Интегральный микромеханический гироскоп

Изобретение относится к области измерительной техники и интегральной электроники, а именно к интегральным измерительным элементам величины угловой скорости. Гироскоп содержит две инерционные массы, выполненные в виде пластин с гребенчатыми структурами, на которых расположены пластины электродов, образующие с пластинами электродов, закрепленных на гребенчатых структурах диэлектрической подложки, плоские конденсаторы, являющиеся датчиками колебаний инерционных масс относительно диэлектрической подложки. Каждая инерционная масса закреплена в раме с помощью упругих элементов, которые размещены с возможностью совершения поступательных колебаний инерционных масс вдоль двух взаимно перпендикулярных осей, расположенных в плоскости диэлектрической подложки. Рама закреплена на диэлектрической подложке через торсионы, которые одними концами жестко соединены с рамой, а другими - с диэлектрической подложкой. Инерционные массы, рама, упругие элементы и гребенчатые структуры, закрепленные на раме и двух инерционных массах, расположены с зазором относительно диэлектрической подложки. Изобретение обеспечивает возможность измерения величины угловой скорости вокруг осей X и Y, расположенных взаимно перпендикулярно в плоскости диэлектрической подложки гироскопа. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к измерительной технике и интегральной электронике и может быть использовано для одновременного измерения величин двух угловых скоростей.

Известен интегральный микромеханический гироскоп [S.E.Alper, T.Akin, A Planar Gyroscope Using a Standard Surface Micromachining Process, The 14th European Conference on Solid-State Transducers (EUROSENSORS XIV), 2000, p.387, fig.1], содержащий подложку с расположенными на ней шестью электродами, инерционную массу, расположенную с зазором относительно подложки, образующую с парой расположенных на подложке электродов плоский конденсатор и связанную с внешним подвесом с помощью упругих балок, которые одними концами прикреплены к инерционной массе, а другими - к внешнему подвесу, образующему с двумя другими парами расположенных на подложке электродов плоские конденсаторы, используемые в качестве электростатических приводов. Внешний подвес расположен с зазором относительно подложки с помощью системы упругих балок и опорных элементов.

Этот гироскоп позволяет измерять величину угловой скорости при вращении его вокруг оси Z, направленной перпендикулярно плоскости подложки гироскопа.

Недостатком конструкции гироскопа является невозможность измерения величины угловой скорости вокруг оси X, расположенной в плоскости подложки.

Известен интегральный микромеханический гироскоп [В.П.Тимошенков, С.П.Тимошенков, А.А.Миндеева. Разработка конструкции микрогироскопа на основе КНИ-технологии. Известия вузов. Электроника, 1999, №6, стр.49, рис.2], содержащий диэлектрическую подложку. На диэлектрической подложке напылены четыре электрода и закреплена инерционная масса, которая выполнена в виде пластины из полупроводникового материала, образующая с парой напыленных на подложку электродов плоский конденсатор. Инерционная масса связана с внутренней колебательной системой с помощью упругих балок, выполненных из полупроводникового материала, которые одними концами жестко прикреплены к инерционной массе, а другими - к внутренней колебательной системе. Внутренняя колебательная система выполнена из полупроводникового материала и образует с другой парой напыленных на подложку электродов плоский конденсатор, используемый в качестве электростатического привода. Колебательная система соединена с внешней рамкой с помощью упругих балок, выполненных из полупроводникового материала, которые одними концами прикреплены к внутренней колебательной системе, а другими - к внешней рамке, выполненной из полупроводникового материала и расположенной непосредственно на диэлектрической подложке.

Данный гироскоп позволяет измерять величину угловой скорости при вращении его вокруг оси Z, направленной перпендикулярно плоскости подложки гироскопа.

Недостатком конструкции гироскопа является невозможность измерения величины угловой скорости вокруг оси X, расположенной в плоскости подложки.

Известен интегральный микромеханический гироскоп [В.Я.Распопов. Микромеханические приборы, Учебное пособие, Тул. гос. университет, Тула, 2002, стр.32, рис.1.26], выбранный в качестве прототипа, содержащий диэлектрическую подложку, на которой закреплены гребенчатые структуры. На гребенчатых структурах расположены пластины электродов электростатического вибропривода. Прямоугольная рама закреплена на диэлектрической подложке через четыре торсиона и расположена с зазором относительно диэлектрической подложки.

Две инерционные массы подвижны относительно диэлектрической подложки и выполнены в виде пластин с гребенчатыми структурами, на которых расположены пластины электродов электростатического вибропривода. Гребенчатые структуры выполнены с возможностью электростатического взаимодействия с пластинами электродов, расположенными неподвижно на диэлектрической подложке, образуя при этом электростатический вибропривод.

На инерционных массах закреплены пластины электродов, образующие с пластинами электродов, закрепленными на диэлектрической подложке, плоские конденсаторы, которые являются датчиками колебаний инерционных масс относительно диэлектрической подложки.

Инерционные массы связаны с рамой через упругие элементы, которые одними концами жестко соединены с инерционными массами, а другими - с рамой. Упругие элементы выполнены с возможностью совершения поступательных колебаний инерционных масс в плоскости диэлектрической подложки, за счет геометрических размеров упругих элементов.

Гребенчатые структуры электростатического вибропривода расположены на диэлектрической подложке и выполнены из полупроводникового материала.

Две инерционные массы, упругие элементы и рама расположены с зазором относительно диэлектрической подложки и выполнены из полупроводникового материала.

Этот гироскоп позволяет измерять величину угловой скорости при вращении его вокруг оси X, расположенной в плоскости диэлектрической подложки.

Недостатком конструкции этого гироскопа является невозможность одновременного измерения двух угловых скоростей вокруг осей X и Y, расположенных в плоскости диэлектрической подложки гироскопа.

Задачей предлагаемого изобретения является создание интегрального микромеханического гироскопа, позволяющего проводить измерения угловых скоростей вокруг двух, взаимно перпендикулярных осей X и Y, расположенных в плоскости подложки.

Поставленная задача достигается за счет того, что интегральный микромеханический гироскоп, так же как в прототипе, содержит две инерционные массы, выполненные в виде пластин с гребенчатыми структурами, на которых расположены пластины электродов. Каждая инерционная масса с помощью упругих элементов закреплена в раме. Рама закреплена на диэлектрической подложке через торсионы, которые одними концами жестко соединены рамой, а другими с диэлектрической подложкой. На диэлектрической подложке закреплены гребенчатые структуры, на которых установлены пластины электродов вибропривода, а также гребенчатые структуры с пластинами электродов датчиков колебаний инерционных масс относительно диэлектрической подложки. Инерционные массы, рама, упругие элементы и гребенчатые структуры, закрепленные на раме и на двух инерционных массах, расположены с зазором относительно диэлектрической подложки.

Согласно изобретению упругие элементы размещены с возможностью совершения поступательных колебаний инерционных масс вдоль двух взаимно перпендикулярных осей, расположенных в плоскости диэлектрической подложки. На инерционных массах закреплены гребенчатые структуры, на которых расположены пластины электродов, образующие с пластинами электродов, закрепленными на гребенчатых структурах диэлектрической подложки, плоские конденсаторы, являющиеся датчиками колебаний инерционных масс относительно диэлектрической подложки. На раме закреплены гребенчатые структуры, на которых установлены пластины электродов, образующие с пластинами электродов, закрепленными на гребенчатых структурах диэлектрической подложки, плоские конденсаторы, являющиеся электростатическим виброприводом.

Инерционные массы, рама, торсионы, упругие элементы, гребенчатые структуры, закрепленные на раме, и гребенчатые структуры, закрепленные на двух инерционных массах, выполнены из полупроводникового материала.

Предложенное расположение вибропривода и датчиков колебаний инерционных масс, а также крепление одной из инерционных масс приводит к изменению направления колебаний этой инерционной массы, что позволяет измерять величины угловых скоростей поворота основания вокруг осей X и Y, расположенных взаимно перпендикулярно в плоскости диэлектрической подложки.

На фиг.1 приведена топология и сечение предлагаемого интегрального микромеханического гироскопа.

Интегральный микромеханический гироскоп содержит две инерционные массы 1 и 2, выполненные в виде пластин. Инерционные массы 1 и 2 подвижны относительно диэлектрической подложки 3.

Прямоугольная рама 4 расположена с зазором относительно диэлектрической подложки 3.

Инерционная масса 1 закреплена в раме 4 с помощью упругих элементов 5 и 6, которые жестко прикреплены одними концами к внутренней раме 4, а другими - к инерционной массе 1. Упругие элементы 5 и 6 размещены в интегральном микромеханическом гироскопе с возможностью совершения поступательных колебаний инерционной массы 1 вдоль оси Y, расположенной в плоскости диэлектрической подложки 3 за счет геометрических размеров упругих элементов 5, 6.

Инерционная масса 2 закреплена в раме 4 с помощью упругих элементов 7 и 8, которые жестко прикреплены одними концами к внутренней раме 4, а другими - к инерционной массе 2. Упругие элементы 7 и 8 размещены в интегральном микромеханическом гироскопе с возможностью совершения поступательных колебаний инерционной массы 2 вдоль оси X, расположенной в плоскости диэлектрической подложки 3 за счет геометрических размеров упругих элементов 7, 8.

На инерционной массе 1 закреплены гребенчатые структуры 9 и 10, на которых соответственно расположены пластины электродов 11 и 12.

На инерционной массе 2 закреплены гребенчатые структуры 13 и 14, на которых соответственно расположены пластины электродов 15 и 16.

На диэлектрической подложке 3 закреплены гребенчатые структуры 17, 18, 19, 20, на которых соответственно расположены пластины электродов 21, 22, 23, 24.

Пластины электродов 21 и 22 выполнены с возможностью соответственного электростатического взаимодействия с пластинами электродов 11 и 12, образуя при этом датчик колебаний инерционной массы 1 относительно диэлектрической подложки 3.

Пластины электродов 23 и 24 выполнены с возможностью соответственного электростатического взаимодействия с пластинами электродов 15 и 16, образуя при этом датчик колебаний инерционной массы 2 относительно диэлектрической подложки 3

Рама 4 закреплена на диэлектрической подложке 3 с помощью четырех торсионов 25, 26, 27, 28, которые жестко прикреплены одними концами к раме 4, а другими - к диэлектрической подложке 3.

На раме 4 с двух противоположных сторон закреплены гребенчатые структуры 29 и 30, на которых соответственно установлены пластины электродов 31 и 32.

На диэлектрической подложке 3 закреплены гребенчатые структуры 33 и 34, на которых соответственно установлены пластины электродов 35 и 36, образующие с пластинами электродов 31 и 32, закрепленными на раме 4, плоские конденсаторы, используемые в качестве электростатического вибропривода.

Инерционные массы 1, 2, рама 4, упругие элементы 5, 6, 7, 8, гребенчатые структуры 9, 10, 13, 14, 29, 30, на которых расположены пластины электродов 11, 12, 15, 16, 31, 32, расположены с зазором относительно диэлектрической подложки 3.

Инерционные массы 1, 2, рама 4, упругие элементы 5, 6, 7, 8, гребенчатые структуры 9, 10, 13, 14, 29, 30, на которых расположены пластины электродов 11, 12, 15, 16, 31, 32, торсионы 25, 26, 27, 28, выполнены из поликристаллического или монокристаллического кремния.

Диэлектрическая подложка 3 может быть изготовлена из боросиликатного стекла.

Работает устройство следующим образом.

При подаче на пластины электродов 31, 32 и 35, 36 электростатического вибропривода переменных напряжений, сдвинутых относительно друг друга на 180°, между пластинами электродов 31, 35 и 32, 36 возникает электростатическое взаимодействие, что приводит к возникновению колебаний рамы 4 и инерционных масс 1, 2 в плоскости, перпендикулярной диэлектрической подложке 3 вдоль оси Z, за счет изгиба торсионов 25, 26, 27, 28. При этом колебаний инерционных масс 1, 2 относительно рамы 4 не происходит. Напряжения, генерируемые на датчиках колебаний, образованных пластинами электродов 11 и 21, 12 и 22, 15 и 23, 16 и 24, соответственно одинаковы.

При возникновении вращения (угловой скорости) диэлектрической подложки 3 вокруг оси X, расположенной в плоскости диэлектрической подложки 3, под действием силы Кориолиса инерционная масса 1 начинает совершать колебания относительно диэлектрической подложки 3 за счет изгиба упругих элементов 5, 6. Разность напряжений, генерируемых на датчиках колебаний, образованных пластинами электродов 11 и 12, расположенных на инерционной массе 1, а также пластинами электродов 21 и 22, расположенных на диэлектрической подложке 3, характеризует величину измеряемой угловой скорости. Амплитуда этих колебаний является мерой угловой скорости, а фаза говорит о направлении скорости. Напряжения, генерируемые в датчиках колебаний, образованных электродами 15 и 23, а так же 16 и 24, не изменяются.

При возникновении вращения (угловой скорости) диэлектрической подложки 3 вокруг оси Y, расположенной в плоскости диэлектрической подложки 3, под действием силы Кориолиса инерционная масса 2 начинает совершать колебания относительно диэлектрической подложки 3 за счет изгиба упругих элементов 7, 8. Разность напряжений, генерируемых на датчиках колебаний, образованных пластинами электродов 15 и 23, расположенных на раме инерционной массе 2, а также пластинами электродов 16 и 24, расположенных на диэлектрической подложке 3, характеризует величину измеряемой угловой скорости. Амплитуда этих колебаний является мерой угловой скорости, а фаза говорит о направлении скорости. Напряжения, генерируемые в датчиках колебаний, образованных электродами 11 и 21, а так же 12 и 22, не изменяются.

Таким образом, предлагаемое устройство представляет собой интегральный микромеханический гироскоп, позволяющий одновременно измерять величины угловых скоростей вокруг осей X и Y, расположенных взаимно перпендикулярно в плоскости диэлектрической подложки 3.

1. Интегральный микромеханический гироскоп, содержащий две инерционные массы, выполненные в виде пластин с гребенчатыми структурами, на которых расположены пластины электродов, каждая инерционная масса с помощью упругих элементов закреплена в раме, которая закреплена на диэлектрической подложке через торсионы, которые одними концами жестко соединены с рамой, а другими с диэлектрической подложкой, на которой закреплены гребенчатые структуры, на которых установлены пластины электродов вибропривода, при этом на диэлектрической подложке закреплены гребенчатые структуры с пластинами электродов датчиков колебаний инерционных масс относительно диэлектрической подложки, причем инерционные массы, рама, упругие элементы и гребенчатые структуры, закрепленные на раме и двух инерционных массах, расположены с зазором относительно диэлектрической подложки, отличающийся тем, что упругие элементы размещены с возможностью совершения поступательных колебаний инерционных масс вдоль двух взаимно перпендикулярных осей, расположенных в плоскости диэлектрической подложки, на инерционных массах закреплены гребенчатые структуры, на которых расположены пластины электродов, образующие с пластинами электродов, закрепленными на гребенчатых структурах диэлектрической подложки, плоские конденсаторы, являющиеся датчиками колебаний инерционных масс относительно диэлектрической подложки, на раме закреплены гребенчатые структуры, на которых установлены пластины электродов, образующие с пластинами электродов, закрепленных на гребенчатых структурах диэлектрической подложки, плоские конденсаторы, являющиеся электростатическим виброприводом.

2. Интегральный микромеханический гироскоп по п.1, отличающийся тем, что инерционные массы, рама, торсионы, упругие элементы, гребенчатые структуры, закрепленные на раме, и гребенчатые структуры, закрепленные на двух инерционных массах, выполнены из полупроводникового материала.



 

Похожие патенты:

Изобретение относится к навигации и может быть использовано, например, в качестве компаса и для определения севера. Способ определения курса осуществляется с помощью инерциального устройства (1), содержащего, как минимум, один вибрационный угловой датчик (3) с резонатором, связанным с детекторным устройством и устройством для ввода данного резонатора в состояние вибрации, соединенными с управляющим устройством, служащим для обеспечения первого режима работы, при котором вибрация может свободно изменяться в угловой системе координат резонатора, и второго режима работы, при котором поддерживается определенный угол колебаний вибратора в системе координат резонатора.

Изобретение относится к полусферическому резонатору, являющемуся элементом вибродачика угловой скорости. Полусферический резонатор (7) содержит колоколообразный элемент (4), закрепленный на основе (3), которая несет основные электроды (2), обращенные к кольцевому ободу (6.2) колоколообразного элемента, и, по меньшей мере, один охранный электрод (1), располагаемый рядом с основными электродами (2).

Предлагаемое техническое решение относится к области космической техники и может быть использовано при создании гирокомпасной системы ориентации искусственного спутника Земли для околокруговой орбиты.

Изобретения относятся к управлению угловым движением космических аппаратов (КА) и, в частности, к гироскопическим системам ориентации КА, снабженным аппаратурой наблюдения (АН) наземных объектов, на околокруговой орбите.

Изобретение относится к измерительной технике и может быть использовано в гиродатчиках. .

Изобретение относится к области измерительной техники и интегральной электроники, а именно к интегральным измерительным элементам величины угловой скорости. .

Изобретение относится к измерительной технике и может применяться в навигационно-пилотажных системах летательных аппаратов. .

Изобретение относится к области микромеханики, в частности к микромеханическим гироскопам вибрационного типа. .

Изобретение относится к инерциальному датчику угловой скорости с компенсацией отклонения. .

Изобретение относится к области точного приборостроения, преимущественно гироскопического, и может быть использовано при создании твердотельных волновых гироскопов и систем ориентации и навигации на их основе.

Изобретение относится к области приборостроения и может быть использовано при создании динамически настраиваемых гироскопов (ДНГ). Сущность изобретения заключается в том, что магнитная система содержит кольцевой магнитопровод с П-образным сечением из магнитомягкого материала, на внутреннем выступе которого закреплен магнит с радиальной намагниченностью, образующий с внешним выступом магнитопровода рабочий зазор, при этом кромки полюсного наконечника и магнита закруглены. Закругление кромок приводит к снижению энергии магнитного поля у кромок полюса. Техническим результатом является снижение потерь энергии магнитной системы ДНГ, вызванной концентрацией поля у кромок магнита в пользу энергии поля рабочего зазора. 2 н.п.ф-лы, 4 ил.

Изобретение относится к гироскопическим системам, которые основаны на использовании вибрационных гироскопов. В гироскопической системе, содержащей по меньшей мере четыре вибрационных гироскопа, первое измерение обеспечивается вибрационным гироскопом, подлежащим калибровке, и второе измерение обеспечивается комбинацией измерений из других вибрационных гироскопов системы. На уровне вибрационного гироскопа, подлежащего калибровке, применяют начальную команду для предписания изменения позиции из первой вибрационной позиции во вторую вибрационную позицию. Калиброванное значение масштабного коэффициента вибрационного гироскопа, подлежащего калибровке, определяют на основании вычисленного значения в отношении изменения позиции, на основании периода времени, в течение которого применяется начальная команда, начальной команды, разности углов между первой и второй вибрационными позициями, измеренной согласно первому измерению, и разности углов, измеренной согласно второму измерению. Изобретение обеспечивает повышение точности калибровки в отношении значения масштабного коэффициента. 2 н. и 9 з.п.ф-лы, 3 ил.

Изобретение относится к твердотельным волновым гироскопам (ТВГ), которые используются для определения угловых перемещений в составе блоков навигационных устройств наземной, морской, авиационной и космической техники. Способ возбуждения колебаний в чувствительном элементе ТВГ заключается в том, что для первоначального возбуждения и/или корректировки колебаний на рабочей и/или околорабочей частоте чувствительного элемента используются электромагниты (электромагнитные преобразователи), а для поддержания и/или корректировки колебаний на рабочей частоте используют электроды конденсаторов (электростатические преобразователи). Изобретение позволяет повысить точность измерений угла поворота и угловой скорости объектов. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области точного приборостроения и может быть использовано в различных устройствах ориентации подвижных объектов, в частности при производстве надежных малогабаритных гироскопов-акселерометров для приборов подземной навигации - инклинометров. Гироскоп содержит сферический ротор в корпусе с тремя парами ортогонально расположенных поддерживающих элементов, электронный блок управления подвесом ротора и блок определения положения вектора кинетического момента ротора. Каждый поддерживающий элемент выполнен в виде двухфазного статора вращения с основной и управляющей обмотками на зубцовом магнитопроводе. Магнитопроводы изолированы от корпуса и применены в качестве измерительных и (или) поддерживающих емкостных электродов, а магнитопроводы с основными обмотками использованы как поддерживающие и (или) измерительные электромагниты. Динамически несбалансированный ротор выполнен с вытянутым эллипсоидом инерции. Выходы блока определения положения вектора кинетического момента ротора (по сигналам биения несбалансированного ротора) соединены через усилительно-преобразовательные устройства с управляющими обмотками статоров вращения, что позволило придать предложенному гироскопу свойства свободного гироскопа при ограниченном времени выбега ротора, обусловленном, например, трением ротора об остатки газа в вакуумированном кожухе. Предложенный универсальный гироскоп может использоваться также в режиме датчика угловой скорости (ДУС) и как трехкомпонентный акселерометр. Гироскоп отличается простотой конструкции, его предполагается выполнять малогабаритным, с диаметром ротора менее 10 мм, для использования, например, в подземной навигации, в частности при определении траекторий буровых скважин. При этом малый размер ротора (особенно при полой конструкции) обусловливает высокую перегрузочную способность гироскопа (до 100g), необходимую при работе в забойном инклинометре. 5 з.п. ф-лы, 9 ил.

Изобретение относится к твердотельным волновым гироскопам (ТВГ), которые используются для определения угловых перемещений в составе блоков навигационных устройств наземной и авиационно-космической техники. Резонатор ТВГ можно рассматривать как тонкий упругий цилиндр, имеющий возможность совершать изгибные колебания в своей плоскости. Поведение цилиндрической оболочки в краевой области компенсируется использованием кольцевого цилиндрического элемента в резонаторе. Применение кольцевого цилиндрического элемента в конструкции цилиндрического резонатора способствует увеличению стабильности волновой картины в зависимости от выбранного варианта его расположения. 3 н. и 41 з.п. ф-лы, 6 ил.

Изобретение может быть использовано при производстве навигационных приборов. Способ балансировки металлического зубчатого резонатора волнового твердотельного гироскопа заключается в том, что измеряют параметры неуравновешенной массы, рассчитывают массу, подлежащую удалению с каждого балансировочного зубца, и удаляют неуравновешенную массу с поверхности балансировочных зубцов путем электрохимического растворения, при этом каждый зубец погружают в отдельную ванну с электролитом и через поверхность каждого зубца пропускают заранее рассчитанный электрический заряд, величину которого регулируют временем пропускания постоянного тока. Изобретение позволяет довести точность удаления массы с балансировочного зубца до 0.01-0.1%. 3 з.п. ф-лы, 3 ил.

Изобретение относится к вибрационным датчикам гироскопического типа. Резонатор (3)датчика содержит корпус из материала на основе кремния с по меньшей мере одной резонансной частью (Z), имеющей по меньшей мере один участок, покрытый электропроводящим слоем, и по меньшей мере один участок, не покрытый проводящим слоем. Участок, не покрытый электропроводящим слоем, покрыт защитным слоем (10) таким образом, что в резонансной части материал на основе кремния полностью покрыт комбинацией электропроводящего и защитного слоев. Изобретение позволяет улучшить рабочие характеристики датчика. 3 н. и 6 з.п. ф-лы, 2 ил.

Изобретение относится к вибрационным гироскопам. Гироскопическая система производит измерения при помощи вибрационного гироскопа, который вибрирует в первом положении вибрации и передает сигнал измерений. На вибрационный гироскоп в течение некоторого временного периода подают периодический управляющий сигнал, обеспечивающий поворот геометрического положения вибрации в первом направлении в течение части временного периода с переходом от первого ко второму положению в соответствии с первым скоростным профилем, поворот геометрического положения вибрации во втором направлении, противоположном первому направлению, в течение оставшейся части временного периода с переходом от второго к первому положению в соответствии со вторым скоростным профилем. Скоростные профили задают изменения скорости изменения положения. Формируют результаты измерений, произведенных системой, на основе скорректированного сигнала, полученного путем вычитания управляющего сигнала из сигнала измерений гироскопа. Изобретение обеспечивает повышение точности измерений. 2 н. и 11 з.п. ф-лы, 5 ил.

Изобретение относится к гироскопическим устройствам. Может быть преимущественно использовано для исследования поверхностных явлений смачивания и растекания при нагреве в вакууме и инертной или активной газовых средах. Самогоризонтируемое устройство включает корпус 1, выполненный из керамики, молибдена или стали, в верхней части которого установлен промежуточный элемент 2, выполненный из такого же материала, что и корпус 1 или отличающийся от него, закрепленный двумя стержнями 3 к стенке корпуса 1, самогоризонтируемый столик 4, выполненный из такого же материала, что и корпус 1 или отличающийся от него, в нижней части которого расположен массивный груз 5, который может быть выполнен съемным и соединяться через соединительный стержень 6; самогоризонтируемый столик 4 закреплен двумя стержнями 7 в промежуточном элементе 2, причем стержни 3 и 7 расположены взаимно - перпендикулярно друг другу. В нижней части корпуса 1 расположены упоры 8 для фиксирования массивного груза 5. Техническим результатом является то, что устройство позволяет проводить исследования при размещении его в печи с контролируемой атмосферой и в печи с воздушным нагревом. 8 з.п. ф-лы, 2 ил.

Изобретение относится к области приборостроения - лазерным датчикам угловой скорости, применяемым в навигационных системах, и может быть использовано в волоконно-оптических гироскопах на основе эффекта Саньяка. Лазерный волоконно-оптический датчик угловой скорости с объемной фурье-голограммой содержит последовательно размещенные и оптически связанные источник когерентного оптического излучения, расщепитель луча, кольцевое одномодовое оптическое волокно, фотоприемник и электрически связанный с фотоприемником блок обработки сигнала, в схему перед фотоприемником включены последовательно расположенные оптический объектив и фотопластинка с объемной фурье-голограммой, экспонированной по закону: 0≤sinQ<d/h, где d<h; Q - угол между фотопластинкой с объемной фурье-голограммой и отражателем, установленным за ней в процессе экспонирования; h -расстояние по нормали от точечного источника когерентного оптического излучения до плоскости эмульсии фотопластинки с объемной фурье-голограммой; d - расстояние между плоскостью эмульсии фотопластинки с объемной фурье-голограммой и отражателем вдоль нормали от точечного источника когерентного оптического излучения до плоскости эмульсии фотопластинки с объемной фурье-голограммой. Технический результат - возможность повышения пороговой чувствительности измерения угловой скорости. 2 ил.
Наверх