Способ непрерывного весового дозирования сыпучего материала ленточным дозатором и устройство для его осуществления

Изобретение предназначено для непрерывного весового дозирования сыпучих материалов и может быть использовано, например, в химической, фармацевтической, металлургической и горнодобывающей промышленности. Изобретение направлено на повышение точности процесса дозирования, что обеспечивается за счет того, что осуществляют непрерывную подачу сыпучего материала на ленту транспортера объемным питателем, определяют показания весового датчика через равные промежутки времени, производят расчет весовой производительности, сравнение этой производительности с заданной производительностью, подачу управляющего сигнала на изменение производительности объемного питателя. При этом согласно изобретению производительность объемного питателя задают равной разнице заданной производительности и удвоенной погрешности производительности объемного питателя, измеряют неравномерность потока сыпучего материала на выходе объемного питателя, расчет весовой производительности осуществляют с учетом неравномерности распределения сыпучего материала на ленте транспортера, а разницу между расчетной и заданной производительностями весового дозатора устраняют путем подачи в поток материала, ссыпающегося с ленты транспортера, потока сыпучего материала, выходящего из дополнительного объемного питателя с максимальной производительностью, равной удвоенной погрешности дозирования объемного питателя. 2 н.п. ф-лы, 3 ил.

 

Изобретение предназначено для непрерывного весового дозирования сыпучих материалов и может быть использовано, например, в химической, фармацевтической, металлургической и горнодобывающей промышленности.

Известен способ дозирования, который реализован при использовании ленточного дозатора (патент РФ №2387957). Способ включает непрерывную подачу сыпучего материала на ленту транспортера объемным питателем определение показаний весового датчика, расчет весовой производительности, сравнение этой производительности с заданной производительностью, подачу управляющего сигнала на изменение производительности объемного питателя. Устройство, содержит основание, бункер с объемным питателем, ленточный транспортер с приводом, датчиком скорости и датчиком веса, выходы которых связаны с блоком управления.

Недостатком данного способа и устройства для его реализации является низкая точность дозирования, поскольку не учитывается неравномерность распределения материала на ленте, что приводит к ошибкам при расчете весовой производительности дозатора.

Известен также принятый за прототип способ непрерывного дозирования включающий непрерывную подачу сыпучего материала на ленту транспортера длиною Lм и движущуюся со скоростью υ м/с объемным питателем с производительностью QП и погрешностью δQП, через равные промежутки времени ДГ определение показаний РД весового датчика, расчет весовой производительности Q, сравнение этой производительности с заданной производительностью QЗ, подачу управляющего сигнала на изменение производительности объемного питателя на величину ΔQП, который реализуется в устройстве, содержащем основание, бункер с объемным питателем, ленточный транспортер один край которого установлен на датчик веса, привод движения ленты, датчик скорости, выходы датчиков связаны с блоком управления (патент США №4475669).

Недостатком данного способа и устройства для его реализации является низкая точность дозирования, поскольку не учитывается неравномерность распределения материала на ленте, что приводит к ошибкам при расчете весовой производительности дозатора.

Задачей, на решение которой направлено изобретение, является повышение точности процесса дозирования благодаря созданию нового способа дозирования, в котором учитывается неравномерность распределения сыпучего материала на ленте транспортера, а также устройства для реализации способа.

Технический результат достигается за счет того, что при расчете весовой производительности и корректировке производительности объемного питателя учитывается неравномерность распределения материала на ленте транспортера.

Сущность технического решения заключается в том, что в устройстве для осуществления способа, содержащем основание, бункер с объемным питателем, ленточный транспортер с приводом, датчиком скорости и датчиком веса, выходы которых связаны с блоком управления, загрузочный край ленточного транспортера установлен на датчик веса, дозатор снабжен датчиком расхода, установленным между объемным питателем и загрузочным краем транспортера таким образом, что поток сыпучего материала из объемного питателя сначала попадает на чувствительный элемент датчика расхода, а затем на загрузочный край ленты транспортера, также дозатор снабжен дополнительным объемным питателем с приводом, установленный таким образом, что потоки сыпучего материала, выходящие с ленточного транспортера и дополнительного объемного питателя соединяются, причем выходы датчика расхода и привод дополнительного объемного питателя соединены в общую электрическую цепь с, блоком управления. С учетом, вышеизложенного в способе непрерывного весового дозирования сыпучего материала при расчете производительности дозатора, корректировке производительности объемного питателя и производительности дополнительного объемного питателя учитывается неравномерность распределения сыпучего материала на ленте транспортера, что повышает точность весового дозирования.

На фиг.1 изображена схема весового ленточного дозатора, фиг.2-3 иллюстрируют реализацию способа.

Весовой ленточный дозатор содержит (фиг.1) ленточный транспортер 1, загрузочный край которого установлен на датчик веса (весовую платформу) 2, основание 3, объемный питатель 4, датчик расхода 5, датчик скорости 6, блок управления 7, дополнительный объемный питатель 8, узел выгрузки материала 9.

На фиг.2 схематично показано распределение материала на ленте транспортера прототипа (фиг.2а), распределение материала после ссыпания с ленты транспортера (фиг.2б), распределение материала на ленте транспортера предлагаемого устройства (фиг.2в), распределение материала после ссыпания с ленты транспортера предлагаемого устройства (фиг.2г).

На фиг.3 показаны экспериментальные данные, полученные на лабораторном ленточном дозаторе, в частности, распределение материала на ленте транспортера прототипа (фиг.3а), распределение материала после ссыпания с ленты транспортера (фиг.3б), распределение материала на ленте транспортера предлагаемого устройства (фиг.3в), распределение материала после ссыпания с ленты транспортера предлагаемого устройства (фиг.3г).

Ленточный дозатор работает следующим образом.

Перед началом работы блоком управления 7 (фиг.1) задается проиводительность QП объемного питателя 4 по формуле:

QП=QЗ-2δQП,

где QЗ - заданная производительность, δQП - погрешность объемного питателя.

После этого включают привод транспортерной ленты и объемный питатель 4 начинает подавать сыпучий материал на эту ленту. Скорость движения ленты транспортера фиксируется датчиком скорости 6 и информация передается на блок управления 7. Прежде всего, поток материала поступает на чувствительную пластину датчика расхода 5. Сигнал с датчика поступает на блок управления 7 и записывается в виде функции распределения материала на ленте q(t). Датчик веса 2 фиксирует численное значение реакции загрузочного края транспортера. Если реальное распределение веса материала на ленте описывается функцией p(t), то показание датчика веса 2 в момент времени T будет равно:

,

где T0=L/υ - время движения материала от загрузочного края транспортера до разгрузочного края.

С использованием функции неравномерности распределения материала на ленте q(t) и значения PД в блоке управления 7 рассчитывается масштабный коэффициент K по формуле:

.

Далее рассчитывается величина изменения производительности объемного питателя 4 по формуле:

и производительность дополнительного объемного питателя 8 по формуле:

.

Блок управления направляет соответствующие сигналы на привод объемного питателя 4 и дополнительного объемного питателя 8. Материал с ленты транспортера 1 и из дополнительного объемного питателя 8 поступают в узел выгрузки 9.

Определение функции неравномерности распределения материала на ленте q(t) с помощью датчика расхода 5 (фиг.1) позволяет более точно определить разницу между заданной и реальной производительностью дозатора, а наличие дополнительного объемного питателя 8 позволяет устранить эту разницу. Поскольку максимальная производительность дополнительного объемного питателя 8, следовательно и максимальные отклонения производительности от средних значений, в 10 раз меньше, чем производительность питателя 4, то и точность весового непрерывного дозирования, с использованием предлагаемого способа дозирования и устройства для его реализации, будет примерно в 10 раз выше, чем при использовании прототипа.

На фиг.2 представлены возможные варианты распределения материала на ленте транспортера (фиг.2а) и после ссыпания с ленты (фиг.2б) при максимально возможных отклонениях производительности объемного питателя для прототипа, а на фиг.2в и 2г - для предлагаемого устройства.

Как видно из графиков, в прототипе распределения материала на ленте и после ссыпания одинаковы, поскольку не предусмотрена корректировка производительности в реальном режиме времени. Следует отметить, что отклонения мгновенной производительности весового дозирования при использовании прототипа не могут быть меньше, чем отклонения объемного питателя. Погрешности дозирования могут быть компенсированы в дальнейшем за счет изменения производительности объемного питателя, но не могут быть устранены в реальном времени, т.е. на выходе из дозатора. Более того, в известных в настоящее время способах весового дозирования с использованием ленточных транспортеров, включая и прототип, при расчете мгновенной производительности исходя из показаний датчика веса делается допущение о том, что материал на ленте транспортера распределен равномерно, что практически никогда не соответствует реальной картине. Указанное допущение приводит к дополнительным погрешностям дозирования (см. например, стр.72-76, 114-116, монографию «Весовое дозирование зернистых материалов» авторы: С.В. Першина, А.В. Каталымов, В.Г. Однолько, В.Ф. Першин - М. Машиностроение, 2009. 260 с.).

При использовании предлагаемого способа производительность объемного питателя, в соответствии с формулой изобретения, определяется по формуле:

QП=QЗ-2δQП.

Таким образом, эта производительность не может быть больше заданной, как это показано на фиг.2в. При ссыпании материала с ленты транспортера в основной поток добавляется дополнительный поток из дополнительного объемного питателя производительность которого, согласно формуле изобретения, определяется по формуле:

.

Поскольку максимальная производительность и отклонения этой производительности от средних значений примерно в 10 раз меньше производительности основного объемного питателя, на выходе из дозатора, в реальном режиме времени, точность дозирования существенно увеличивается, как это показано на фиг.2г.

Проверка работоспособности предлагаемого способа и устройства, а также сравнение с прототипом осуществлялись на специально изготовленной лабораторной установке. Установка имела следующие основные параметры: длина ленты L=0,075 м; ширина ленты S=1 м; скорость движения ленты υ от 0,05 до 0,3 мс-1; производительность объемного питателя QП от 1 до 100 гс-1; максимальное отклонение производительности от среднего значения ±0,1QП; производительность дополнительного объемного питателя QДОП от 0,1 до 100 гс-1; максимальное отклонение производительности от среднего значения ±0,1QДОП. В качестве датчика расхода использовался датчик изготовленный по патенту РФ №87011; а в качестве блока управления - персональный компьютер.

Работа устройства и реализация способа осуществлялись в соответствии с процедурой изложенной выше. На фиг.3а показано реальное распределение сыпучего материала на ленте транспортера прототипа, а на фиг.3б - после ссыпания материала с ленты. Для наглядности, из большого числа опытов выбран вариант, при котором максимальные отклонения составляют ±9%. В среднем отклонения составляли ±5%. На фиг.3в и 3г показаны аналогичные распределения материала при использовании предлагаемых способа и устройства. В данном случае, максимальные отклонения составляли ±1,2%, а средние отклонения составляли ±0,7%.

1. Способ непрерывного весового дозирования, включающий непрерывную подачу сыпучего материала на ленту транспортера длиною L м и движущуюся со скоростью υ м/с объемным питателем с производительностью QП и погрешностью δQП, через равные промежутки времени ΔT определение показаний Рд весового датчика, расчет весовой производительности Q, сравнение этой производительности с заданной производительностью QЗ, подачу управляющего сигнала на изменение производительности объемного питателя на величину ΔQП, отличающийся тем, что, с целью повышения точности дозирования, производительность объемного питателя задают, равной QП=QЗ-2δQП, измеряют неравномерность потока q(t) сыпучего материала на выходе объемного питателя, расчет весовой производительности осуществляют с учетом неравномерности распределения сыпучего материала по формуле:
,
где T - момент времени, в который определяется весовая производительность, T1 - момент времени, соответствующий распределению материала на ссыпающем краю транспортера T1=T-T0=T-L/υ, T0 - время движения материала от загрузочного края ленты транспортера до разгрузочного края, K - масштабный коэффициент для перевода функции неравномерности потока в функцию распределения веса материала на ленте
,
величину изменения производительности объемного питателя определяют по формуле:

а разницу ΔQЗ между расчетной и заданной производительностями весового дозатора устраняют путем подачи в поток материала, ссыпающегося с ленты транспортера потоком сыпучего материала, выходящим из дополнительного объемного питателя с производительностью, QДОП которого равна ΔQЗ:
.

2. Устройство для осуществления способа, содержащее основание, бункер с объемным питателем, ленточный транспортер, один край которого установлен на датчик веса, привод движения ленты, датчик скорости, выходы датчиков веса и скорости, а также привод объемного питателя связаны с блоком управления в общую электрическую цепь, отличающийся тем, что на датчик веса установлен загрузочный край ленточного транспортера, дозатор снабжен датчиком расхода, установленным между объемным питателем и загрузочным краем транспортера таким образом, что поток сыпучего материала из объемного питателя сначала попадает на чувствительный элемент датчика расхода, а затем на загрузочный край ленты транспортера, также дозатор снабжен дополнительным объемным питателем с приводом, установленный таким образом, что потоки сыпучего материала, выходящие с ленточного транспортера и дополнительного объемного питателя соединяются, причем выходы датчика расхода и привод дополнительного объемного питателя соединены в общую электрическую цепь с блоком управления.



 

Похожие патенты:

Изобретение относится к области измерительной техники и может быть использовано в химической, микробиологической, фармацевтической промышленности, в том числе связанных с нанотехнологиями.

Изобретение относится к технике дозирования и может использоваться в народном хозяйстве, преимущественно в металлургической и горнодобывающей промышленности, а также в промышленности, в основном, для дозирования сыпучих материалов с плохой текучестью из больших бункеров.

Изобретение относится к измерительной технике и может быть использовано для взвешивания или дозирования различных материалов и грузов. .

Изобретение относится к весоизмерительной технике и предназначено для динамической калибровки конвейерных весов. .

Изобретение относится к весоизмерительной технике и может быть использовано для взвешивания сыпучих материалов на конвейерах с ходовьми роликами. .

Изобретение относится к измерительным устройствам и может быть использовано для бесконтактного взвешивания и сортировки штучных изделий контролируемой массы. .

Изобретение относится к весоизмерительной технике и может быть использовано для взвешивания сыпучих материалов на ленточных конвейерах. .

Изобретение относится к весоизмерительной технике и может быть использовано для градуировки и поверки конвейерных весов. .
Изобретение относится к весоизмерительной технике и может быть использовано для измерения веса проката при его транспортировке по технологической линии. .

Изобретение относится к весоизмерительной технике, преимущественно для горнодобывающих предприятий, при транспортировании ленточными конвейерами крупнокусковатого груза.

Изобретение относится к измерительной технике, а именно к средствам для учета и дозирования сыпучего материала в непрерывно протекающих технологических процессах. Устройство содержит бункер с шиберами сыпучих материалов, питатель с управляемым электроприводом, направляющее устройство загрузки, электропривод транспортера консольного типа, транспортер консольного типа, силоизмерительный датчик, нормирующий преобразователь, регулятор производительности, блок определения суммарной массы материала и регистратор. Дополнительно в него введены фильтр, адаптер, контроллер, блок диспетчерского управления и сбора данных, панель управления. При этом силоизмерительный датчик соединен через фильтр с адаптером, который соединен с контроллером, с которым соединен блок диспетчерского управления и сбора данных. Технический результат заключается в повышении точности измерений, а так же повышении надежности и информативности диспетчерского управления и сбора данных. 1 ил.

Способ окончательной обработки полимера, включающий извлечение порошкового полимера из реактора полимеризации, подачу порошкового полимера на вход винтового конвейера, приспособленного для измерения массового расхода, и одно или несколько устройств для измерения массы для определения массы порошкового полимера, по меньшей мере, в одной части винтового конвейера. Способ окончательной обработки также включает измерение, по меньшей мере, одной из величин: массы порошкового полимера в винтовом конвейере и общей массы винтового конвейера и порошкового полимера в винтовом конвейере с использованием одного или нескольких устройств для измерения массы, и определение массового расхода порошкового полимера через винтовой конвейер на основе по меньшей мере одной из величин: измеренной массы порошкового полимера в винтовом конвейере и измеренной общей массы. Технический результат - повышение точности и достоверности данных измерения массового расхода порошкового полимера, а также обеспечение возможности исключить или существенно уменьшить проблемы, связанные с образованием пыли, проскальзыванием, регулированием и неравномерным распределением порошкового полимера. 2 н. и 8 з.п. ф-лы, 6 ил.

Транспортно-отвальный мост (1) содержит ротационный разгрузочный инструмент (2) и транспортирующее устройство (3). Разгрузочный инструмент выполнен с возможностью вращения вокруг горизонтальной оси для захвата сыпучего материала из отвала и его сбрасывания по оси вращения. Транспортирующее устройство содержит конвейерную ленту (5), опирающуюся на поддерживающие ролики (4) на опорной конструкции (6). Транспортирующее устройство проведено вдоль оси вращения разгрузочного инструмента и проложено в разгрузочном инструменте таким образом, что оно может принимать сброшенный сыпучий материал и транспортировать его наружу к одному из торцов (7) разгрузочного инструмента. Транспортирующее устройство навешено исключительно посредством весовых ячеек (8) на две противоположно лежащие первые несущие конструкции (9) снаружи разгрузочного инструмента и образует весы ленточного конвейера, измерительный участок которых соответствует конвейерной линии транспортирующего устройства. Обеспечивается высокоточное определение интенсивности разгрузочной транспортировки моста. 2 н. и 7 з.п. ф-лы, 3 ил.

Изобретения относятся к весоизмерительной технике, в частности, но не исключительно, к взвешивающему устройству с комбинацией из множества головок и к способу для взвешивания партии продукта. Устройство содержит множество головок, которые во время работы выполнены с возможностью содержания и подачи продукта; первый и второй желоба подачи, расположенные для приема продукта, подаваемого из соответствующих первых и вторых поднаборов множества головок, и каждый из которых во время работы избирательно подает упомянутый продукт в первое местоположение или во второе местоположение; комбинационная система определения веса, выполненная с возможностью определения комбинации одной или больше головок из множества головок, которые содержат продукт, которые в комбинации удовлетворяют целевому критерию, и для подачи продукта в определенной комбинации в одной или больше головках через их соответствующий желоб (желоба) подачи в первое местоположение, и, кроме того, в котором комбинационная система определения веса выполнена с возможностью во время работы определять, когда заданное состояние возникло в одной из множества головок, и с возможностью определения комбинации из одной или более головок, которые в комбинации удовлетворяют целевому критерию, из поднабора головок, в которых не возникло заданное состояние, причем первый и второй желоба подачи содержат первую и вторую синхронизирующие воронки соответственно, при этом упомянутые синхронизирующие воронки предназначены для приема и удержания продукта из первого и второго желобов подачи, в котором каждая из упомянутых первой и второй синхронизирующих воронок выполнены с возможностью работы в первом режиме для подачи продукта в первое местоположение и во втором режиме для подачи продукта во второе местоположение, и упомянутая комбинационная система определения веса дополнительно выполнена с возможностью после подачи продукта из определенной комбинации головок в первое местоположение выбора первого режима и после подачи продукта из головки (головок), в которых возникло заданное состояние, выбора второго режима. Технический результат заключается в повышении эффективности дозирования продукта и компенсации ошибок дозирования. 3 н. и 14 з.п. ф-лы, 9 ил.
Наверх