Способ автоматического управления гидроциклоном

Изобретение относится к способам автоматического управления процессами разделения материала по крупности в гидроциклонах. Способ автоматического управления гидроциклоном путем изменения расхода песков, который изменяют в зависимости от соотношения расходов пульпы на сливе и песках гидроциклона, а также от величины крупности разделения с учетом вязкости пульпы на сливе гидроциклона, при этом дополнительно измеряют и регулируют степень раскрытия разгрузочного зонта песков гидроциклона. Технический результат заключается в повышении качества разделения. 1 з.п. ф-лы.

 

Изобретение относится к способам автоматического управления процессами разделения материала по крупности в гидроциклонах и может быть применено на обогатительных предприятиях цветной и черной металлургии, угольной и химической промышленности, а также в области строительной промышленности.

Известен способ автоматического регулирования работы гидроциклона (Зубков Г.А. и др. Автоматизация процессов обогащения руд цветных металлов. М., Недра, 1967, с.112-113), в котором в зависимости от плотности продукта осуществляется воздействие на регулируемую насадку, устанавливаемую на песковом патрубке.

Недостатком этого способа является отсутствие однозначной зависимости между плотностью и крупностью, в следствие чего имеет место недостаточно точное разделение по крупности, слив гидроциклона засоряется крупными частицами, а пески, напротив, мелкими.

Известен способ автоматического регулирования гидроциклоном (Поваров A.M., Забиров М.Г. Автоматическое регулирование гидроциклонов /Обогащение руд // 1958, №3, С.33-40).

Недостатком этого способа является неточное разделение твердых частиц по крупности из-за нарушения вакуума в гидроциклоне вследствие подсоса воздуха со стороны слива и перекрытия песками нижнего конца воздушного столба при малых диаметрах песковой насадки. Кроме того, к недостаткам известного способа относится забивание вакуумной трубки, вставляемой в гидроциклон через отверстие в центре его верхней крышки, а также громоздкость и сложность всей системы в целом.

Известен «Способ автоматического управления гидроциклоном» (пат. RU №2445171, опубл. 20.03.2012), принятый за прототип. Управление осуществляют путем изменения расхода песков, причем расход песков изменяют в зависимости от соотношения расходов пульпы на сливе и в песках гидроциклона.

Недостатком известного способа является запаздывание реакции регулирующего органа на воздействие по изменению размера пескового отверстия.

Техническим результатом является повышение качества разделения.

Технический результат достигается тем, что в способе автоматического управления гидроциклоном путем изменения расхода песков, который изменяют в зависимости от соотношения расходов пульпы на сливе и песках гидроциклона, а также от величины крупности разделения с учетом вязкости пульпы на сливе гидроциклона, дополнительно измеряют и регулируют степень раскрытия разгрузочного зонта песков гидроциклона.

Степень раскрытия зонта разгрузки песков может быть изменена в диапазоне от 0 до 15 градусов.

На практике часто встречаются случаи снижения эффективности разделения в высококачественных гидроциклонах за счет вариации свойств исходного питания, концентрации (содержания) твердого, а также гранулометрической характеристики материала. Необходима система, мгновенно реагирующая на данные изменения и стабилизирующая работу гидроциклона. Логичным будет требование введения коррекции в контур управления качеством продукта по данным бесконтактного датчика.

Корректировка размера крупности разделения с учетом степени раскрытия зонта пескового продукта приводит к изменению качества управления, что без запаздывания обеспечивает требуемую для последующих процессов крупность частиц в сливе гидроциклона.

Важнейшим показателем качества разделения является крутизна сепарационной характеристики. В случае идеального разделения она принимает ступенчатый или так называемый S-образный вид. На фиг.1 представлены сепарационные характеристики для различных степеней раскрытия разгрузочного зонта песков гидроциклона. Показатель эффективности α=1 соответствует углу зонта в диапазоне 55-65 градусов. Это приводит к большому разжижению пескового продукта и засорению его мелкими частицами. Наиболее близким к идеальному разделению является режим при показателе α=6, что соответствует углу зонта 10-15 градусов. Система контроля и управления стабилизирует работу гидроциклона в данном режиме.

На фиг.2 представлена принципиальная схема устройства, реализующая предлагаемый способ.

Способ осуществляют следующим образом. Измеряют расход пульпы в сливе и песках гидроциклона 1 расходомерами 2 и 3 соответственно, и вязкость пульпы на сливе вязкозиметром 4, установленном на сливе гидроциклона 1. Бесконтактный датчик 8, представляющий собой лазерный луч, установлен на выходе песков из песковой насадки. Проходя через зонт пескового продукта, луч искажается в зависимости от степени раскрытия зонта и попадает на приемник излучения 9. Информация от приемника поступает в усилитель-преобразователь сигнала 10. Более подробная схема установки датчика 8 и приемника излучения 9 изображена на фиг.3. Затем данные в виде электрических сигналов поступают в регулирующий микроконтроллер 5. В микроконтроллере 5 происходит сравнение степени раскрытия зонта с заданной, которая выведена теоретически и соответствует углу раскрытия зонта 10-15 градусов. При величине разбаланса с учетом величины и знака полученного рассогласования вырабатывается управляющий импульс, который через исполнительный механизм 6 воздействует на регулирующий орган 7, изменяя сечение песковой насадки, чтобы убрать возникший разбаланс. Например, резиновая насадка- тор, управляемая с помощью пневматического исполнительного механизма. При большей степени раскрытия зонта диаметр песковой насадки будет уменьшаться и наоборот.

Применение предлагаемого способа автоматического управления гидроциклоном позволяет улучшить качество разделения и поддержать заданную крупность разделения за счет дополнительного измерения и регулирования степени раскрытия разгрузочного зонта.

1. Способ автоматического управления гидроциклоном путем изменения расхода песков, который изменяют в зависимости от соотношения расходов пульпы в сливе и песках гидроциклона, а также от величины крупности разделения с учетом вязкости пульпы на сливе гидроциклона, отличающийся тем, что дополнительно измеряют и регулируют степень раскрытия разгрузочного зонта песков гидроциклона.

2. Способ по п.1, отличающийся тем, что степень раскрытия зонта разгрузки песков изменяют в диапазоне от 0 до 15°.



 

Похожие патенты:

Изобретение относится к технологии очистки газовоздушной смеси в отраслях промышленности, производящих выброс газов во внешнюю среду. При осуществлении способа поток очищаемой газовоздушной смеси подают в трубчатый корпус рабочей зоны первой ступени очистки, закручивают завихрителем и направляют по винтовой линии вдоль корпуса рабочей зоны, после чего поток направляют на вторую ступень очистки.

Изобретение относится к отделению твердых частиц от жидкости, конкретно, к устройствам, в которых используются турбулентные эффекты, возникающие при протекании жидкости с взвешенными частицами через трубу, и может быть использовано в области гидромеханизации при подводной разработке грунта.

Изобретение относится к оборудованию для сухой очистки запыленных газов от дисперсных частиц и разделения многокомпонентных газовых сред. .

Изобретение относится к способам автоматического управления процессами разделения материала по крупности в гидроциклонах и может быть применено на обогатительных предприятиях цветной и черной металлургии, угольной и химической промышленности.

Изобретение относится к области реактивной техники, в частности к вихревым установкам, и может быть использовано в качестве тягового устройства для транспортных систем.

Изобретение относится к циклонным сепараторам текучих сред. .

Изобретение относится к области очистки газа от гетерогенных примесей и может быть использовано в нефтяной, газовой, химической и других отраслях промышленности. .

Сепаратор // 2403983

Изобретение относится к устройствам пылеулавливания. .

Изобретение относится к корпусу гидроциклона, который может быть использован в устройстве очистки целлюлозы от примесей в целлюлозно-бумажной промышленности. Корпус гидроциклона выполнен в виде однослойной оболочки вращения с конической или конической совместно с цилиндрической в верхней части формой внутренней поверхности, выполненной из композиционного материала методом косослойной продольно-поперечной намотки. Композиционный материал состоит из кольцевых и спиральных высокопрочных нитей, скрепленных полимерным связующим с отношением массы спиральных нитей к массе кольцевых нитей на уровне 1/1÷1/2. При этом на больших диаметрах со стороны внутренней поверхности оболочки расположены дополнительные слои композиционного материала, состоящие из кольцевых и спиральных высокопрочных нитей, скрепленных полимерным связующим, выполненные методом косослойной продольно-поперечной намотки. Причем число дополнительных слоев увеличивается от меньшего диаметра к большему, а отношение массы спиральных нитей к массе кольцевых нитей в дополнительных слоях находится на уровне 1/3÷1/5. Достигаемый технический результат заключается в повышении эрозионной стойкости и соответственно срока службы гидроциклона. 1 ил.

Изобретение относится к области энергетики. Разделительное устройство содержит завихритель (1, 20, 30) из листового материала, содержащий множество изогнутых лопаток (4), имеющих кромку (6) со стороны входа потока, образующую входной угол (α), и кромку (8) со стороны выхода потока, образующую выходной угол (β), при этом кромка со стороны входа потока и кромка со стороны выхода потока проходят от центрального участка (3) к периферийной кромке (9), причем периферийная кромка проходит между конечными точками кромки со стороны входа потока и кромки со стороны выхода потока, а входной угол больше, чем выходной угол, при этом периферийная кромка изогнутых лопаток выполнена на виде сверху круговой. Входной угол (α) составляет по меньшей мере 70°. Выходной угол (β) находится в интервале 20-60°. Изобретение позволяет повысить эффективность разделения текучих сред, снизить потери давления. 2 н. и 13 з.п. ф-лы, 9 ил.

Изобретение относится к технике очистки газа от пыли и может быть использовано в различных отраслях промышленности в системах пневмотранспорта, пневмоуборки, аспирации. Вихревой пылеуловитель содержит корпус, осевой ввод запыленного газа с завихрителем и эжекционным насадком, обтекателем и отбойной шайбой, а также размещенные в верхней части корпуса осевой патрубок для вывода очищенного газа и периферийный ввод вторичного потока с завихрителем. Корпус выполнен цилиндрическим, а отбойная шайба - конической. Эжекционный насадок образует со стенкой ввода кольцевой канал, образованный коническими поверхностями, соответственно, осевого ввода и эжекционного насадка, при этом плоскость среза эжекционного насадка расположена выше плоскости среза конической отбойной шайбы. В нижнем патрубке осевого ввода запыленного газа с завихрителем, обтекателем и отбойной шайбой, а также в верхнем патрубке периферийного ввода вторичного потока с завихрителем установлены пневматические форсунки для подачи орошающей жидкости. Каждая из форсунок содержит полый цилиндрический корпус, соединенный с соплом, в котором выполнены дроссельные отверстия. Полый корпус состоит из цилиндрической части с внешней резьбой для подсоединения к штуцеру распределительного трубопровода для подвода жидкости и двух последовательно соединенных и соосных с ним полых цилиндроконических поясов. Соосно корпусу в его нижней части закреплено сопло, выполненное в виде стакана, в днище которого выполнены вертикальные и наклонные дроссельные отверстия под углом 45° к оси сопла. В цилиндрическом поясе корпуса выполнен по крайней мере один ряд радиальных отверстий, оси которых лежат в плоскости, перпендикулярной оси корпуса, при этом количество отверстий в каждом ряду равно по крайней мере трем. Корпус и сопло образуют между собой несколько соосных внутренних камер - цилиндрические и расположенную между ними коническую камеру, причем одна из цилиндрических камер служит для подвода распыляемой жидкости, а коническая камера и цилиндрическая являются расширительными камерами. В центральной части сопла соосно ему закреплена трубка для подвода воздуха или газа, к одному из концов которой в ее нижней части закреплен полый диск с перфорацией, обращенной в сторону выходных сечений дроссельных отверстий сопла. Перфорация в полом диске выполнена обращенной в сторону выходных сечений дроссельных отверстий сопла в виде винтовой канавки, образованной спиралью Архимеда, расположенной внутри полого диска. При этом к торцевой части полого цилиндроконического пояса, осесимметрично трубке для подвода воздуха, к одному из концов которой в ее нижней части закреплен полый диск с перфорацией в виде винтовой канавки, образованной спиралью Архимеда и обращенной в сторону выходных сечений дроссельных отверстий сопла, прикреплен диффузор, а к сплошной части полого диска прикреплен полый конический обтекатель, при этом его вершина лежит в плоскости среза диффузора с образованием выходных полостей, образованных внутренней поверхностью диффузора и внешней поверхностью обтекателя. Техническим результатом является повышение эффективности пылеулавливания. 2 ил.
Наверх