения способных к поглощению водорода металлов из растворов, а также к установке для его осуществления. .
Изобретение относится к металлургии благородных металлов, а точнее - к способам извлечения ценных компонентов из цинксодержащих золотосеребряных и/или серебряно-золотых цементатов с повышенным содержанием серебра.

Изобретение относится к области металлургии цветных и благородных металлов, в частности к способам выделения благородных металлов из отходов, в том числе аффинажного производства.
Изобретение относится к области металлургии цветных и благородных металлов, в частности к способам извлечения серебра из концентрированных хлоридных растворов. .

Изобретение относится к гидрометаллургии благородных и редких металлов, в частности к процессам извлечения золота из растворов с низкой концентрацией в присутствии ионов других металлов, например осветленных растворов золотоизвлекательных заводов, рассолов калийного производства, геотермальных вод, вод соленых озер и морской воды.

Изобретение относится к способу переработки сурьмянистых сплавов с содержанием благородных металлов более 0,1%. .

Изобретение относится к устройству для цементации золота из раствора с вращением потока раствора. .
Изобретение относится к области металлургии, в частности к восстановлению никеля из сульфидного сырья, и может быть использовано при металлизации предварительно обогащенного материала, содержащего 60-70% сульфидного никелевого концентрата разделения файнштейна.

Изобретение относится к области получения цветных металлов, в частности, никеля из сульфидных руд окислительным выщелачиванием с последующей очисткой раствора выщелачивания и электроэкстракцией.

Изобретение относится к извлечению никеля экстракцией из водных кислых растворов в присутствии железа или цветных металлов. .

Изобретение относится к способу переработки никелевого штейна. .
Изобретение относится к способу электрохимической переработки отходов жаропрочных никелевых сплавов, содержащих рений, вольфрам, тантал и другие ценные металлы, входящие в состав перерабатываемого сплава.
Изобретение относится к гидрометаллургической переработке силикатных руд, отвалов, техногенных продуктов, преимущественно силикатных никелевых руд. .
Изобретение относится к извлечению цветных металлов, в частности меди, никеля и кобальта, из металлургических отходов, содержащих эти цветные металлы в степени окисления, большей или равной нулю.

Изобретение относится к способу извлечения металлов из сульфидного минерального сырья. .

Изобретение относится к выщелачиванию силикатных никель-кобальтовых руд методом кучного выщелачивания или методом подземного выщелачивания на месте их залегания с использованием продуктов неполного окисления серы.
Изобретение относится к области вторичного получения цветных металлов. Способ извлечения кадмия и никеля из отработанных щелочных аккумуляторов и батарей включает химическую обработку отработанных щелочных аккумуляторов и батарей с хлоридом аммония путем пропускания через них конденсированных паров нагретого раствора аммиака в воде с растворением оксидов кадмия и никеля и образованием растворов аммиакатов кадмия и никеля, выделения растворов аммиакатов кадмия и никеля и нагревания их с разложением на гидроксиды кадмия и никеля, осаждения гидроксидов кадмия и никеля и отделения полученного осадка от раствора, нагревания раствора до испарения, конденсирования его и пропускания полученного конденсата через оставшуюся массу. Отделяемый от осадка раствор при химической обработке проверяют на наличие в нем аммиакатов кадмия и/или никеля путем пробного воздействия на него сульфидами натрия или калия, а упомянутую проверку повторяют до отсутствия в растворе аммиакатов кадмия и/или никеля. Изобретение обеспечивает эффективное выделение гидроксидов кадмия и никеля из отработанных аккумуляторов и батарей, а также позволяет повысить экологическую безопасность процесса. 4 з.п. ф-лы, 2 пр.
Наверх