Способ смешивания и устройство для его осуществления

Группа изобретений относится к области переработки пастообразных и сухих сыпучих материалов и может быть использована в химической, пищевой, фармацевтической промышленности. Загрузку исходных компонентов осуществляют одновременным дозированием через различные узлы. Изменение направления вращения валов обеспечивает быстрое выравнивание концентраций исходных компонентов в осевом направлении и интенсифицирует процессы конвективного и диффузионного смешивания за счет сочетания активных крупномасштабного и мелкомасштабного перемещений частиц материала. Активное крупномасштабное перемещение всего объема готовой смеси в осевом направлении к узлу разгрузки и ее выгрузка малыми поточными объемами обеспечивает стабильную однородность смеси. Валы устройства для смешивания имеют возможность независимого изменения направления вращения, а лопасти выполнены двусторонними с поочередно меняющимися рабочими поверхностями активной и пассивной частей в зависимости от направления вращения валов. Техническим результатом изобретения является сокращение времени смешивания и выгрузки, повышение качества смеси, снижение износа рабочих поверхностей лопастей. 2 н.п. ф-лы, 6 ил.

 

Предложенные технические решения относятся к области переработки пастообразных и сухих сыпучих материалов и могут быть использованы в химической, пищевой, фармацевтической промышленности.

Известен способ объемного смешивания липких пастообразных смесей, а также сухих сыпучих компонентов [см. кн.: Процессы и аппараты химической технологии. Явления переноса, макрокинетика, подобие, моделирование, проектирование: В 5 т. Т.2. Механические и гидромеханические процессы / Д.А. Баранов, А.В. Вязьмин и др.; Под ред. A.M. Кутепова. - М.: Логос, 2001, с.128].

Его недостатки:

1. Загрузка исходных компонентов осуществляется последовательно через крышку с технологическими штуцерами без учета их содержания в смеси;

2. Привод от электродвигателя через редуктор для одного ротора с лопастями, а другого ротора - через передачу от первого не позволяет использовать их независимое вращение и организовать различное перемещение частиц при смешивании;

3. Использование опрокидывающегося корпуса при выгрузке готовой смеси усложняет конструкцию.

За прототип принят способ смешивания увлажненных материалов и паст, а также сухих сыпучих материалов [см. кн.: Макаров Ю.И. Аппараты для смешения сыпучих материалов - М.: Машиностроение, 1973, с.104]. Данный способ характеризуется тем, что компоненты смешиваются двумя горизонтальными валками, расположенными в корытообразном корпусе и вращающимися навстречу друг другу с различными числами оборотов. В качестве недостатков данного технического решения можно выделить следующее:

1. Загрузка компонентов осуществляется через открывающуюся крышку, расположенную сверху смесителя, что не позволяет использовать одновременное дозирование различных компонентов непосредственно в камеру смешивания.

2. Применение валков, постоянно вращающихся навстречу друг другу с различными числами оборотов, не позволяет управлять процессом перемещения частиц при смешивании материалов и разгрузке готовой смеси.

3. Разгрузка смесителя осуществляется за счет опрокидывания корыта вокруг оси одного валка, что повышает вероятность сегрегации готовой смеси при выгрузке ее большим объемом.

Известны смесители с энергичным воздействием лопастей на материал и различными по форме рабочими органами [см. кн.: Стабников В.Н., Лысянский В.М., Попов В.Д. Процессы и аппараты пищевых производств. - М: Агропромиздат, 1985, с.114]. Недостатком данных смесителей является отсутствие возможности управляемого изменения траекторий перемещений частиц внутри корпуса в связи с фиксированной направленностью вращения горизонтальных валов с рабочими органами, что увеличивает время смешивания и выгрузки.

За прототип установки взят двухвальный смеситель «Sicoma», позволяющий создавать встречные винтовые потоки частиц материалов, которые, в результате, двигаясь не только в горизонтальной плоскости, но и в вертикальной, с высокой эффективностью перемешиваются в центральной части. [см. статья Александр Черниговский. Промышленные бетоносмесительные установки для современных бетонов// журнал «ЖБИ и конструкции», №4, 2010, с.38-50]. Данный смеситель не лишен вышеуказанных недостатков, а также рабочие органы имеют лишь одностороннюю рабочую поверхность, что ограничивает их применение при различном изменяемом направлении вращения валов.

Технической задачей изобретения является сокращение времени смешивания и выгрузки, повышение качества смеси, снижение износа рабочих поверхностей лопастей.

Решение поставленной задачи достигается тем, что загрузку исходных компонентов осуществляют одновременным дозированием через различные узлы. Изменение направления вращения валов обеспечивает быстрое выравнивание концентраций исходных компонентов в осевом направлении и интенсифицирует процессы конвективного и диффузионного смешивания за счет сочетания активных крупномасштабного и мелкомасштабного перемещений частиц материала. Активное крупномасштабное перемещение всего объема готовой смеси в осевом направлении к узлу разгрузки и ее выгрузка малыми поточными объемами обеспечивает стабильную однородность смеси. Валы устройства для смешивания имеют возможность независимого изменения направления вращения, а лопасти выполнены двусторонними с поочередно меняющимися рабочими поверхностями активной и пассивной частей в зависимости от направления вращения валов.

На фиг.1 изображен общий вид устройства с направлениями перемещений частиц в различные периоды процесса смешивания и выгрузки, на фиг.2 изображена двухсторонняя лопасть, на фиг.3 - кинетические кривые процесса смешивания.

Устройство представляет собой смеситель, состоящий из корпуса 1 корытообразной формы, внутри которого расположены горизонтальные валы 2 (фиг.1, а). На валах 2 размещены рычаги 3 со сменными лопастями 4 Т-образной формы. Привод валов 2 осуществляется независимо с одинаковым числом оборотов через редукторы 5 и устройства изменения направления вращения 6 (реверса) от электродвигателей 7. Рычаги 3 с лопастями 4 на каждом валу 2 смещены на угол 90° относительно друг друга и на угол 45° между валами 2. Лопасти 4 на валах 2 имеют одинаковый угол атаки α (фиг.1, а) и выполнены с двусторонними рабочими поверхностями (активной (А) и пассивной частями (П), фиг.2). Активная и пассивная части лопастей поочередно меняются местами в зависимости от направления вращения валов 2. На крышке 8 корпуса 1 смесителя расположены узлы загрузки 9 исходных компонентов (фиг.1).

Смешивание в устройствах данного типа обеспечивается за счет перемещения частиц материала по двум направлениям: осевом и радиальном. Смешивание складывается из следующих одновременно протекающих элементарных процессов [см. кн. Технологическое оборудование предприятий по хранению и переработке зерна / Под ред. А.Я. Соколова. - М.: Колос, 1984, с.206, Макаров Ю.И. Аппараты для смешения сыпучих материалов - М.: Машиностроение, 1973, с.85]: 1. Перемещение группы смежных частиц из одного места смеси в другое внедрением, скольжением слоев (процесс конвективного смешивания); 2. Перераспределение частиц компонентов через свежеобразованную границу их раздела (диффузионный процесс смешивания); 3. Сосредоточение частиц, имеющих одинаковую массу в соответствующих местах смесителя под действием гравитационных или инерционных сил (процесс сегрегации). Минимальное время разгрузки без потери однородности обеспечивается при условии организации перемещения всего объема готовой смеси в осевом направлении к узлу разгрузки 9, расположенному в торцевой части корпуса 1 смесителя. Вероятность сегрегации снижается при условии организации малых объемов смеси при ее выгрузке.

Способ реализуется следующим образом.

Производится одновременная загрузка исходных компонентов через узлы загрузки 9, расположенные на крышке 8 смесителя (фиг.1). Расположение исходных компонентов обособленное в определенных частях корпуса смесителя. В начале процесса смешивания организуется активное крупномасштабное перемещение частиц компонентов. Валы 2 вращаются в противоположные стороны с одинаковым числом оборотов, перемещая частицы материала от центральной части корпуса 1 к его боковым стенкам в радиальном направлении с незначительным мелкомасштабным их обменом в центральной части (потоки М, фиг.1, б), и от одной торцевой части к другой равными по величине противоположными потоками K в осевом направлении, что обеспечивает быстрое выравнивание концентраций исходных компонентов в осевом направлении и интенсифицирует процесс конвективного смешивания (участок I кривой графика зависимости коэффициента неоднородности от времени смешивания t Vc=f(t), фиг.3). Лопасти 4 взаимодействуют с частицами материалами активной частью (А) рабочей поверхности (фиг.2, а). Для интенсификации диффузионного смешивания организуется активное мелкомасштабное перемещение частиц материала (участок II, фиг.3) для чего изменяют направления вращения валов 2 на противоположное направление (фиг.1, в). Валы вращаются навстречу друг другу с одинаковым числом оборотов, обеспечивая перемещение частиц от боковых стенок корпуса к центральной части в радиальном направлении и от одной торцевой части к другой равными по величине противоположными потоками K в осевом направлении с активным мелкомасштабным обменом частицами между ними (потоки М, фиг.1, в). Активная и пассивная части двухсторонних лопастей 4 меняются местами (фиг.2, б). В последующем проявление сегрегации и смешивания уравновешиваются (участок III, фиг.3) и требуется разгрузить смеситель.

Для разгрузки смесителя изменяется направление вращения одного из валов 2 (валы вращаются в одинаковом направлении, фиг.1, г), что приводит к активному крупномасштабному перемещению всего объема готовой смеси потоками K в осевом направлении к узлу разгрузки, расположенному у торцевой части корпуса смесителя. Процесс сопровождается активным мелкомасштабным обменом частицами в центральной части корпуса (потоки М, фиг.1, г), что обеспечивает стабильную однородность смеси при ее перемещении, выгрузка малыми поточными объемами снижает вероятность ее сегрегации при выгрузке.

Поочередное использование различных частей двусторонних лопастей 4 при изменении направления вращения валов 2 обеспечивает высокую надежность конструкции и снижает износ их рабочих поверхностей.

Предложенный способ, осуществляемый конструктивными особенностями устройства для его осуществления при одновременной загрузке исходных компонентов через различные узлы, обеспечивает быстрое выравнивание концентраций исходных компонентов в осевом направлении, сокращает время процесса конвективного смешивания (участок I, фиг.3) при снижении коэффициента неоднородности смеси сокращает время процесса диффузионного смешивания участок II, фиг.3). Суммарное время названных процессов - время смешивания уменьшается при повышении качества получаемой смеси , фиг.3). Активное крупномасштабное перемещение всего объема готовой смеси в осевом направлении к узлу разгрузки и ее выгрузка малыми поточными объемами обеспечивает стабильную однородность смеси, сокращает время разгрузки в сравнении со смешиванием, реализуемым в известных двухвальных лопастных смесителях. Экспериментальное смешивание с модельными материалами показало уменьшение суммарного времени процесса смешивания и выгрузки на 10…12%.

1. Способ смешивания в устройстве, включающий загрузку компонентов, их смешивание и разгрузку, отличающийся тем, что загрузку исходных компонентов осуществляют одновременным дозированием через различные узлы, обеспечивают быстрое выравнивание их концентраций в осевом направлении и интенсифицируют период процесса конвективного смешивания за счет организации активного крупномасштабного перемещения материала, интенсифицируют период процесса диффузионного смешивания за счет организации активного мелкомасштабного перемещения материала, при разгрузке организуют активное крупномасштабное перемещение всего объема готовой смеси в осевом направлении к узлу разгрузки и ее выгрузку малыми поточными объемами за счет изменения направления вращения валов с одинаковым числом оборотов.

2. Устройство для смешивания, включающее корпус, внутри которого расположены горизонтальные валы с рычагами и лопастями, отличающееся тем, что валы имеют возможность независимого изменения направления вращения, а лопасти выполнены двусторонними с поочередно меняющимися рабочими поверхностями активной и пассивной частей в зависимости от направления вращения валов.



 

Похожие патенты:

Изобретение относится к области получения сферических порохов (СФП) для стрелкового оружия. Способ получения сферического пороха включает перемешивание компонентов в реакторе, приготовление порохового лака в этилацетате, диспергирование в присутствии клея и отгонку растворителя, при этом диспергирование порохового лака проводят в реакторе объемом 6,5 м3 лопастными мешалками с переменным углом наклона, установленными в нижней консольной части вала в 3-4 ряда под углом 90° относительно предшествующей лопасти.

Изобретение относится к области получения сферических порохов (СФП) для стрелкового оружия. Способ получения СФП, включает перемешивание компонентов в реакторе, приготовление порохового лака в этилацетате, диспергирование в присутствии клея и отгонку этилацетата, при этом диспергирование порохового лака в реакторе проводят лопастными мешалками с диаметром 0,7-08 от внутреннего диаметра реактора, установленными на валу реактора в 3-4 ряда под углом наклона 90° относительно расположения предшествующей лопасти, ширина лопасти 0,07-0,12 от диаметра мешалки, толщина лопасти 0,007-0,008 от диаметра мешалки и переменным углом наклона лопасти относительно горизонтальной плоскости в шести равномерно распределенных точках по длине лопасти, начиная от ступицы мешалки.

Изобретение относится к области переработки сыпучих материалов для использования в химической, строительной, пищевой, фармацевтической промышленности и касается способа приготовления смеси сыпучих материалов и смесителя для его осуществления.

Изобретение относится к смесителю для бетона и аналогичных смесей и может использоваться в различных отраслях. .

Изобретение относится к смесителю для бетона и аналогичных смесей и может использоваться в различных отраслях промышленности. .

Изобретение относится к технологии приготовления смеси из партий сыпучего сырья и предназначено для использования в отрасли хлебопродуктов в технологическом процессе производства многокомпонентных гомогенных помольных партий и смесей зерна для переработки на мукомольных предприятиях.

Изобретение относится к реакторному устройству для текучих сред, особенно для полимеров для поликонденсации сложных полиэфиров. .

Изобретение относится к миксеру для приготовления стоматологического материала и может быть использовано в медицине. Миксер (10) для приготовления стоматологического материала содержит смесительный бочонок (17) и смесительный ротор (16), впускные патрубки (13, 14) миксера и выпускной патрубок (15). Смесительный ротор выполнен с возможностью вращения относительно оси (A) вращения смесительного ротора и содержит по меньшей мере четыре уровня (21, 22, 23, 24) смесительных лопастей, каждый из которых содержит по меньшей мере одну смесительную лопасть. Уровни смесительных лопастей расположены по меньшей мере на части смесительного ротора в направлении, параллельном оси вращения, и пространственно разнесены друг от друга на одинаковом расстоянии друг от друга. Каждая из смесительных лопастей имеет толщину в направлении, параллельном оси вращения. Отношение расстояния между лопастями к толщине лопасти составляет по меньшей мере 2:1. Техническим результатом изобретения является обеспечение максимальной эффективности перемешивания при минимальном потреблении энергии, которое не зависит от используемого материала, смесительного устройства и параметров смешивания. 2 н. и 18 з.п. ф-лы, 10 ил.

Изобретение относится к химической промышленности и может быть использовано для переработки органического сырья. Установка включает систему подачи исходного сырья (1), анаэробный биореактор (2), нагреватель биомассы, систему отвода биогаза (3), систему удаления биомассы (7), систему управления технологическим процессом (6). В систему подачи исходного сырья (1) включен механизм, состоящий из приемной воронки, механизма измельчения, механизма перемешивания, системы подогрева. Система подогрева включает рабочие лопатки, установленные на двух полых валах, образующих две батареи с разным направлением вращения. Нагреватель биомассы выполнен в полых валах двух батарей посредством продольных сквозных отверстий с возможностью пропускания через них теплоносителя. Установка содержит устройство для очистки газа, для выработки электрической и тепловой энергии, а также сепаратор (8) для разделения отработанной биомассы на твердую и жидкую фракции. Изобретение позволяет повысить производительность процесса, обеспечивает возможность функционирования в условиях пониженной температуры. 1 з.п. ф-лы, 4 ил. Референт Попова Е.О.

Настоящее изобретение относится к улавливающему устройству, которое улавливает порошкообразный добавляемый агент, выталкиваемый из напорного пластикатора закрытого типа для пластикации пластицируемого материала с высокой вязкостью, такого как каучук, пластик и керамика, и способу улавливания порошкообразного добавляемого агента, используя улавливающее устройство. Улавливающее устройство для улавливания вытолкнутого порошкообразного добавляемого агента установлено на напорный пластикатор закрытого типа для пластикации пластицируемого материала вместе с порошкообразным добавляемым агентом в пластицирующем резервуаре посредством вращения пластицирующего ротора. В улавливающем устройстве цилиндрический воздушный мешок, выполненный с возможностью расширения и сжатия, присоединен к боковой поверхности окружающей стенки пластицирующего резервуара при помощи вентиляционного рукава между воздушным мешком и окружающей стенкой, причем окружающая стенка окружает периметр канала подъема/опускания напорной крышки. Отводной канал, выполненный с возможностью соединения с и отсоединения от внешней среды, присоединен к верхней части воздушного мешка, и фильтрующая трубка для фильтрации и захвата порошкообразного добавляемого агента, переносимого газообразной фазой, поступающей со стороны пластицирующего резервуара, расположена в подвешенном состоянии внутри воздушного мешка. Как следствие, имеется возможность вернуть порошкообразный добавляемый агент, захваченный фильтрующей трубкой, обратно в пластицирующий резервуар посредством потока сжатого воздуха, накопленного в воздушном мешке. Изобретение обеспечивает улучшение рабочей среды путем предотвращения выброса большого количества порошкообразного добавляемого агента в виде пыли и возвращения порошкообразного добавляемого агента обратно в пластицирующий резервуар. 2 н. и 6 з.п. ф-лы, 8 ил.

Изобретение относится к смесителям и может быть использовано для приготовления эмульсий и суспензий для сжигания в топках энергетических установок, а также в химической технологии. Смеситель-эмульсатор снабжен улиткообразными камерами, расположенными на входе и выходе устройства и соединенными патрубками ввода и вывода жидкости, при этом лопасти ротора выполнены с серповидными на периферии участками, переходящими в плоские участки, расположенные у ротора и параллельные его продольной оси. Диаметр отверстий в дисках увеличивается по направлению от оси корпуса к его периферии. Техническим результатом изобретения является интенсификация процесса и повышение качества готового продукта за счет увеличения поверхности контакта смешиваемых компонентов. 7 ил.

Изобретение относится к устройствам для смешивания материалов, обладающих плохой сыпучестью и различающихся по плотности, например для смешивания рецептурных компонентов животного и растительного происхождения, а также продуктов микробиального синтеза, и может применяться для приготовления кормов в сельском хозяйстве. Горизонтальный смеситель материалов включает опорную раму, корпус с разгрузочным отверстием, горизонтальным валом с лопастями и загрузочным бункером, причем в корпусе смесителя выполнен продольный вырез, а загрузочный бункер выполнен отдельно от корпуса и может быть установлен в оптимальном месте. Изобретение обеспечивает повышение качества смешивания. 5 ил.

Изобретение относится к сельскому хозяйству, в частности к устройствам для приготовления кормов на животноводческих фермах и комплексах. Устройство для смешивания сухих кормов и сухих добавок состоит из бункера для сухих кормов, в котором установлен выгрузной шнек, выполненный в виде спирали круглого сечения, в зоне выгрузки выгрузной шнек выполнен в виде П-образных лопастей круглого сечения, изготовленных из прутка диметром 4…10 мм и повернутых относительно оси вращения на угол α=5…15° по ходу витков спирали в бункере, при этом под П-образными лопастями круглого сечения расположена сетка, выполненная в виде пластины с прямоугольными пробивными отверстиями шириной поперек вала шнека 15…30 мм и длиной 30…70 мм с перемычками 2…4 мм, параллельно с бункером для сухих кормов расположен многокомпонентный бункер-дозатор сухих добавок, имеющий в двух-семи секциях на общем валу лопастные барабаны с плоскими радиальными лопастями в количестве 6…20 шт. и выгрузными отверстиями в виде щелей, перекрываемых регулировочными заслонками, при этом под указанными бункерами располагается камера предварительного смешивания, под которой имеется камера основного смешивания, представляющая собой цилиндр, по оси которого на приводном валу располагаются два последовательно расположенных рабочих органа активного смешивания, причем первый рабочий орган представляет собой П-образные лопасти круглого сечения, в количестве от 4 до 10, закрепленные на валу и повернутые относительно оси вращения на угол β=5…15°, а второй рабочий орган, предназначенный для смешивания и выгрузки, представляющий собой двухзаходный спиралевидный конвейер, также закреплен на валу непосредственно за первым рабочим органом с П-образными лопастями. Изобретение обеспечивает высокое качество смешивания компонентов корма, простоту изготовления конструкции, низкую энергоемкость получения смеси. 1 ил.

Месильное устройство (2) имеет по меньшей мере два вала (12, 14), на которых закреплены расположенные в месильной камере (6) инструменты (18, 22). По меньшей мере один из инструментов (18, 22) выполнен транспортирующим тесто от загрузочной зоны (10) в направлении (20) подачи к разгрузочному отверстию (8). Инструменты (22) первого вала (12) образованы несколькими лопастями (22) с лопастной поверхностью (32). Лопасти (22) расположены вдоль вала (12) с взаимным смещением, и траектории движения лопастных поверхностей (32) двух соседних лопастей (22) во время вращения вокруг оси (30) первого вала (12) частично накладываются друг на друга. Инструменты (18) второго вала (14) образованы несколькими подающими и месящими сегментами (18), которые имеют соответственно рабочую поверхность (44). Месящие сегменты (18) расположены вдоль вала (14) с взаимным смещением, причем траектории движения рабочих поверхностей (44) двух соседних подающих и месящих сегментов (18) во время вращения вокруг оси (28) второго вала (14) по меньшей мере частично накладываются друг на друга. Минимальное расстояние (А) между лопастями (22) и подающими и месящими сегментами (18) составляет от 1,5 до 15,0 мм, предпочтительно от 5,0 до 10,0 мм. Изобретение позволяет варьировать месильное и транспортирующее действия устройства. 30 з.п. ф-лы, 8 ил.

Изобретение относится к смесителям и может быть использовано для приготовления эмульсий и суспензий для сжигания в топках энергетических установок, а также в химической технологии. Смеситель-эмульсатор содержит цилиндрический корпус, вал, установленный по оси корпуса, многолопастный ротор, размещенный на валу, радиально закрепленные на роторе лопасти, перфорированный диск, установленный в корпусе за ротором по ходу движения жидкости, патрубки ввода и вывода жидкости и привод, соединенный с валом, при этом он снабжен улиткообразными камерами, расположенными на входе и выходе смесителя-эмульсатора и соединенными с патрубками ввода и вывода жидкости, при этом лопасти ротора выполнены с серповидными на периферии участками, переходящими в плоские участки, расположенные у ротора и параллельные его продольной оси, а диаметр отверстий в диске увеличивается по направлению от оси корпуса к его периферии, кроме того, лопасти ротора выполнены из биметалла, причем материал биметалла, расположенного по ходу вращения ротора, имеет коэффициент теплопроводности в 2,0–2,5 раза выше, чем материал биметалла расположенного с противоположной стороны. Изобретение обеспечивает получение качественного готового продукта при изменяющихся концентрациях механических загрязнений в движущемся потоке жидкости. 7 ил.

Изобретение относится к оборудованию для смешивания сыпучих продуктов и может быть использовано в комбикормовой промышленности, на предприятиях агропромышленного комплекса и в других отраслях промышленности. Двухвальный смеситель содержит смесительную ванну, два вала с лопастями, привод, при этом установленные на валах лопасти повернуты на 45º относительно их оси, причем на первом валу четные лопасти расположены по винтовой спирали через 120º с правым направлением спирали, а нечетные лопасти – с левым, на втором валу также расположены четные и нечетные лопасти по аналогичным винтовым спиралям с левым и правым направлениями, внутри каждого полого лопастного вала соосно установлена неподвижная ось, на которой с шагом, равным шагу расположения лопастей на лопастном валу, установлены кулачки, с наружной поверхностью которых взаимодействуют ролики, установленные на концах стоек лопастей, причем на стойки, расположенные между внутренним диаметром лопастного вала и роликами, надеты пружины, верхняя часть корпуса смесительной ванны выполнена по сложной линии, соответствующей траектории перемещения лопастей, обусловленной наружной поверхностью кулачков, верхняя кромка лопасти, контактирующая с внутренней поверхностью смесительной ванны, выполнена из эластичного материала, в торцевых стенках верхней части корпуса смесительной ванны установлены форсунки для подачи жидких и вязких компонентов. Техническим результатом изобретения является повышение эффективности смешивания и снижение удельных энергозатрат при достижении наилучшей однородности смешивания за счет реализации прогрессивного метода смешивания, основанного на механическом псевдоожижении в сочетании с перекрёстным противотоком, а также сокращение продолжительности процесса смешивания. 9 ил.

Изобретение относится к переработке техногенных материалов и может быть использовано в различных отраслях промышленности: химической, энергетической, топливной, а также в промышленности строительных материалов для приготовления композиционных смесей с тонкоизмельченными волокнистыми материалами. Технологический модуль смешения техногенных волокнистых материалов состоит из последовательно установленных вертикального 1 и горизонтального 7 смесителей с лопастями. Лопасти вертикального смесителя 4 выполнены двухзаходными винтовыми, в виде геликоидальных поверхностей однонаправленного захода в сторону выгрузки материала. Лопасти 11, 13 горизонтального смесителя в загрузочной и выгрузочной части выполнены однозаходными винтовыми однонаправленными в сторону выгрузки материала. Между ними установлены противоположно направленные двухзаходные винтовые лопасти 12. Горизонтальный смеситель 7 содержит блок для механического предварительного уплотнения смеси, представленный внешним и внутренним конусами, выполненными двухконусными. Способ смешения техногенных волокнистых материалов включает смешение с органическим связующим, пароувлажнение и механическое уплотнение смеси. Смешение осуществляется в две стадии. На первой стадии происходит турбулентно-гирационное смешение. На второй стадии происходит рециркуляционное смешение с пароувлажнением. Изобретение обеспечивает смешение техногенных волокнистых материалов с различными физико-механическими характеристиками и повышение качества смеси путем постадийного высокоскоростного смешения смеси с организацией внутреннего рецикла на каждой стадии их смешения и последовательного увеличения ее плотности посредством механического предварительного уплотнения. 2 н.п. ф-лы, 4 ил.
Наверх