Способ калибровки газоаналитического течеискателя

Изобретение относится к области контроля герметичности изделий и направлено на повышение стабильности калибровки газоаналитических течеискателей за счет использования частотных методов управления молекулярным расходом, что обеспечивается за счет того, что измерительный объем заполняют пробным газом под испытательным давлением и соединяют с камерой сброса давления. Между измерительным объемом и камерой сброса давления помещают калибровочный объем, который соединяется с камерами через клапаны, частотно управляемые инверсными сигналами от генератора. Величина потока при калибровке газоаналитического течеискателя определяется расчетным путем и зависит от частоты переключений клапанов, фиксируемой частотомером, давления в измерительном объеме, измеряемого манометром, и величины калибровочного объема. Для определения достоверного малого изменения давления принимается условие равенства общего падения давления в измерительном объеме за n тактов цене деления контролируемого манометра. Устройство для калибровки газоаналитического течеискателя состоит из сборного корпуса, разделенного мембранами на камеры и включает в себя калибровочный объем с двумя отверстиями, перекрываемыми заслонками под действием инверсных сигналов от генератора. 2 н. и 1 з.п. ф-лы, 2 ил.

 

Область техники

Изобретение относится к области контроля герметичности изделий.

Подробное описание

Известны способы калибровки газоаналитических течеискателей [1], осуществляемые по регистрации потоков газа через дроссели. Потоки газа через дроссели могут протекать в молекулярном, молекулярно - вязкостном и вязкостном режимах. Стабильность этих потоков невелика в связи с тем, что, с одной стороны, они подвержены влиянию изменения барометрического давления и температуры окружающей среды, а с другой - выходные отверстия калибровочных дросселей засоряются из-за механических примесей и влаги, находящихся в испытательном (пробном) газе.

Цель изобретения: повышение стабильности калибровки газоаналитических течеискателей за счет использования частотных методов управления молекулярным расходом.

На фиг.1 приведена схема, поясняющая способ калибровки газоаналитических течеискателей. Схема включает в себя: измерительный объем Vi 1, находящийся под постоянным давлением Pi; калибровочный объем V0 2, камеру сброса Vk 3, в которой поддерживается постоянное давление Pk. Калибровочный объем соединяется с измерительным объемом и камерой сброса через клапаны 4 и 5, соответственно. При этом, давление Pi будет больше давления Pk, вследствие чего, поток газа направлен из измерительного объема через калибровочный объем в камеру сброса через клапаны 4 и 5, управляемые с помощью инверсных сигналов t и генератора 6, регистрируемых частотомером 7.

Способ калибровки газоаналитического течеискателя осуществляется следующим образом. В исходном положении клапан 4 под действием сигнала t открыт, клапан 5 под действием сигнала закрыт. Пробный газ заполняет измерительный 1 и калибровочный 2 объемы и находится под давлением Pi. Количество молекул Ni в калибровочном объеме V0 будет равно:

где k - постоянная Больцмана; Т - абсолютная температура газа.

По сигналу калибровочный объем 2 соединяется через открытый клапан 5 с камерой сброса 3, а закрытый клапан 4 изолирует его от измерительного объема 1. Пробный газ заполняет калибровочный объем 2 и камеру сброса 3 и находится под давлением Pj. Количество молекул Nj в калибровочном объеме V0 будет равно:

При давлении Pi>Pk количество молекул, перетекающих из измерительного объема 1 в камеру сброса 3 через калибровочный объем 2 за один такт будет равен:

За n тактов генератора общее число молекул будет равно:

Молекулярный расход определяться по формуле:

Учитывая, что - частота переключении генератора, молекулярный расход QN будет определяться по формуле:

Общий поток газа Q через калибровочный объем будет равен:

Введем обозначение коэффициента расхода α:

Отсюда калибровочная характеристика Q=f(ΔP)

Поскольку коэффициент расхода α не зависит от температуры и давления газа, уравнение (9) представляет собой линейную функцию потока Q от перепада давления (Pi-Pk).

В частном случае, если давление в камере сброса будет равно атмосферному P0, то поток будет равен:

где P* - избыточное давление.

Величина потока при калибровке газоаналитического течеискателя определяется расчетным путем и зависит от частоты переключений клапанов 4 и 5, фиксируемой частотомером 7, давления в измерительном объеме, измеряемого манометром 8, и величины калибровочного объема V0.

Предлагаемый частотный способ повышает стабильность потоков пробных газов при калибровке газоаналитического течеискателя путем исключения влияния изменения барометрического давления, температуры окружающей среды и механических примесей, находящихся в пробном газе.

Использование способа в манометрических приборах контроля герметичности

Рассмотренный частотный способ может быть использован также в манометрических приборах контроля герметичности, где основным показателем при калибровке является давление. Цель предложенного способа - определение малого изменения давления в измерительном объеме, которое не может быть зарегистрировано существующими приборами измерения давления,

Рассмотрим работу схемы, приведенной на фиг.1, при изменении давления во взаимосвязанных объемах. При открытии клапана 4 измерительный объем Vi соединяется с калибровочным объемом V0, в результате чего образуется усредненное давление Pcp.:

где P0 - атмосферное давление.

За один такт переключения объемов происходит падение давления в измерительном объеме на величину Δp:

За n тактов падение давления составит ΔP=nΔp.

За достоверную величину давления, контролируемого по манометру, принята цена деления прибора Δφ. Следовательно,

Таким образом, принимая условие равенства общего падения давления в измерительном объеме за n тактов работы генератора цене деления прибора, можно рассчитать малое значение падения контролируемого давления в измерительном объеме по формуле:

Увеличение числа тактов работы генератора n позволит определить малые значения падения давления пробного газа, используемого при калибровке манометрических приборов контроля герметичности.

Описание устройства для калибровки газоаналитического течеискателя.

Для реализации описанных способов калибровки предлагается устройство, представленное на фиг.2. Устройство состоит из сборного корпуса 9, разделенного мембранами 10 и 11 на камеры А, Б, В, Г. Камеры А и Г являются камерами управления, к которым поступают инверсные сигналы t и от генератора. Камеры Б и В соединены с измерительным объемом и камерой сброса, соответственно. На мембранах 10 и 11 жестко закреплены заслонки 12 и 13, перекрывающие входное и выходное отверстия калибровочного объема 14 под действием инверсных сигналов t и .

Принцип действия устройства заключается в следующем. Под действием сигнала (сигнал t отсутствует) заслонка 13 перекрывает выходное отверстие калибровочного объема, а заслонка 12 открывает входное отверстие. При этом измерительный объем соединяется с калибровочным объемом 14, в котором устанавливается давление Pi. Под действием сигнала t (сигнал отсутствует) заслонка 12 перекрывает входное отверстие, а заслонка 13 открывает выходное отверстие. Давление Pi из калибровочного объема сбрасывается в камеру сброса Vk и в калибровочном объеме устанавливается давление Pcp. За n тактов давление Pi может быть уменьшено до величины цены деления манометра Δφ, являющееся достоверной величиной контролируемого падения давления.

Список литературы

Неразрушающий контроль: Справочник: В 8 т./Под общ. Ред. В.В. Клюева. Т.2. - 2-е изд., испр. - М.: Машиностроение, 2006, с.229-230.

1. Способ калибровки газоаналитических течеискателей и манометрических приборов контроля герметичности по потоку газа и изменению давления в измерительном объеме, заключающийся в том, что измерительный объем заполняют пробным газом под испытательным давлением и соединяют с камерой сброса давления, отличающийся тем, что между измерительным объемом и камерой сброса давления размещают калибровочный объем, соединенный с камерами через клапаны, частотно управляемые тактовыми инверсными сигналами, что позволяет определять калибровочную характеристику потока газа, линейно зависящего от общего перепада давления.

2. Способ калибровки по п.1, отличающийся тем, что при использовании в манометрических приборах контроля герметичности принимается условие равенства общего падения давления в измерительном объеме за n тактов работы генератора цене деления контролируемого манометра.

3. Устройство для калибровки, состоящее из сборного корпуса, разделенного мембранами на четыре камеры, отличающееся тем, что две камеры являются камерами управления, к которым поступают инверсные сигналы от генератора, третья камера расположена между калибровочным и измерительным объемами, а четвертая камера - между калибровочным объемом и камерой сброса, причем калибровочный объем ограничен двумя заслонками, жестко закрепленными на мембранах, перекрывающими входное и выходное отверстия под действием инверсных сигналов от генератора.



 

Похожие патенты:

Изобретение относится к области применения беспилотных летательных аппаратов (БПЛА) и может быть использовано для систематического дистанционного контроля состояния нефте- и газопроводов, хранилищ, высоковольтных ЛЭП и других протяженных объектов.

Изобретение относится к области испытаний ракетно-космической техники, может быть использовано для контроля герметичности корпуса космического аппарата и поиска места течи из отсеков космического аппарата в условиях орбитального полета или в процессе вакуумных испытаний и направлено на упрощение диагностики негерметичности корпуса космического аппарата, повышение ее точности и сокращение времени поиска места течи, что обеспечивается за счет того, что создают давление воздуха внутри корпуса космического аппарата и вывод о наличии локальной негерметичности делают с использованием чувствительной среды, в качестве чувствительной среды применяют индикаторные дискретные частицы, запускаемые с заданным шагом вдоль поверхности его корпуса и меняющие свои траектории под воздействием газового потока из течи, производят измерение отклонения положения мест ударов этих частиц о чувствительный экран-мишень, устанавливаемый под заданным углом для отражения их в ловушку, и регулируют чувствительность измерений изменением начальных скоростей индикаторных дискретных частиц и расстояния между источником, запускающим индикаторные дискретные частицы, и экраном-мишенью.

Изобретение относится к области испытательной техники и может быть использовано в наземных испытаниях изделий на прочность и герметичность, а также в качестве контрольной операции подтверждения качества изготовления крупногабаритных криогенных емкостных конструкций, преимущественно топливных баков ракет-носителей, спроектированных с учетом криогенного упрочнения и нагруженных внутренним давлением в условиях криогенного захолаживания.

Изобретение относится к машиностроению и может быть использовано при испытаниях полостей устройств авиационной и ракетной техники, а также в других областях техники.

Изобретение относится к области испытательной техники и направлено на создание простого и безопасного для операторов, работающих в герметично изолированных от внешних сред обитаемых помещениях, оперативного способа определения местонахождения негерметичного участка гидравлической магистрали системы терморегулирования объекта после установления факта негерметичности, что обеспечивается за счет того, что при осуществлении способа определения местоположения негерметичного участка замкнутой гидравлической магистрали, снабженной побудителем расхода и гидропневматическим компенсатором температурного изменения объема рабочего тела, снижают давление среды в газовой полости гидропневматического компенсатора до уровня стабилизации этого давления в пределах погрешности измерения.

Изобретение относится к области приборостроения и может быть использовано для дистанционного контроля состояния магистральных газопроводов и хранилищ с помощью диагностической аппаратуры, установленной на носитель - дистанционно-пилотируемый летательный аппарат (ДПЛА).

Изобретение относится к области испытательной техники и может быть использовано для определения значения негерметичности агрегатов при воздействии вибрации, в том числе при резонансах его подвижных элементов, и направлено на повышение точности определения значения негерметичности агрегатов, что обеспечивается за счет того, что определяют негерметичность с использованием показаний датчика перепада давления, при этом согласно изобретению момент начала работы датчика перепада давления и момент начала работы программы вибростенда по вибровоздействию на агрегат синхронизируют по времени, выбирают показания перепада давления в условиях изменения перегрузок от начала и до конца повышения давления и судят о негерметичности агрегата по величине расхода газа, используя для определения расхода газа среднее значение его в диапазоне виброперегрузок за выбранный промежуток времени.

Изобретение относится к области контрольно-измерительной техники и может быть использовано, например, для контроля течей теплообменников натрий-вода атомных электростанций с реакторами на быстрых нейтронах.

Изобретение относится к области контроля за эксплуатацией технологического или иного оборудования, установленных в помещениях с притоком воздуха, например на АЭС, и направлено на повышение надежности и информативности измерений, что обеспечивается за счет того, что устройство для детектирования течей пароводяной смеси из трубопровода, установленного в помещении, снабженного притоком воздуха, включает датчик, регистрирующий значение относительной влажности в контролируемом помещении, соединенный с устройством обработки информации, при этом устройство дополнительно содержит лазерный датчик аэрозолей субмикронного размера, регистрирующий счетную концентрацию и размеры частиц аэрозолей, снабженный пробоотборной трубкой, входной конец которой установлен в точке выхода воздуха из контролируемого помещения, выход лазерного датчика аэрозолей соединен со входом устройства обработки информации, причем устройство обработки информации дополнительно содержит блок сравнения величины текущего сигнала лазерного датчика аэрозолей с базой данных и блок вычисления корреляций между значениями относительной влажности, счетной концентрации и размерами частиц аэрозолей в воздухе контролируемого помещения, также соединенный с блоком сигнализации.

Изобретение относится к области диагностической техники и может быть использовано для систематического дистанционного контроля состояния магистральных газопроводов и хранилищ, а именно для раннего обнаружения нарушений герметичности, повреждений и утечки в газопроводе, и направлено на обеспечение улучшение условий выполнения мониторинга, повышение оперативности и достоверности измерения параметров состояния газовых трубопроводов, обеспечение возможности для мягкой посадки дистанционно-пилотируемого летательного аппарата путем автономного определения его модуля вектора скорости и угла сноса, что обеспечивается за счет того, что согласно изобретению дистанционно-пилотируемый летательный аппарат снабжен корреляционным измерителем скорости, подключенным к радиостанции радиотелеметрической системы, связанным с блоком управления бортовыми системами и выполненным в виде передатчика с передающей антенной и трех приемников с приемными антеннами, причем к выходу первого приемника последовательно подключены первый перемножитель, второй вход которого через первый блок регулируемой задержки соединен с выходом второго приемника, первый фильтр нижних частот и первый экстремальный регулятор, выход которого соединен с вторым входом первого блока регулируемой задержки, к второму выходу которого подключен первый индикатор скорости, к выходу первого приемника послендовательно подключены второй перемножитель, второй вход которого через второй блок регулируемой задержки соединен с выходом третьего приемника, второй фильтр нижних частот, и второй экстремальный регулятор, выход которого соединен с вторым входом второго блока регулируемой задержки, к второму выходу которого подключен второй индикатор скорости, передающая и приемные антенны выполнены рупорными, диаграмма направленности передающей рупорной антенны направлена вертикально вниз, диаграммы направленности приемных рупорных антенн несколько смещены, для того, чтобы все антенны освещали один и тот же участок на земной поверхности, вдоль продольной базы на борту размещены на расстоянии d0/2 первая приемная антенна и передающая антенна, где d0 - длина продольной базы, первой и второй приемными антеннами образована первая приемная база, первой и третьей приемными антеннами образована вторая приемная база, приемные базы развернуты на угол 2α, где α - угол между продольной базой и приемной базой, вторая и третья приемные антенны размещены на расстоянии b, где b - поперечная база. 7 ил.

Изобретение относится к области машиностроения, а именно к испытательной технике, и позволяет выполнять полный комплекс испытания изделий на герметичность. Изобретение расширяет технологические возможности испытания за счет использования различных контрольных газовых и жидких сред, а также повысить чувствительность и надежность контроля изделий с особо высокими требованиями по герметичности. Предложен способ испытания изделия на герметичность, заключающийся в том, что изделие 6 помещают в герметичную испытательную камеру 1, оснащенную системами охлаждения 3 и нагрева 4. После вакуумирования полости изделия 6 в нее подают контрольную среду, повышением температуры приводят контрольную среду в состояние сверхкритического флюида, затем выполняют операции регистрации и измерения потока проникающей в сквозных микронеплотностях изделия контрольной среды. Контрольную среду в виде газовой фазы сжиженного газа или в виде жидкости подают в полость изделия для испытания в количестве , где V - объем полости изделия, л; ρкр - критическая плотность вещества контрольной среды, кг/л; Рфл - необходимое давление сверхкритического флюида в полости изделия при испытании в диапазоне значений Ркр≤Рфл≤3Ркр, кгс/см2; Ркр - критическое давление вещества контрольной среды, кгс/см2; Ткр - абсолютное значение критической температуры вещества контрольной среды, К; Тфл - абсолютная температура сверхкритического флюида в полости изделия при испытании в диапазоне значений Ткр≤Тфл≤2Ткр, К. Подачу газовой фазы сжиженного газа с общим количеством Mo производят в полость изделия 6, предварительно охлажденного до температуры , при работающей системе теплосъема, при этом расход подаваемого газа: , где NQ - тепловая мощность системы съема тепла с поверхности изделия, кДж/с; tu - температура изделия при заполнении полости газом, °C; tпл - температура затвердевания контрольной среды в жидкой фазе; Clq - теплоемкость конденсированной контрольной среды при температуре , кДж/кг·град; r - теплота конденсации газовой фазы контрольной среды при температуре , кДж/кг; to - температура окружающей среды при испытании,°C. 1 з.п. ф-лы, 2 табл., 1 ил.

Изобретение относится к области тестирования на герметичность и может быть использовано для тестирования на герметичность фильтрованного устройства (2) для сепарации аэрозолей и пылей из объемного потока газа. Сущность: посредством загрузочного устройства (16) тестовый аэрозоль подают, если смотреть в направлении потока, до фильтрующего элемента (9) в поток неочищенного газа. Осуществляют замер числа частиц и/или определяют концентрацию частиц, если смотреть в направлении потока, в очищенном потоке газа после фильтрующего элемента (9). При этом в загрузочное устройство (16) подают первый смешанный объемный поток из тестового аэрозоля и сжатого воздуха, который формирует аэрозольный генератор (37). Произведенный при помощи аэрозольного генератора (37) первый смешанный объемный поток смешивают с объемным потоком воздуха для получения второго, более разреженного смешанного объемного потока. Подают второй, более разреженный смешанный объемный поток на загрузочное устройство (16). Технический результат: минимизация расхода сжатого воздуха. 2 н. и 10 з.п. ф-лы, 5 ил.

Изобретение относится к способам теплового контроля герметичности и может быть использовано для контроля герметичности крупногабаритных сосудов, например котлов железнодорожных цистерн. Сущность: непрерывно подают в сосуд водяной пар (рабочее тело), поддерживая постоянство уровней внутреннего давления и температуры рабочего тела. Сканируют поверхность сосуда с регистрацией температурного контраста теплочувствительным устройством. Причем ось визирования теплочувствительного устройства устанавливают наклонно к контролируемой поверхности. Рассчитывают изменение температуры в зависимости от установленного допустимого размера течи. Сравнивают значения изменений измеренной температуры контролируемой поверхности с расчетным значением изменения температуры. При превышении расчетного значения температуры над измеренным значением судят о наличии дефекта и его местоположении на поверхности. Технический результат: повышение достоверности обнаружения течи. 2 ил.

Изобретение относится к газодобывающей промышленности. Техническим результатом является упрощение контроля герметичности, что приводит к повышению надежности и безопасности эксплуатации подземных хранилищ газа (ПХГ). В предлагаемом способе осуществляют циклическое воздействие на пласт, при котором каждый цикл включает закачку газа в пласт с последующим отбором газа. Воздействие на пласт осуществляют, по меньшей мере, в течение 10 циклов. В каждом цикле периодически одновременно измеряют текущее пластовое давление ( P t ф ) и объем отбора (или закачки) газа. С учетом измеренных параметров определяют расчетное давление в ПХГ ( P t Р ) для режима эксплуатации хранилища без утечек газа и для режима эксплуатации хранилища с утечками газа. Затем определяют функцию (F) как среднеарифметическое значение отклонений ( P t Р ) от ( P t ф ) , полученных при каждом i-м измерении, для режима эксплуатации хранилища без утечек газа и функцию (Fy) для режима эксплуатации хранилища с утечками газа и при выполнении неравенства Fy<F делают вывод о наличии утечек газа в хранилище. 1 табл.

Изобретение относится к измерительной технике. Предназначено для исследования способов восстановления трубопроводов преимущественно внутренними рукавными (трубчатыми) покрытиями, наносимыми пневматическим или гидравлическим давлением. Заявленный стенд для исследования оборудования и процессов бестраншейного ремонта трубопроводов включает установленные на основании исследуемую трубу, в которой расположен исследуемый гибкий сложенный вдвое выворотом рукав, внешняя кромка которого закреплена на трубе, систему создания давления на рукав и динамический механизм в виде подвижного груза на блоке и динамометра растяжения, установленных съемно с возможностью автономного соединения с внутренней кромкой рукава, при этом источник давления на рукав представляет собой компрессионную цилиндрическую камеру, смонтированную с возможностью автономного соединения с компрессором и с гидравлической рециркуляционной системой и соединенную с исследуемой трубой в месте крепления внешней кромки рукава посредством сменной насадки, а также оборудованную соединенным с компрессором пневматическим затвором, состоящим из корпуса и внутренней эластичной манжеты с возможностью перемещения в ней рукава, внутренняя кромка которого присоединена к динамическому механизму, кроме того, компрессионная камера оборудована укрепленными неподвижно на центральном валу, перпендикулярном центральной оси исследуемой трубы, намоточными катушками - внутренней, с возможностью намотки рукава его внутренней кромкой, и внешней, с возможностью автономного соединения с подвижным грузом или с динамометром растяжения динамического механизма. Технический результат заключается в обеспечении многовариантного определения напора и средней скорости течения воды, потери напора, поправочного коэффициента Кориолиса, коэффициента гидравлического трения при различных сочетаниях нагрузок на различных моделях труб и рукавов. 9 з.п. ф-лы, 4 ил.

Изобретение относится к газодобывающей промышленности. Техническим результатом является упрощение контроля герметичности, что приводит к повышению надежности и безопасности эксплуатации ПХГ, созданных в водоносных пластах. В предлагаемом способе осуществляют циклическое воздействие на пласт, при котором каждый цикл включает закачку газа в пласт с последующим отбором газа. Воздействие на пласт осуществляют, по меньшей мере, в течение 10 циклов. В каждом цикле периодически одновременно измеряют текущее пластовое давление в газовой ( P t ф ) и водоносной ( P t ф в ) зоне хранилища, а также объем отбора (или закачки) газа, затем с учетом измеренных параметров определяют расчетное давление в ПХГ ( P t P ) для режима эксплуатации хранилища без утечек газа и для режима эксплуатации хранилища с утечками газа. Затем определяют функцию (F), как среднеарифметическое значение отклонений ( P t P ) от ( P t ф ) , полученных при каждом i-м измерении, для режима эксплуатации хранилища без утечек газа и функцию (Fy) для режима эксплуатации хранилища с утечками газа и при выполнении неравенства Fy<F делают вывод о наличии утечек газа в хранилище. 1 табл.

Изобретение относится к области исследования устройств на герметичность и может быть использовано для контроля герметичности корпуса космического аппарата (КА) и поиска места течи из его отсеков в условиях орбитального полета или в процессе вакуумных испытаний. Сущность: создают давление воздуха внутри корпуса КА. Обдувают части корпуса КА пробным мелкодисперсным веществом с малым временем полной сублимации в условиях испытаний (например, углекислым газом в твердой форме). Обнаруживают локальную негерметичность корпуса КА посредством регистрации изменения линий тока полностью испаряющегося после испытаний пробного мелкодисперсного вещества под воздействием выходящего из корпуса газа. Технический результат: повышение точности и оперативности поиска места течи. 1 ил.

Изобретение относится к области исследования устройств на герметичность и может быть использовано для определения герметичности работающих под внешним давлением изделий, в частности изделий космической техники. Сущность: вакуумируют внутреннюю полость изделия через испытательную систему до установившегося равновесного давления в изделии и испытательной системе. Отсоединяют изделие от испытательной системы, продолжая вакуумировать испытательную систему. Измеряют первое установившееся равновесное давление в испытательной системе, соответствующее поступлению в испытательную систему собственного потока газоотделения и натекания испытательной системы. Подсоединяют к испытательной системе калиброванную течь. Измеряют установившееся равновесное давление в испытательной системе, соответствующее поступлению в испытательную систему собственного потока газоотделения и натекания испытательной системы и потока газа от калиброванной течи. Отсоединяют от испытательной системы калиброванную течь. Соединяют изделие с испытательной системой. Измеряют установившееся равновесное давление, соответствующее поступлению в испытательную систему потока от негерметичности изделия и собственного потока газоотделения и натекания испытательной системы. Отсоединяют изделие от испытательной системы. Измеряют второе установившееся равновесное давление, соответствующее поступлению в испытательную систему собственного потока газоотделения и натекания испытательной системы. Определяют величину негерметичности изделия на основании величины потока газа от калиброванной течи и величин упомянутых давлений. При этом после вакуумирования внутренней полости изделия через испытательную систему до установившегося равновесного давления в изделии и испытательной системе и отсоединения изделия от испытательной системы отсоединяют от средств вакуумирования сообщающийся с калиброванной течью участок испытательной системы известного объема. Причем калиброванную течь подсоединяют к участку испытательной системы известного объема. Измеряют поток газа от калиброванной течи по создаваемой им скорости нарастания давления в участке испытательной системы известного объема. Отсоединяют калиброванную течь от участка испытательной системы известного объема. После этого подсоединяют к средствам вакуумирования участок испытательной системы известного объема и захолаживают охлаждаемую ловушку средств вакуумирования. При этом измерения всех установившихся равновесных давлений, подсоединение и отсоединение калиброванной течи и изделия осуществляют после захолаживания охлаждаемой ловушки средств вакуумирования. Причем температура охлаждаемой ловушки средств вакуумирования должна быть равной температуре на рабочем месте. Технический результат: повышение точности определения герметичности изделий, повышение долговечности изделий при эксплуатации. 1 ил.

Изобретение относится к вакуумной технике, а именно к статическим магнитным масс- спектрометрическим анализаторам со 180-градусным поворотом и двойной магнитной фокусировкой, и может быть использовано в газовых течеискателях, в том числе гелиевых, предназначенных для испытания на герметичность различных систем и объектов, допускающих откачку внутренней полости до глубокого вакуума или заполнение ее гелийсодержащей смесью или другим пробным газом под избыточным давлением. Технический результат - повышение надежности и увеличение срока службы масс-спектрометрического анализатора; снижение вакуумных требований. Масс-спектрометрический анализатор газового течеискателя содержит вакуумную камеру с присоединительными фланцами, внутри которой размещены: источник ионов пробного газового вещества, состоящий из источника электронов и камеры ионизации; магнитная система, обеспечивающая разделение ионов по массам; приемник ионов. При этом в качестве источника электронов использован плазменный катод на основе плазмы тлеющего разряда, представляющий собой помещенную в аксиальное магнитное поле ячейку Пеннинга с эмиттером электронов, выполненным в виде щели для формирования ленточного электронного пучка в антикатоде ячейки, со стороны камеры ионизации. Предпочтительно, чтобы в центральной части анода ячейки Пеннинга были выполнены отверстия для «подкачки» остаточного газа из вакуумной камеры. 7 з.п. ф-лы, 4 ил.
Наверх