Устройство для контроля анизотропии электрической проводимости биотканей

Изобретение относится к медицинской технике. Устройство для измерения импеданса биологических тканей содержит последовательно соединенные матрицу из N электродов, блок коммутации, инструментальный усилитель, блок детекторов, многоканальный АЦП, микроконтроллер и ЭВМ. В устройство введены первый и второй цифроаналоговые преобразователи, усилитель мощности и блок измерения тока. Блок коммутации включает два аналоговых мультиплексора и два аналоговых демультиплексора. N аналоговых входов каждого из мультиплексоров соединены с соответствующими N электродами электродной матрицы, а N аналоговых выходов каждого из демультиплексоров соединены с соответствующими N электродами электродной матрицы. Адресные входы каждого из двух мультиплексоров и двух демультиплексоров соединены соответственно с первыми четырьмя выходами микроконтроллера. Первый выход первого мультиплексора соединен с первым входом инструментального усилителя. Выход второго мультиплексора соединен со вторым входом инструментального усилителя. Вход первого демультиплексора соединен с первым выходом усилителя мощности. Вход второго демультиплексора соединен с первым выходом блока измерения тока. Применение изобретения позволит повысить точность измерения электрической проводимости биотканей при изменении направления зондирующего тока. 4 ил., 1 табл.

 

Изобретение относится к медицине, а именно к устройствам для измерения электрических свойств биотканей. Предлагаемое устройство может найти применение при диагностике инфекционных и онкологических заболеваний.

Известно устройство для измерения активной и реактивной составляющих импеданса биологических тканей (Авторское свидетельство СССР 1759402, кл. А61В 5/05, 1990), содержащее генератор симметричных прямоугольных импульсов, интегратор, преобразователь напряжение-ток, два токовых электрода, два потенциальных электрода, дифференциальный усилитель, синхронный детектор, двухпозиционный переключатель, фазосдвигающий каскад, усилитель постоянного тока и измерительный прибор.

Недостатком устройства является то, что в устройстве измерение происходит только на фиксированной частоте, что сужает возможности исследования электрических свойств биотканей.

Известно устройство для измерения активной и емкостной составляющих импеданса небных миндалин (см. патент РФ №2319443, опубл. 20.03.2008), содержащее генератор импульсов, последовательно соединенные входное устройство, синхронный демодулятор, усилитель постоянного тока и аналого-цифровой преобразователь, два делителя частоты пополам, последовательно соединенные триггер Шмидта, прямой интегратор, нелинейный преобразователь линейно изменяющегося напряжения в синусоидальное, преобразователь напряжение-ток, согласующий трансформатор, конвертор емкостного сопротивления, второй синхронный демодулятор, переключатель «активное сопротивление-емкостное сопротивление» и устройство индикации.

Недостатком устройства является применение нелинейного преобразователя линейно изменяющегося напряжения в синусоидальное, которое сложно поддается настройке и обладает нестабильностью характеристик при изменении генерируемого сигнала в широком диапазоне.

Наиболее близким к изобретению является устройство для измерения активной и емкостной составляющих импеданса биологических тканей (см. патент РФ №2196504, опубл. 20.01.2003), содержащее генератор напряжений, два токовых и два потенциальных электрода, усилители и индикатор величин сопротивления ткани, причем генератор синусоидальных напряжений последовательно соединен с четырехканальным мультиплексором и широкополосным усилителем с изменяемым коэффициентом усиления, к выходу которого подключен один из токовых электродов четырехконтактного зонда, а другой его токовый электрод подключен через резистор к широкополосному усилителю, выход которого подключен к компаратору напряжения и фазовому детектору, соединенному с низкочастотным фильтром, выход которого подключен к одному входу операционного усилителя, к другому входу которого подключен потенциометр, а к выходу - вход управления широкополосного усилителя с изменяемым коэффициентом усиления, два потенциальных электрода четырехконтактного зонда соединены через соответствующие повторители напряжения с фазочувствительным измерителем разности двух напряжений, выход которого через усилитель постоянного напряжения с двумя фиксированными коэффициентами усиления и аналого-цифровой преобразователь подключен к жидкокристаллическому индикатору, а вход управления подключен к выходу двухпозиционного переключателя, при этом вход компаратора напряжений соединен с одним входом двухпозиционного переключателя и через формирователь задержки с четырехканальным мультиплексором - с другим его входом.

В рассмотренном устройстве измерение происходит только на четырех фиксированных частотах, что сужает возможности исследования электрических свойств биотканей.

Основным недостатком перечисленных выше устройств является то, что они измеряют электрическое сопротивление биоматериала, в то время как информацию о функциональном состоянии живой системы несет удельная электропроводность биоматериала. Качественную картину распределения удельной электропроводности по биоматериалу может дать контроль анизотропии электрической проводимости. Но вышеперечисленные устройства не позволяют исследовать анизотропию электрической проводимости биотканей in vivo, так как измерение происходит только между двумя потенциальными электродами, а изменение направления зондирующего тока в исследуемой биологической ткани связано с перемещением электродов, что приводит к существенным погрешностям и временным задержкам, во время которых живая ткань изменяет свои электрические свойства в результате жизнедеятельности и внешних воздействий, что снижает ценность исследования.

Задачей заявляемого устройства является осуществление контроля анизотропии электрических свойств биотканей на различных частотах.

Поставленная задача решается посредством того, что в устройство для измерения импеданса биологических тканей, содержащее последовательно соединенные матрицу электродов, включающую N электродов, блок коммутации, N сигнальных входов-выходов которого соединены с соответствующими N электродами электродной матрицы, инструментальный усилитель, второй вход которого соединен со вторым выходом блока коммутации, блок детекторов, многоканальный АЦП, два первых аналоговых входа которого соединены с соответствующими выходами блока детекторов, микроконтроллер, четыре первых выхода которого соединены с соответствующими входами управления блока коммутации, а пятый выход соединен с четвертым входом АЦП, и ЭВМ, дополнительно введены первый цифроаналоговый преобразователь, вход которого подключен к шестому выходу микроконтроллера, а выход подключен ко второму входу блока детекторов, второй цифроаналоговый преобразователь, вход которого подключен к седьмому выходу микроконтроллера, а выход - к третьему входу блока детекторов, усилитель мощности, вход которого подключен к выходу первого цифроаналогового преобразователя, а первый выход - к первому токовому входу блока коммутации, и блок измерения тока, вход которого подключен ко второму выходу усилителя мощности, первый выход - ко второму токовому входу блока коммутации, второй выход подключен к третьему аналоговому входу многоканального АЦП, а блок коммутации включает два аналоговых мультиплексора и два аналоговых демультиплексора, N аналоговых входов каждого из мультиплексоров соединены с соответствующими N электродами электродной матрицы, а N аналоговых выходов каждого из демультиплексоров соединены с соответствующими N электродами электродной матрицы, адресные входы каждого из двух мультиплексоров и двух демультиплексоров соединены соответственно с первыми четырьмя выходами микроконтроллера, первый выход первого мультиплексора соединен с первым входом инструментального усилителя, выход второго мультиплексора соединен со вторым входом инструментального усилителя, вход первого демультиплексора соединен с первым выходом усилителя мощности, а вход второго демультиплексора соединен с первым выходом блока измерения тока.

На фиг.1 представлена структурная схема предлагаемого устройства.

На фиг.2 представлена структурная схема блока коммутации.

На фиг.3 представлена структурная схема блока детекторов.

На фиг.4 представлена структурная схема блока измерения тока.

Устройство для контроля анизотропии электрической проводимости биотканей (Фиг.1) содержит матрицу электродов 1, включающую N электродов, блок коммутации 2, N сигнальных входов-выходов которого соединены с соответствующими N электродами электродной матрицы 1, инструментальный усилитель 3, первый и второй вход которого соединены, соответственно, с первым и вторым выходами блока коммутации 2, блок детекторов 4, первый вход которого соединен с выходом инструментального усилителя 3, многоканальный АЦП 5, два первых аналоговых входа которого соединены с соответствующими выходами блока детекторов 4, микроконтроллер 6, вход которого соединен с выходом АЦП 5, четыре его первых выхода соединены с соответствующими входами управления блока коммутации 2, а пятый выход соединен с четвертым входом АЦП 5, ЭВМ 7, порт которой соединен с портом микроконтроллера 6, первый цифроаналоговый преобразователь 8, вход которого подключен к шестому выходу микроконтроллера 6, а выход подключен ко второму входу блока детекторов 4, второй цифроаналоговый преобразователь 9, вход которого подключен к седьмому выходу микроконтроллера 6, а выход - к третьему входу блока детекторов 4, усилитель мощности 10, вход которого подключен к выходу первого цифроаналогового преобразователя 8, а первый выход - к первому токовому входу блока коммутации 2, и блок измерения тока 11, вход которого подключен ко второму выходу усилителя мощности 10, первый выход - ко второму токовому входу блока коммутации 2, второй выход подключен к третьему аналоговому входу многоканального АЦП 5.

Блок коммутации (Фиг.2) включает два аналоговых мультиплексора 12 и 13 и два аналоговых демультиплексора 14 и 15, N аналоговых входов каждого из мультиплексоров соединены с соответствующими N электродами электродной матрицы 1, а N аналоговых выходов каждого из демультиплексоров соединены с соответствующими N электродами электродной матрицы 1, адресные входы каждого из двух мультиплексоров 12 и 13 и двух демультиплексоров 14 и 15 соединены, соответственно, с первыми четырьмя выходами микроконтроллера 6, первый выход первого мультиплексора 12 соединен с первым входом инструментального усилителя 3, выход второго мультиплексора 13 соединен со вторым входом инструментального усилителя 2, вход первого демультиплексора 14 соединен с первым выходом усилителя мощности 10, а вход второго демультиплексора 15 соединен с первым выходом блока измерения тока 11.

Блок детекторов (Фиг.3) включает первый умножитель 16, первый вход которого соединен с выходом инструментального усилителя 3, а второй вход - с выходом первого ЦАП 8, второй умножитель 17, первый вход которого соединен с выходом инструментального усилителя 3, а второй вход - с выходом второго ЦАП 9, первый ФНЧ 18, вход которого соединен с выходом первого умножителя 16, а выход соединен с первым входом АЦП 5, второй ФНЧ 19, вход которого соединен с выходом второго умножителя 17, а выход соединен со вторым входом АЦП 5.

Блок измерения тока (Фиг.4) включает измерительный резистор 20, вход которого соединен со вторым выходом усилителя мощности 10, а выход - со вторым входом блока коммутации 2, инструментальный усилитель 21, два входа которого подключены, соответственно, к входу и к выходу измерительного резистора 20, амплитудный детектор 22, вход которого подключен к выходу инструментального усилителя 21, а выход - к третьему входу АЦП 5.

Устройство работает следующим образом.

Матрицу электродов 1 устанавливают на цилиндрическую поверхность живого объекта: руку, ногу и т.п. Таким образом электроды матрицы образуют форму кольца. Пара электродов на этом кольце - это два электрода, лежащие на оси, образованной одним и тем же диаметром кольца. В электродной матрице 1 каждая пара электродов может быть как токовой, так и измерительной. Пары электродов формирует блок коммутации 2 согласно коду, выставленному микроконтроллером 6 на адресных линиях блока коммутации 2. Блок коммутации состоит из двух аналоговых мультиплексоров и двух аналоговых демультиплексоров (см. фиг.2). Мультиплексоры согласно адресным входам 1 и адресным входам 2 выбирают пару измерительных электродов, а демультиплексоры согласно адресным входам 3 и адресным входам 4 выбирают пару токовых электродов.

В качестве генератора зондирующего тока для повышения точности и стабильности характеристик в схему введены ЦАП1 8 и ЦАП2 9. Микроконтроллер 6 из своей памяти выводит цифровой поток отсчетов, соответствующих отсчетам синусоиды, в ЦАП1 8 и в ЦАП2 9 с фазовым сдвигом в 90 градусов. То есть микроконтроллер 6 производит прямой цифровой синтез квадратурного сигнала, тем самым обеспечивая стабильность характеристик и требуемую точность в сдвиге фаз на 90 градусов.

Основной зондирующий сигнал с ЦАП1 8 усиливается усилителем мощности 10 и через блок коммутации 2 подается на выбранную токовую пару электродов электродной матрицы 1. Выбранная блоком коммутации 2 измерительная пара электродов подключается к инструментальному усилителю 3, который обеспечивает высокое входное сопротивление измерительной схемы. Усиленный измерительный сигнал с инструментального усилителя 3 подается на блок детекторов, куда также подключены выход ЦАП1 8 и выход ЦАП2 9. Блок детекторов 4 с помощью двух умножителей 16 и 17 и двух ФНЧ 18 и 19 (см. фиг.3) осуществляет синхронное детектирование измерительного сигнала и формирует два напряжения, пропорциональные активной и реактивной составляющей импеданса биоткани. Для регистрации результата используется многоканальный АЦП 5, который преобразует подаваемые на него напряжения в цифровой вид и передает цифровые отсчеты в микроконтроллер 6 для последующего хранения и обработки.

Для расширения динамического диапазона измерительного тракта микроконтроллер 6 управляет не только формой зондирующего сигнала, но также и его амплитудой. Для контроля амплитуды зондирующего тока в схему устройства введен блок измерения зондирующего тока 11, который представляет собой измерительный резистор 20 (см. фиг.4), инструментальный усилитель 21 и амплитудный детектор 22. Измерительный резистор 20 небольшого номинала последовательно соединен в цепь зондирующего тока. Падение напряжения на измерительном резисторе 20 усиливается инструментальным усилителем 21 и далее передается на амплитудный детектор 22. Амплитудный детектор 22 формирует напряжение, пропорциональное амплитуде входного сигнала. Далее это напряжение передается на аналоговый вход АЦП 5, который преобразует его в цифровой вид и передает далее в микроконтроллер 6. На основе информации, получаемой из блока измерения тока 11, микроконтроллер 6 осуществляет стабилизацию зондирующего тока посредством управления амплитудой выходного сигнала ЦАП1 8.

Для визуализации результатов измерения, а также для длительного хранения результатов, настройки параметров устройства используется ЭВМ 7.

Посредством пары токовых электродов через усилитель мощности 10 в биообъекте возбуждается ток, вектор плоскости которого расположен в биообъекте под некоторым углом Ψ (направление вектора является среднестатистическим).

Угол Ψ можно фиксировать относительно любой оси декартовых координат. В качестве такой оси выбирается любая ось, на которой лежит соответствующая электродная пара, например электроды номер 1 и номер (N/2+1), где N - число электродов в электродной матрице 1 (должно быть четным для образования электродных пар). В этом случае все остальные пары электродов будут измерительными и блок коммутации 2 последовательно подключает их к входам инструментального усилителя 3, то есть блок коммутации 2 меняет угол потенциальных электродов по отношению к токовым электродам от (Ψ+360°/N) до (Ψ+360°-360°/N).

Далее усиленный сигнал подается на первые входы умножителей 16 и 17, где происходит синхронное детектирование, причем первый умножитель 16 формирует напряжение, пропорциональное активной составляющей импеданса, а второй умножитель 17 формирует напряжение, пропорциональное реактивной составляющей импеданса биоткани, так как на первые входы этих детекторов поступает квадратурный сигнал от ЦАП1 8 и ЦАП2 9.

Активную и реактивную составляющую импеданса преобразует из аналогового в цифровой вид АЦП 5. Результат преобразования поступает в микроконтроллер 6 для хранения и анализа.

После того как напряжения на всех (N/2-1) парах сигнальных электродов измерены и записаны в память микроконтроллера 6, изменяется направление ввода тока в биообъект с помощью блока коммутации 2, то есть в качестве токовой выбирается следующая пара электродов. Следовательно, направление ввода тока в биообъект Ψ дискретно изменяется с шагом 360°/N от нуля до (360°-360°/N). Число направлений ввода тока составит N, а число возможных измерений, приходящихся на каждое направление ввода, - (N/2-1).

В табл.1 представлен формат данных, которые получены в результате работы устройства.

Таблица 1
Формат представления данных в системе сбора данных
φ=360°/N (относительно Ψ)
Ψ U
1 0 а 11
2 360°/N а 21
N/2-1 180°-360°/N a N/2,1
N/2 180° a N/2+1,1
N/2+1 180°+360°/N a N/2+2,1
N 360°-360°/N a N,1

В табл.1 угол φ измеряется относительно оси, определяемой углом Ψ, и соответствует углу между токовой парой электродов и измерительной парой. Число строк в таблице N.

Переход от строки к строке представленной таблицы соответствует повороту возбуждающей системы относительно оси на угол 360°/N. Если анизотропия электрических свойств биоткани отсутствует, то поворот не окажет влияние на результаты измерений, так как измерительные электроды не изменили своего положения относительно токовых электродов.

Если положить, что вектор плотности тока при фиксированном положении токовых электродов Ψ, и учитывая, что при этом напряженность поля E=U/d, где d - диаметр кольца, по которым расположены электроды матрицы, а угол 360/N достаточно мал, то напряжение на сигнальной паре электродов, отстоящей на угол 360/N от токовой пары, пропорционально удельной электрической проводимости биоткани для заданного направления вектора плотности тока.

Показатель анизотропии электрической проводимости оценивается дисперсией множества {Uψi+1/Uψ0}, где i=0,…, N-1, .

Таким образом, представленное устройство позволяет контролировать анизотропию проводимости биоткани как в статическом режиме, так и в процессе активных воздействий на биообъект, например, посредством медикаментозного воздействия или физиотерапевтических процедур. Это позволяет контролировать реакции организма на условия внешней среды или лечебно-оздоровительные процедуры, следовательно, осуществлять управление функциональным состоянием живой системы.

Устройство для измерения импеданса биологических тканей, содержащее последовательно соединенные матрицу электродов, включающую N электродов, блок коммутации, N сигнальных входов-выходов которого соединены с соответствующими N электродами электродной матрицы, инструментальный усилитель, второй вход которого соединен со вторым выходом блока коммутации, блок детекторов, многоканальный АЦП, два первых аналоговых входа которого соединены с соответствующими выходами блока детекторов, микроконтроллер, четыре первых выхода которого соединены с соответствующими входами управления блока коммутации, а пятый выход соединен с четвертым входом АЦП, и ЭВМ, отличающееся тем, что в него дополнительно введены первый цифроаналоговый преобразователь, вход которого подключен к шестому выходу микроконтроллера, а выход подключен ко второму входу блока детекторов, второй цифроаналоговый преобразователь, вход которого подключен к седьмому выходу микроконтроллера, а выход - к третьему входу блока детекторов, усилитель мощности, вход которого подключен к выходу первого цифроаналогового преобразователя, а первый выход - к первому токовому входу блока коммутации, и блок измерения тока, вход которого подключен ко второму выходу усилителя мощности, первый выход - ко второму токовому входу блока коммутации, второй выход подключен к третьему аналоговому входу многоканального АЦП, а блок коммутации включает два аналоговых мультиплексора и два аналоговых демультиплексора, N аналоговых входов каждого из мультиплексоров соединены с соответствующими N электродами электродной матрицы, а N аналоговых выходов каждого из демультиплексоров соединены с соответствующими N электродами электродной матрицы, адресные входы каждого из двух мультиплексоров и двух демультиплексоров соединены соответственно с первыми четырьмя выходами микроконтроллера, первый выход первого мультиплексора соединен с первым входом инструментального усилителя, выход второго мультиплексора соединен со вторым входом инструментального усилителя, вход первого демультиплексора соединен с первым выходом усилителя мощности, а вход второго демультиплексора соединен с первым выходом блока измерения тока.



 

Похожие патенты:

Изобретение относится к медицине, а именно к акушерству. Способ включает измерение электрического сопротивления.
Изобретение относится к медицине, а именно к онкологии, и может быть использовано для определения прогрессии рака органов брюшной полости. Для этого осуществляют динамическое обследование больного после хирургического лечения.

Изобретение относится к медицине, а именно - к кардиологии. Способ включает измерение электрического импеданса грудной клетки биполярным методом.

Изобретение относится к медицине. При осуществлении способа устанавливают на поверхности биологической ткани активный и пассивный электроды.
Изобретение относится к медицине, а именно - к терапии, диагностике. Способ включает исследование электрических параметров до и после лечения.

Изобретение относится к медицине, а именно диагностике. Способ включает введение в опухоль игольчатых электродов с активным токопроводящим концом.
Изобретение относится к медицине, терапии, диетологии и может быть использовано для коррекции и профилактики ожирения. .

Изобретение относится к медицинской технике, а именно к средствам для локализации верхушки корня зуба в эндодонтии. .
Изобретение относится к области медицины, а именно к офтальмологии. .

Изобретение относится к медицине и может быть использовано для оценки функционального состояния организма. Способ заключается в подаче на биообъект импульса стабилизированного тока, измерении напряжения на биообъекте в фиксированные два момента времени после начала импульса тока и дополнительном измерении амплитуды стабилизированного тока I0. Моменты времени фиксации напряжения представляют собой t1 и t2, причем t2=2t1. В качестве составляющих импеданса биообъекта определяют активное сопротивление R и эквивалентную емкость C тканей биообъекта, которые рассчитывают по формулам: где E - установившееся значение потенциала с постоянной времени T, причем где U1 и U2 - соответственно напряжение на биообъекте в моменты времени t1 и t2; при этом C=T/R. Способ обеспечивает повышение точности и оперативности определения составляющих комплексного сопротивления биообъекта за счет устранения методической и учета динамической погрешности, имеющих место в ближайшем аналоге изобретения. 4 ил., 1 табл.

Группа изобретений относится к медицине. Способ использует устройство для контроля, содержащее измерительное оборудование и блок управления. Способ включает получение с помощью измерительного оборудования сигнала проводимости кожи, измеренного на участке кожи пациента в течение интервала измерений. Согласно изобретению вычисляют с помощью блока управления характеристику сигнала проводимости кожи, представляющую статическую дисперсию значений сигнала проводимости кожи по всему интервалу измерений, включая расчет стандартного отклонения значений сигнала проводимости кожи по всему интервалу измерений. На основе этой характеристики формируют первый выходной сигнал, указывающий на состояние боли или дискомфорта пациента. На основе этой же характеристики формируют второй выходной сигнал, указывающий на состояние пробуждения пациента. Раскрыто упомянутое устройство для контроля. Технический результат состоит в повышении точности контроля состояния автономной нервной системы пациента. 2 н. и 11 з.п. ф-лы, 2 ил.

Изобретение относится к области медицины. Для определения концентрации глюкозы в крови человека, последовательно, через заданные интервалы времени измеряют значения импеданса участка тела человека на высокой частоте и низкой частоте с использованием закрепленных на теле человека и разнесенных относительно друг друга электродов. На основе измеренного значения импеданса на высокой частоте получают оценку объема жидкости, содержащейся в тканях участка тела человека между электродами, а на основе измеренного значения импеданса на низкой частоте получают оценку объема внеклеточной жидкости, содержащейся в тканях участка тела человека между электродами. Определяют величину приращения метаболической составляющей упомянутого объема внеклеточной жидкости, связанной с синтезом и утилизацией энергоносителей в организме человека, путем определения приращения упомянутой оценки объема жидкости, содержащейся в тканях участка тела человека между электродами, по сравнению с предыдущим измерением, определения приращения упомянутой оценки объема внеклеточной жидкости, содержащейся в тканях участка тела человека между электродами, по сравнению с предыдущим измерением и последующего вычисления разницы между упомянутым приращением оценки объема жидкости, содержащейся в тканях участка тела человека между электродами, и упомянутым приращением оценки объема внеклеточной жидкости, содержащейся в тканях участка тела человека между электродами. Определяют величину приращения концентрации глюкозы в крови человека путем нормировки упомянутой величины упомянутого приращения метаболической составляющей объема внеклеточной жидкости, а концентрацию глюкозы в крови человека определяют путем суммирования упомянутой величины приращения концентрации глюкозы со значением концентрации глюкозы в крови, определенном на предыдущем этапе измерений. При этом концентрацию глюкозы на первом интервале времени определяют путем суммирования упомянутого приращения концентрации глюкозы в крови человека, полученного на первом интервале времени, с начальным значением концентрации глюкозы Способ позволяет непрерывно и неинвазивно определять концентрацию глюкозы в крови человека с высокой точностью. 4 з.п. ф-лы, 6 ил., 3 пр.

Изобретение относится к медицинской технике. Датчик 1 для измерения импеданса участка тела человека содержит первый и второй электроды и держатель 2 электродов. Электроды выполнены секционными. Секции 5 и 6 первого и второго электродов расположены попеременно в один ряд на внутренней поверхности держателя. Держатель предназначен для закрепления вокруг запястья человека так, чтобы секции обоих электродов примыкали к запястью. Каждый электрод имеет, по меньшей мере, три секции. Контактная площадь каждой секции составляет, по меньшей мере, 1 см2. Держатель электродов выполнен в виде закрепляемой на запястье с помощью застежки 7 гибкой ленты или в виде браслета, имеющего шарнирно соединенные между собой секции, или в виде обтягивающей запястье манжеты. В держателе электродов также размещен преобразователь сигналов датчика. Применение изобретения позволит повысить устойчивость измерительного сигнала и чувствительность датчика за счет повышения надежности контакта датчиков с кожей человека и оптимизации пути прохождения тока между секциями датчиков. 6 з.п. ф-лы, 7 ил.

Изобретение относится к медицинской технике. Устройство для измерения электрических параметров участка (3) тела человека содержит два токопроводящих электрода (5, 6) для размещения на теле человека, операционный усилитель (2) и микроконтроллер (1). Микроконтроллер (1) выполнен с возможностью работы в режиме измерения импеданса участка тела человека, в режиме измерения активного сопротивления кожи человека и в режиме измерения разности потенциалов между участками кожи тела человека. Электроды (5, 6) включены в цепь отрицательной обратной связи операционного усилителя (2), неинвертирующий вход которого подключен к нулевому потенциалу, выход подключен к входу аналого-цифрового преобразователя микроконтроллера (1), а инвертирующий вход через резистор (4) подключен к порту (L) ввода-вывода микроконтроллера (1). В режиме измерения импеданса участка тела человека микроконтроллер (1) на выходе порта (L) ввода-вывода обеспечивает формирование сигнала заданной частоты, на которой измеряют импеданс. В режиме измерения активного сопротивления кожи человека микроконтроллер (1) на выходе порта (L) ввода-вывода обеспечивает формирование сигнала постоянного напряжения. В режиме измерения разности потенциалов между участками кожи тела человека микроконтроллер (1) обеспечивает отключение порта (L) ввода-вывода. Применение изобретения позволит повысить точность измерения электрических параметров участка тела человека за счет переключения режимов микроконтроллера без смены электродов и их положения на теле. 8 з.п. ф-лы, 12 ил.

Изобретение относится к медицинской технике. Устройство (1) для регистрации сигналов пульсовой волны и дыхательного цикла человека содержит два токопроводящих электрода (2, 3) для размещения на теле человека, первый (4) и второй (6) операционные усилители, амплитудный детектор (5), переключаемый частотно-зависимый делитель напряжения (8) и микроконтроллер (7). Электроды (2, 3) включены в цепь отрицательной обратной связи первого операционного усилителя (4). Микроконтроллер (7) выполнен с возможностью генерирования на выходе первого порта (L) ввода-вывода высокочастотного несущего сигнала. Верхнее (10) и нижнее (11) плечи делителя напряжения (8) образованы двумя цепями, имеющими общий конец в средней точке делителя напряжения и два раздельных конца. Второй операционный усилитель (6) и делитель напряжения (8) образуют активный полосовой фильтр с верхней и нижней частотой среза, определяемой параметрами верхнего (10) и нижнего (11) плеча делителя напряжения (8) соответственно. Частотные характеристики такого фильтра при подключении второго порта (M) ввода-вывода микроконтроллера (7) к нулевому потенциалу обеспечивают регистрацию сигнала в полосе частот, соответствующей полосе частот сигнала пульсовой волны, а при подключении третьего порта (N) ввода-вывода микроконтроллера (7) к нулевому потенциалу - регистрацию сигнала в полосе частот, соответствующей полосе частот сигнала дыхательного цикла. Применение изобретения позволит регистрировать сигналы пульсовой волны и дыхательного цикла человека на основе измерения импеданса участка тела при помощи простой неперестраиваемой электрической схемы. 13 з.п. ф-лы, 12 ил.

Изобретение относится к области медицины, а именно к функциональной диагностике состояния кровеносного сосудистого русла. Осуществляют регистрацию изменений электрического импеданса рук в процессе создания гемодинамической нагрузки, которую создают в положении обследуемого стоя путем поднятия рук вертикально вверх, выдержки их в этом положении и возвратом в исходное положение опущенными вдоль тела. При этом период времени нахождения обследуемого в положении с вертикально поднятыми руками составляет 30 секунд. После возвращения рук в исходное положение фиксируют величины электрического импеданса через 10 секунд и определяют индекс восстановления (ИВ) по оригинальной математической формуле. При величинах ИВ≤1 констатируют норму, а при ИВ>1 - наличие атеросклеротических изменений, о выраженности которых судят но величине превышения нормы. Способ позволяет осуществить нормирование временных параметров гемодинамической нагрузки и получить количественную оценку функционального состояния артериального сосудистого русла для обеспечения возможности раннего выявления развития атеросклероза в режиме экспресс-диагностики. 3 ил., 1 табл.

Изобретение относится к области медицины. Устройство определения электродермальной активности кожи в режиме реального времени содержит электроды со средствами их крепления, входное устройство, фильтр, первый и второй блоки определения дисперсии, блок определения математического ожидания, первый и второй блоки определения коэффициентов вариаций, вычитатель, формирователь порогового уровня, компаратор, счетчик. Изобретение позволяет повысить достоверность и точность определения электродермальной активности в режиме реального времени и психоэмоционального состояния на ее основе при снижении требований к аппаратной части и возможности выделения относительно медленно меняющихся фазических составляющих 2 ил.
Изобретение относится к медицине, а именно к стоматологии. Способ включает измерение электропроводности эмали и оценку светоиндуцированной флюоресценции твердых тканей зуба в очаге поражения. Значение силы тока в очаге поражения не более 0,2 мкА и отсутствие свечения эмали свидетельствуют об интактности эмали, при этом присваивают ноль баллов. Значение силы тока от 0,21 до 1,99 мкА и свечение эмали свидетельствуют о доклинических изменениях эмали, присваивают 0,1 балла. Значение силы тока от 2,0 до 3,99 мкА и свечение эмали свидетельствуют о начальных кариозных изменениях на стадии матового пятна, присваивают 0,4 балла. Значение силы тока от 4,0 до 5,99 мкА и свечение эмали свидетельствуют о начальных кариозных изменениях на стадии белого пятна, присваивают 0,7 балла. Значение силы тока от 6,0 до 7,99 мкА и свечение эмали свидетельствуют о начальных кариозных изменениях на стадии насыщенно-белого пятна, присваивают один балл. Затем вычисляют индекс резистентности твердых тканей зубов (ИРттз) зубов по формуле: ИРттз=(F0×0+F1×0,1+F2×0,4+F3×0,7+F4×1)/n, где F0 - количество зубов с интактной эмалью; F1 - количество зубов с доклиническими кариозными изменениями эмали; F2 - количество зубов с кариозными изменениями эмали на стадии матового пятна; F3 - количество зубов с кариозными изменениями эмали на стадии белого пятна; F4 - количество зубов с кариозными изменениями эмали на стадии насыщенно-белого пятна; n - количество интактных зубов, имеющих доклинические и ранние клинические изменения. Индекс вычисляют до и после курса лечебно-профилактической терапии. Положительная разность величины индексов, полученных до и после курса терапии, свидетельствует об адекватности проведенной терапии. Если величина указанной разности меньше или равна нулю, это свидетельствует о необходимости проведения повторного курса или изменении лечения. Способ обеспечивает оценку состояния твердых тканей зубов с учетом доклинических и ранних их изменений. 1 табл. 1 пр.

Изобретение относится к медицине, а именно к диагностике. Способ включает проведение импедансометрии во время оперативного вмешательства. При одностороннем вросшем ногте измеряют импеданс тканей околоногтевого валика пораженной и здоровой стороны. Измерение проводят на частоте 2 кГц и напряжении 1 В. Рассчитывают коэффициент К как отношение импеданса пораженной стороны к здоровой. Если К меньше или равен 1,5, то это свидетельствует о наличии воспалительной реакции. Способ упрощает проведение диагностики и сокращает время ее проведения. 2 пр., 1 ил., 1 табл.

Изобретение относится к медицинской технике. Устройство для измерения импеданса биологических тканей содержит последовательно соединенные матрицу из N электродов, блок коммутации, инструментальный усилитель, блок детекторов, многоканальный АЦП, микроконтроллер и ЭВМ. В устройство введены первый и второй цифроаналоговые преобразователи, усилитель мощности и блок измерения тока. Блок коммутации включает два аналоговых мультиплексора и два аналоговых демультиплексора. N аналоговых входов каждого из мультиплексоров соединены с соответствующими N электродами электродной матрицы, а N аналоговых выходов каждого из демультиплексоров соединены с соответствующими N электродами электродной матрицы. Адресные входы каждого из двух мультиплексоров и двух демультиплексоров соединены соответственно с первыми четырьмя выходами микроконтроллера. Первый выход первого мультиплексора соединен с первым входом инструментального усилителя. Выход второго мультиплексора соединен со вторым входом инструментального усилителя. Вход первого демультиплексора соединен с первым выходом усилителя мощности. Вход второго демультиплексора соединен с первым выходом блока измерения тока. Применение изобретения позволит повысить точность измерения электрической проводимости биотканей при изменении направления зондирующего тока. 4 ил., 1 табл.

Наверх