Подводная эксплуатационная платформа для добычи нефти и газа

Изобретение относится к сооружению технологических комплексов, предназначенных для обустройства морских глубоководных нефтегазовых месторождений, работающих в экстремальных условиях, и может быть применено на глубоководных акваториях, на которые возможен приход айсбергов или плавучих ледовых полей. Платформа содержит опорное основание погружного типа, при этом энергетический блок-модуль платформы выполнен в виде автоматизированной атомной электростанции, предназначенной для энергетического обеспечения, а блоки-модули выполнены с компрессорным и насосным оборудованием, с автоматизированной системой управления, с водолазным и подводно-техническим оборудованием, которые предназначены для первичной подготовки продукции скважин к транспортировке до центральной технологической платформы и/или до морского отгрузочного причала с емкостью для хранения продукции скважин. Причем вся платформа в сборе выполнена близкой к форме круга и/или многоугольника, в центре которого расположен устьевой модуль со скважинами с равномерно установленными между собой устьями скважин. Технический результат заключается в повышении надежности строительства и эксплуатации подводных эксплуатационных платформ с одновременным обеспечением расположения скважин внутри объекта. 7 з.п. ф-лы, 3 ил.

 

Изобретение относится к освоению подводных месторождений полезных ископаемых, преимущественно жидких и газообразных, а именно, к сооружению технологических комплексов, предназначенных для обустройства морских глубоководных нефтегазовых месторождений и работающих в экстремальных условиях и может быть использовано на глубоководных акваториях, на которые возможен приход айсбергов или плавучих ледовых полей или же замерзающих на длительный срок, и где открыты промышленные запасы углеводородов, освоение которых в настоящее время может осуществляться (например, на Штокманском газоконденсатном месторождении) преимущественно путем создания весьма дорогих по стоимости и сложности их создания и эксплуатации подводных добычных комплексов (далее ПДК).

Известен морской технологический комплекс, предназначенный для освоения глубоководных нефтегазовых месторождений, включающий ряд морских стационарных платформ, подводные донные комплексы, подводные внутрипромысловые и магистральные трубопроводы, емкости для хранения продукции скважин и отгрузочные установки, причем, по крайней мере, одна из платформ выполнена в подводном исполнении и закреплена ко дну опорным блоком, верхний габарит которого расположен ниже уровня воды на величину наибольшего габарита прохождения подводной части айсберга (патент РФ 2238365, по кл. Е02В 17/00 от 25.07.2003 г.).

Недостатком этого морского технологического комплекса является необходимость производства сложных и дорогостоящих работ по отсоединению и отводу в безопасную и защищенную ото льда и айсбергов зону верхнего подвижного модуля с временной остановкой эксплуатации морской платформы с соответствующими экономическими потерями.

Наиболее близким по технической сути и достигаемому результату является морской технологический комплекс, включающий подводные внутрипромысловые и магистральные трубопроводы, емкости для хранения продукции скважин и отгрузочные установки, при этом, часть платформ выполнена в подводном и ледозащитном исполнении с закреплением ко дну, например, опорным блоком, верхний габарит которого расположен ниже уровня воды на величину наибольшего габарита прохождения подводной части айсберга, а опорные блоки платформ в подводном исполнении выполняют с блок-модулями, служащими для размещения персонала в подводных воздушных камерах, предназначенных для осуществления периодических работ по техническому обслуживанию, ремонту и обследованию конструкций и технологического оборудования, автоматизированных систем управления и контроля, при этом блок-модуль энергетической платформы выполнен с автоматизированной атомной электростанцией и предназначен для энергетического обеспечения технологических подводных платформ, а блоки-модули технологических платформ выполнены с сепарационными установками, с компрессорным и насосным оборудованием, с автоматизированной системой управления и с водолазным и подводно-техническим оборудованием, предназначенным для первичной подготовки продукции скважин к транспортировке до центральной технологической платформы и/или до морского отгрузочного причала с емкостью для хранения продукции скважин (патент РФ 2383683, по кл. Е02В 17/00 от 30.09.2008 г.).

Недостатком подобных комплексов является необходимость их защиты от ледовых воздействий, а также не исключена вероятность их столкновения с айсбергами, что приводит к существенному наращиванию их металлоемкости и материалоемкости, а с возрастанием глубин эти нефтегазовые месторождения вряд ли могут быть освоены традиционным образом, в особенности, когда к тому же возрастает их удаленность от берега.

Также недостатком этого комплекса является жесткая его фиксация на заранее рассчитанной в соответствии со статистическими данными глубине от спокойной поверхности моря, (надежность которых по своей природе не может быть абсолютно точной).

Кроме того, по завершению разработки месторождения утилизация стационарной платформы (тем более в подводном исполнении) представляет собой определенные трудности и затраты на ее демонтаж и могут оказаться весьма высокими (причем, как известно затраты на утилизацию крупных морских стационарных сооружений нефтегазового профиля в Мексиканском заливе и на Северном море всего лишь в 2-5 раз ниже, чем затраты, понесенные в свое время на их создание).

Целью настоящего изобретения является создание подводного плавучего средства, позволяющего при встрече с подводной частью айсберга плавно и мягко его огибать и возвращаться в исходное положение после его прохождения с одновременным обеспечением расположения скважин внутри объекта и повышением надежности строительства и эксплуатации ПЭП.

Поставленная цель достигается тем, что в подводной эксплуатационной платформе (далее ПЭП) для морской добычи нефти и газа, включающей опорное основание погружного типа (площадку палубного типа, под которой устанавливаются балластные емкости предназначенные для погружения на заданную глубину, а также для удержания всего комплекса в горизонтальном положении), на котором секторально (с целью большей компактности и придания овальности всей конфигурации ПЭП) устанавливают с помощью фиксирующих соединений функциональные изолированные (герметичные) блок-модули, служащие для размещения персонала и для осуществления периодических работ по техническому обслуживанию, ремонту и обследованию конструкций и технологического оборудования, автоматизированных систем управления и контроля, при этом энергетический блок-модуль платформы выполнен в виде автоматизированной атомной электростанции, предназначенной для энергетического обеспечения, а блоки-модули выполнены с компрессорным и насосным оборудованием, с автоматизированной системой управления, с водолазным и подводно-техническим оборудованием, которые предназначены для первичной подготовки продукции скважин к транспортировке до центральной технологической платформы и/или до морского отгрузочного причала с емкостью для хранения продукции скважин, причем вся платформа в сборе выполнена близкой к форме круга/многоугольника, в центре которого расположен устьевой модуль со скважинами с равномерно установленными между собой устьями скважин.

Кроме этого, поставленная цель достигается также тем, что платформа выполнена замкнутой (предпочтительно овальной) формы и состоит из нескольких блок-модулей, соединенных между собой и с двумя круговыми коридорами (внутренним и внешним), предназначенными для сообщения между блок-модулями, а также для подъема/спуска персонала с помощью, например, мобильных герметичных капсул.

Кроме этого, поставленная цель достигается также тем, что все блок-модули выполнены герметичными (с автономной системой погружения - с целью более свободного перемещения в вертикальных направлениях) и изолированными друг от друга (но сообщающимися с обоими круговыми коридорами: внутренним и внешним) и установлены с возможностью при необходимости извлечения на поверхность для ремонта или замены.

Кроме этого, поставленная цель достигается также тем, что все модули выполнены с собственной балластной системой, предназначенной для погружения и всплытия.

Кроме этого, поставленная цель достигается также тем, что платформа снабжена вертикальной выдвижной трубой для подачи/вытяжки атмосферного воздуха и снабжена в верхней ее части модулем плавучести, выполненным, например, в виде полого тора, опоясывающего выдвижную трубу.

Кроме этого, поставленная цель достигается также тем, что вертикальная выдвижная труба снабжена продольной перегородкой для обеспечения приточно-вытяжной вентиляции (в этой трубе возможна также установка лифта для перемещения персонала).

Кроме этого, поставленная цель также достигается тем, что платформа снабжена подъемным механизмом, предназначенным для ее опускания и подъема на безопасную глубину.

Кроме этого, поставленная цель достигается тем, что все скважины защищены индивидуальными водоотделяющими колоннами, на концах которых установлены шарнирные устройства трубчатого типа, предназначенные для обеспечения отклонения всех устьев скважин и возврата в исходное положение после прохождения айсберга.

Предложенное техническое решение поясняется чертежами, где:

на фиг.1 изображен общий вид подводной эксплуатационной платформы;

на фиг.2 - вид сверху на фиг.1;

на фиг.3 - схема процесса бурения скважин с расположением устьев непосредственно в подводном объекте.

1 - подводная эксплуатационная платформа (ПЭП);

2 - опорное основание;

3 - опорная площадка;

4 - натяжные связи (опоры);

5 - морское дно;

6 - устьевой модуль;

7 - устье скважины;

8 - блок-модуль;

9 - круговой внутренний коридор;

10 - круговой внешний коридор;

11 - выходная шлюзовая камера;

12 - мобильная герметичная капсула;

13 - подводная опорная конструкция;

14 - модуль плавучести подводной опорной конструкции;

15 - индивидуальная водоотделяющая колонна;

16 - шарнирное устройство;

17 - вертикальная выдвижная труба;

18 - модуль плавучести вертикальной выдвижной трубы.

Подводная эксплуатационная платформа (ПЭП) 1 (см. Фиг.1) для морской добычи нефти и газа состоит из опорного основания 2 погружного типа, размещенного на опорной площадке 3 и натяжных «связей» (опор) 4. Опоры 4 осуществляют крепление опорного основания 2 и опорной площадки 3 к морскому дну 5 любым известным способом (например, системой якорей, установленных на дне заранее). Опорное основание 2 в плане (см. Фиг.2) представляет собой круг и/или многоугольник, в центре которого расположен устьевой модуль 6 с устьями скважин 7. Устья скважин 7 расставлены на равных между собой расстояниях. Вокруг устьевого модуля 6 по периметру секторально расположены блок-модули 8, соединенные между собой для сообщения двумя круговыми коридорами (внутренним и внешним) 9 и 10. Круговой внутренний коридор 9 примыкает к устьевому модулю 6. Круговой внешний коридор 10 проходит по большому радиусу от центра устьевого модуля вокруг всех блок-модулей 8. В обоих коридорах 9, 10 установлены по сторонам выходные шлюзовые камеры 11, снабженные мобильными герметичными капсулами 12 для перемещения персонала и оборудования из ПЭП. По обоим круговым коридорам 9, 10 проложены все необходимые технологические трубопроводы, линии связи, управления и т.п. Количество блок-модулей 8 на ПЭП 1 определяется из условий эксплуатации для размещения энергетического, технологического модулей, модуля системы кондиционирования и очистки воздуха, насосного, компрессорного, вспомогательного, жилого модулей и других. Блок-модули 8 выполнены герметичными и изолированными друг от друга, и служат для размещения персонала и оборудования. При этом каждый модуль 8 обладает определенной автономностью управления и снабжен собственной балластной системой, предназначенной для вертикального перемещения вплоть до всплытия на поверхность. Опорная площадка 3 включает подводную опорную конструкцию 13, обладающую собственным избыточным модулем плавучести 14 выполненным в виде тора, секционированного танками с целью удержания всего комплекса в горизонтальном положении, поскольку все блок-модули могут существенно различаться по своей массе. Натяжные «связи» (опоры) 4 могут быть выполнены вертикальными и/или наклонными в виде многозвенных цепей и/или канатов и/или телескопических элементов, например трубчатых. Все скважины 7 защищены индивидуальными водоотделяющими колоннами 15, на концах которых установлены шарнирные устройства трубчатого типа 16. Подводная эксплуатационная платформа (ПЭП) дополнительно может быть оснащена вертикальной выдвижной трубой 17, снабженной в верхней части модулем плавучести 18. Модуль плавучести 18 выполнен в виде, например, полого тора, опоясывающего выдвижную трубу.

На место установки ПЭП сначала буксируют опорную площадку 3. Благодаря собственному избыточному модулю плавучести 14 эту площадку 3 погружают на расчетную глубину и крепят натяжными опорами 4 на морском дне 5. Далее в зависимости от условий при помощи кранового судна или автономно спускают и устанавливают на опорную площадку 3 опорное основание 2. Секционированный модуль плавучести подводной опорной конструкции 14 способствует сохранению равновесия (балластировки) в процессе замены и/или отсутствия одного или нескольких блок-модулей 8.

Бурение скважин производят:

- через представленную (заявленную) в данной заявке ПЭП 1 при помощи, например, полупогружной буровой установки/или (когда будет освоена технология подводного бурения) через один или несколько блок-модулей 8, которые будут укомплектованы всем необходимым буровым оборудованием.

При этом оканчивание (фонтанная арматура, уплотнение устья скважин и т.п.) располагается в устьевом модуле 6.

После завершения бурения всех скважин:

- полупогружная буровая установка отсоединяется от ПЭП, уходит по назначению на следующее месторождение/один/несколько блок-модулей 8, который(ми) был укомплектован необходимым буровым оборудованием, отсоединяют и уводят в док, а вместо него приходит другой блок-модуль с необходимым эксплуатационным оборудованием или уравновешивается модулем плавучести подводной опорной конструкции 14. После этого заявленный объект ПЭП начинает функционировать самостоятельно. При прохождении айсберга шарнирные устройства 16, установленные на индивидуальных водоотделяющих колоннах 15, обеспечивают отклонение всех устьев скважин и возврат в исходное положение. Вертикальная выдвижная труба 17 предназначена для подачи и/или вытяжки атмосферного воздуха, а также в качестве лифта для перемещения персонала. Предполагается, что ПЭП будет содержать все системы: кондиционирования и очистки воздуха, освещения, теплоснабжения, санитарно-бытового обеспечения аналогичны соответствующим системам атомной подводной лодки (АЛЛ), например, проект 941 («Акула»).

Итак, после завершения бурения (фиг.3) всех скважин полупогружная буровая установка отсоединяется от подводной платформы, уходит по назначению на последующие месторождения, и наш объект (ПЭП) начинает функционировать самостоятельно (фиг.1), т.е. наступает длительный этап эксплуатации (т.е. разработки месторождения). Необходимо еще раз отметить, что все блок-модули будут присоединяться к общему круговому коридорному отсеку, с помощью которого будет обеспечена возможность перемещения персонала в необходимые помещения.

Основной целью заявленного технического решения является создание такого подводного плавучего средства, которое бы позволило располагать скважины внутри объекта, в отличие от ставшей традиционной на больших глубинах устанавливать скважины на морском дне, которые практически недоступны водолазам, вследствие чего подводные устья скважин оснащают дорогой управляемой аппаратурой, далеко не всегда отличающейся надежностью и ремонтопригодностью (особенно в подводных условиях). В предлагаемом объекте фонтанная арматура всех устьев скважин, как и любое оборудование, установленное в блок-модулях, в любое время доступны для профилактики и проведения ремонта.

Реализация предложенного технического решения позволит повысить надежность строительства и эксплуатации подводных эксплуатационных платформ с одновременным обеспечением расположения скважин внутри объекта и обеспечить при встрече с подводной частью айсберга плавно и мягко его огибать и возвращаться в исходное положение после его прохождения.

1. Подводная эксплуатационная платформа для морской добычи нефти и газа, состоящая из опорного основания погружного типа, размещенного на опорной площадке, и натяжных опор; опорное основание в плане представляет собой круг и/или многоугольник, в центре которого расположен устьевой модуль с устьями скважин; вокруг устьевого модуля по периметру секторально расположены блок-модули, соединенные между собой для сообщения двумя, внутренним и внешним, круговыми коридорами; в коридорах установлены по сторонам выходные шлюзовые камеры, снабженные мобильными герметичными капсулами для перемещения персонала и оборудования; блок-модули выполнены герметичными и изолированными друг от друга и служат для размещения персонала и для осуществления периодических работ по техническому обслуживанию, ремонту и обследованию конструкций и технологического оборудования, автоматизированных систем управления и контроля, при этом энергетический блок-модуль платформы выполнен в виде автоматизированной атомной электростанции, предназначенной для энергетического обеспечения, а блоки-модули выполнены с компрессионным и насосным оборудованием, с автоматизированной системой управления, с водолазным и подводно-техническим оборудованием, которые предназначены для первичной подготовки продукции скважин к транспортировке до центральной технологической платформы и/или до морского отгрузочного причала с емкостью для хранения продукции скважин; каждый блок-модуль обладает автономностью управления и снабжен собственной балластной системой, предназначенной для вертикального перемещения вплоть до всплытия на поверхность; опорная площадка включает подводную опорную конструкцию, обладающую собственным избыточным модулем плавучести, выполненным в виде тора.

2. Подводная эксплуатационная платформа по п.1, отличающаяся тем, что устья скважин расставлены на равных между собой расстояниях, при этом все скважины защищены индивидуальными водоотделяющими колоннами, на концах которых установлены шарнирные устройства трубчатого типа.

3. Подводная эксплуатационная платформа по п.1, отличающаяся тем, что круговой внутренний коридор примыкает к устьевому модулю, а круговой внешний коридор проходит по большому радиусу от центра устьевого модуля вокруг всех блок-модулей.

4. Подводная эксплуатационная платформа по п.1, отличающаяся тем, что по обоим круговым коридорам проложены все необходимые технологические трубопроводы, линии связи, управления.

5. Подводная эксплуатационная платформа по п.1, отличающаяся тем, что натяжные опоры могут быть выполнены вертикальными и/или наклонными в виде многозвенных цепей, и/или канатов, и/или телескопических элементов.

6. Подводная эксплуатационная платформа по п.1, отличающаяся тем, что дополнительно может быть оснащена вертикальной выдвижной трубой, снабженной в верхней части модулем плавучести, при этом модуль плавучести выполнен в виде полого тора, опоясывающего выдвижную трубу.

7. Подводная эксплуатационная платформа по п.1, отличающаяся тем, что она снабжена подъемным механизмом, предназначенным при необходимости для ее опускания и подъема на безопасную глубину.

8. Подводная эксплуатационная платформа по п.1, отличающаяся тем, что все скважины защищены индивидуальными водоотделяющими колоннами, на концах которых установлены шарнирные устройства трубчатого типа, предназначенные для обеспечения отклонения всех устьев скважин и возврата в исходное положение после прохождения айсберга.



 

Похожие патенты:

Изобретение относится к эксплуатации морских месторождений углеводородов и предназначено для технического обслуживания месторождений с множеством мест расположения подводных скважин (ПС), имеющих, каждое, одну или несколько ПС.

Изобретение относится к гидротехническому строительству сооружений, используемых на акваториях длительно замерзающих морей, на которых освоение углеводородов с поверхности моря недоступно. Подводное сооружение (ПС) работает на глубине в диапазоне от 100 до 120 м от уровня моря. При этом ПС состоит из опорно-несущего подводного комплекса и бурового комплекса или добычного комплекса. Опорно-несущий подводный комплекс включает в себя опорно-несущую плиту и устьевой комплекс. Опорно-несущая плита, в свою очередь, содержит устьевой блок, энергетический блок, жилой блок, а также блок жизнеобеспечения, внутренний и внешний круговые коридоры, радиальные переходы, секционированные балластные понтоны круговой формы и движители. Удержание подводного сооружения в вертикальном положении на заданной точке на весь период пребывания обеспечивается за счет регулирования заполнением секций балластных понтонов, при этом удержание в горизонтальной плоскости осуществляется за счет работы движителей. Внутренняя поверхность корпуса бурового комплекса и добычного комплекса конгруэнтна наружной поверхности устьевого комплекса, а нижняя поверхность корпуса бурового комплекса и добычного комплекса конгруэнтна верхней поверхности опорно-несущей плиты. Технический результат заключается в повышении безопасности, надежности и качества проводимых работ. 4 н. и 9 з.п. ф-лы, 5 ил.

Предложено эксплуатационное основание (1), выполненное с возможностью подключения разветвленного соединения к эксплуатационному манифольду (10) для обеспечения возможности подключения к эксплуатационному манифольду (10) по меньшей мере двух эксплуатационных соединительных перемычек от соответствующей подводной устьевой арматуры. Эксплуатационное основание выполнено в виде модернизированного модуля, выполненного с возможностью подключения к одиночному внутреннему патрубку (11), размещенному в эксплуатационном манифольде (10). Эксплуатационное основание содержит раму (2), трубопровод (3) по меньшей мере один соединитель (4) и направляющие средства (9). Рама (2) выполнена с возможностью размещения на опорном устройстве (12). Опорное устройство (12) проходит от эксплуатационного манифольда (10). Трубопровод (3) формирует разветвление, оканчивающееся соединителем (4) и по меньшей мере двумя внешними патрубками (6). Изобретение обеспечивает подключение к манифольду двух эксплуатационных перемычек, и уменьшает время нахождения буровой установки на скважине. 8 з.п. ф-лы, 4 ил.

Изобретение относится к подводной добыче углеводородов, в частности к системам для соединения основного промыслового объекта и подводных скважин. Система содержит основной промысловый объект, множество подводных скважин, соединенных последовательно множеством углеводородных трубопроводов с основным промысловым объектом, подводную трубопроводную сеть текучей среды, соединенную с каждой подводной скважиной, сеть электроснабжения и передачи данных для передачи электроэнергии постоянного тока и данных, оперативно соединенную с каждой подводной скважиной. Сеть электроснабжения и сеть данных отделены от подводной трубопроводной сети текучей среды и не предназначены для перемещения текучей среды. Система включает, по меньшей мере, один блок разветвления между основным промысловым объектом и распределителем. Распределитель предназначен для уменьшения напряжения электроэнергии, получаемой от блока разветвления, перед направлением электроэнергии на подводную скважину. Блок разветвления предназначен для приема электрических кабелей и кабелей данных от основного промыслового объекта и направления отдельных электрических кабелей и кабелей данных на множество распределителей. Расширяются функциональные возможности системы. 8 з.п. ф-лы, 5 ил.

Группа изобретений относится к подводным сооружениям и предназначена для подводного освоения газовых месторождений и сжижения природного газа в акваториях Северного Ледовитого океана, которые длительное время или же постоянно покрыты трудно проходимыми для арктических ледоколов ледовыми полями и исключают возможность добычи и транспорта скважинного флюида традиционным способом. Технический результат - повышение безопасности и качества проводимых работ в процессе подводного освоения газовых месторождений и подводного сжижения природного газа. Подводный комплекс для подводного освоения газовых месторождений и сжижения природного газа предназначен для круглогодичной работы на глубине в диапазоне от 100 до 120 м от уровня моря. Этот комплекс включает буродобывающее подводное сооружение, подводный жилой блок с центром управления, подводную атомную электростанцию, подводный завод для сжижения природного газа, подводный резервуар приема/хранения жидкого азота, подводный резервуар приема/хранения/отгрузки сжиженного природного газа и подводный танкер-газовоз. Буродобывающее подводное сооружение обладает возможностью круглогодичного подводного бурения скважин и их эксплуатации с очисткой скважинного флюида от мехпримесей. Буродобывающее подводное сооружение соединено с заводом для сжижения природного газа связующей гибкой трубой с длиной, обеспечивающей охлаждение природного газа в арктической среде моря до заданной величины. Подводный завод для сжижения природного газа выполнен с возможностью его сжижения путем каскадного ступенчатого последовательного охлаждения до температуры конденсации в противотоке с жидким азотом и обеспечения выхода отработанного жидкого азота по выхлопной гибкой трубе в атмосферу и/или под лед. Подводная атомная электростанция выполнена с возможностью обеспечения электроэнергией по гибким плавучим кабелям всех подводных сооружений. 3 н. и 4 з.п. ф-лы, 2 ил.

Группа изобретений относится к подводной добыче углеводородов, в частности к системам для соединения основного промыслового объекта и подводных скважин. Система содержит: основной промысловый объект, множество подводных скважин, соединенных последовательно посредством множества углеводородных трубопроводов с основным промысловым объектом, множество подводных шлангокабелей для передачи электроэнергии, передачи данных, гидравлической текучей среды и рабочих текучих сред на подводную скважину, подводную трубопроводную сеть текучей среды, соединенную с каждой подводной скважиной, сеть электроснабжения и сеть передачи данных для передачи электроэнергии постоянного тока и данных, оперативно соединенные с каждой подводной скважиной для снабжения каждой подводной скважины службами электроснабжения и передачи данных. Сеть электроснабжения электроэнергии постоянного тока и сеть передачи данных отделены от подводной трубопроводной сети текучей среды и не предназначены для передачи текучей среды. Расширяются функциональные возможности за счет возможности передачи электроэнергии на расстояния, существенно превышающие те, которые доступны в настоящее время, повышается гибкость системы. 2 н. и 4 з.п. ф-лы, 5 ил.

Изобретение относится, в общем, к манифольдам гидравлических коробок насосов и, конкретнее, к модульным гидравлическим коробкам насосов высокого давления с несколькими камерами. Изобретением созданы способ и система установки подводной фонтанной арматуры скважины, содержащие: создание котлована, заглубленного в морское дно на скважинной площадке углеводородного месторождения; перемещение плавучей морской платформы, соединенной с фундаментом, причем платформа имеет верхнее строение и кессон с проходящими вниз стенами, образующими внутренний объем между стенами, причем фундамент соединяется со стенами кессона, и в стенах кессона создается устройство регулирования плавучести; спуск морской платформы с фундаментом в котлован; бурение с верхнего строения в углеводородный коллектор под фундаментом для строительства скважины; установку фонтанного оборудования скважины, причем фонтанное оборудование скважины устанавливается в котловане, заглубленном в морское дно; соединение фонтанного оборудования скважины со сборным трубопроводом; высвобождение морской платформы от фундамента и повторное использование морской платформы для установки другого фундамента на другой заданной скважинной площадке. Технический результат заключается в повышении надежности установки фонтанного оборудования скважин с фундаментом. 8 з.п. ф-лы, 13 ил.

Группа изобретений относится к подводным сооружениям и предназначена для подводного освоения газоконденсатных месторождений и сжижения природного газа в акваториях Северного Ледовитого океана, которые длительное время или постоянно покрыты трудно проходимыми для арктических ледоколов ледовыми полями. Технический результат - повышение безопасности и качества проводимых работ в процессе подводного освоения газоконденсатных месторождений и подводного сжижения природного газа. Подводный комплекс для подводного освоения газоконденсатных месторождений и сжижения природного газа предусмотрен для круглогодичной работы на глубине в диапазоне от 100 до 120 м от уровня моря и включает буродобывающее подводное сооружение, подводный жилой блок с центром управления, подводную атомную электростанцию, подводный завод сжижения природного газа, подводный резервуар приема/хранения жидкого азота, подводный резервуар приема/хранения/отгрузки сжиженного природного газа, подводный танкер–газовоз, подводный резервуар приема/хранения/отгрузки конденсата и подводный танкер для конденсата. При этом буродобывающее подводное сооружение обладает возможностью круглогодичного подводного бурения скважин и их эксплуатации с очисткой скважинного флюида от мехпримесей. Буродобывающее подводное сооружение соединено с заводом для сжижения природного газа связующей гибкой трубой с длиной, обеспечивающей охлаждение природного газа в арктической среде моря до заданной величины. Подводный завод сжиженного природного газа выполнен с возможностью сжижения природного газа путем каскадного ступенчатого последовательного охлаждения до температуры конденсации в противотоке с жидким азотом и обеспечения выхода отработанного жидкого азота по выхлопной гибкой трубе в атмосферу и/или под лед. Подводная атомная электростанция выполнена с возможностью обеспечения электроэнергией по гибким плавучим кабелям всех подводных сооружений. Другие изобретения раскрывают способы подводного освоения газоконденсатных месторождений и подводного сжижения природного газа. 3 н. и 4 з.п. ф-лы, 2 ил.
Наверх