Энергетическая установка

Изобретение относится к энергетике. Энергетическая установка содержит парогазовую турбину, компрессор, камеру сгорания топлива. В состав установки включено средство утилизации тепла отходящих газов, выполненное с возможностью его использования в качестве источника пара. Для этого установка снабжена тепловым насосом, контур которого включает испаритель, дроссельный клапан, конденсатор и дополнительный компрессор, выполненный с возможностью привода от парогазовой турбины. Кроме того, установка снабжена паровой турбиной, выполненной с возможностью работы на один вал с парогазовой турбиной. На газоотводящей линии между выходом парогазовой турбины и теплоотдающим контуром конденсатора размещен теплоотдающий контур теплообменника, при этом газовый выход конденсатора сообщен с атмосферой, а его конденсатный выход связан с конденсатоотводчиком, который через линию, включающую насос и последовательно связанные тепловоспринимающие контуры теплообменника и испарителя, сообщен с камерой сгорания и входом паровой турбины, при этом выход паровой турбины сообщен со вторым конденсатором, конденсатный выход которого через второй питательный насос связан с конденсатоотводчиком. Изобретение позволяет уменьшить потери тепла и воды в окружающую среду. 1 з.п.ф-лы, 1 ил.

 

Изобретение относится к теплоэнергетике, в частности к энергетическим установкам, предназначенным для производства электрической энергии и/или для совершения механической работы.

Известна энергетическая установка, содержащая снабженную выходом на полезную нагрузку парогазовую установку с вводом пара, выход которой подключен к первому входу подогревателя, выход которого подключен к первому входу конденсатора, первый выход которого сообщен с окружающей средой, первый контур циркуляции воды, подключенный ко второму входу и второму выходу конденсатора, включающий последовательно соединенные первый насос и холодильник, по его первому входу и первому выходу, а также второй контур циркуляции воды, подключенный ко входу ввода пара парогазовой установки и к первому контуру циркуляции воды, включающий последовательно соединенные второй насос и подогреватель, по его второму входу и второму выходу (см. заявку Великобритании 2074659, кл. F01K 21/04, опубл. 04.11.81).

Недостатками известной установки являются большие потери тепла с отходящей парогазовой смесью и большие потери воды из-за низкой эффективности работы холодильника.

Известна также энергетическая установка, содержащая снабженную выходом на полезную нагрузку парогазовую установку с вводом пара, выход которой подключен к первому входу подогревателя, первый выход которого подключен к первому входу конденсатора, первый выход которого сообщен с окружающей средой, первый контур циркуляции воды, подключенный ко второму входу и второму выходу конденсатора, включающий последовательно соединенные первый насос и холодильник, по его первому входу и первому выходу, а также второй контур циркуляции воды, подключенный ко входу ввода пара парогазовой установки и к первому контуру циркуляции воды, включающий последовательно соединенные второй насос и подогреватель, по его второму входу и второму выходу (см. а.с. СССР 547121, кл. F01 21/04, опубл. 07.12.82).

Недостатками известной установки являются большие потери тепла с охлаждающей водой и большие потери воды из-за низкой эффективности работы холодильника. Это объясняется тем, что при работе известного устройства большое количество тепла сбрасывается в атмосферу, а при ограничении сброса тепла в атмосферу не вся вода из парогазовой смеси извлекается в конденсаторе и также выбрасывается в атмосферу.

Наиболее близкой к предложенной энергетической установке является энергетическая установка, содержащая парогазовую турбину, выполненную с возможностью привода потребителя механической энергии и компрессора выполненного с возможностью отбора воздуха из атмосферы, выход которого сообщен с камерой сгорания топлива, связанной с источником топлива и источником пара, выход которой сообщен со входом парогазовой турбины, кроме того в состав установки включено средство утилизации тепла отходящих газов, выполненное с возможностью его использования в качестве источника пара (см. Степанов И.Р. «Парогазовые установки. Основы теории, применение и перспективы», Апатиты, 2000, 100-103 стр.).

Существенными недостатками этого решения являются большие затраты обессоленной воды и низкий КПД установки, связанные с уходящей вместе с паром теплотой.

Задачей, на решение которой направлено предлагаемое техническое решение, является уменьшение потерь тепла и воды в окружающую среду.

Технический результат, достигаемый при решении поставленной задачи, выражается в увеличении коэффициента использования тепла установки (отношение суммы мощности, отводимой от турбины на потребитель, и теплоты, отведенной от конденсатора на технологические нужды, к теплоте сгорания топлива в камере сгорания). Решение позволяет значительно расширить область применения установок данного типа, отсекая необходимость наличия источника пресной воды в районе применения установки. Это также уменьшает вредное воздействие установки на окружающую среду, уменьшая массу рабочего тела выводимого из цикла.

Поставленная задача решается тем, что энергетическая установка, содержащая парогазовую турбину, выполненную с возможностью привода потребителя механической энергии и компрессора выполненного с возможностью отбора воздуха из атмосферы, выход которого сообщен с камерой сгорания топлива, связанной с источником топлива и источником пара, выход которой сообщен со входом парогазовой турбины, кроме того в состав установки включено средство утилизации тепла отходящих газов, выполненное с возможностью его использования в качестве источника пара, отличается тем, что установка снабжена тепловым насосом, контур которого включает испаритель, конденсатор и дополнительный компрессор, выполненный с возможностью привода от парогазовой турбины, при этом выход дополнительного компрессора через теплоотдающий контур испарителя и дроссельный клапан сообщен с тепловоспринимающим контуром конденсатора, выход которого сообщен со входом дополнительного компрессора, кроме того установка снабжена паровой турбиной, выполненной с возможностью работы на один вал с парогазовой турбиной, кроме того, на газоотводящей линии между выходом парогазовой турбины и теплоотдающим контуром конденсатора размещен теплоотдающий контур теплообменника, при этом, газовый выход конденсатора сообщен с атмосферой, а его конденсатный выход связан с конденсатоотводчиком, который через линию, включающую питательный насос и последовательно связанные тепловоспринимающие контуры теплообменника и испарителя, сообщен с камерой сгорания и входом паровой турбины, при этом выход паровой турбины сообщен со вторым конденсатором, конденсатный выход которого через второй питательный насос связан с конденсатоотводчиком. Кроме того, газовый выход конденсатора снабжен вакуумным насосом.

Сопоставительный анализ существенных признаков предлагаемого технического решения с существенными признаками аналогов и прототипа свидетельствует о его соответствии критерию «новизна».

Признаки отличительной части формулы изобретения решают следующие функциональные задачи.

Признак «…установка снабжена тепловым насосом…» обеспечивает возможность утилизации тепла, содержащегося в сбрасываемом (исходящем) объеме рабочего тела - парогазовой смеси.

Признаки, указывающие, что контур теплового насоса включает «испаритель, конденсатор и дополнительный компрессор, выполненный с возможностью привода от парогазовой турбины, при этом выход дополнительного компрессора через теплоотдающий контур испарителя и дроссельный клапан сообщен с тепловоспринимающим контуром конденсатора, выход которого сообщен со входом дополнительного компрессора» обеспечивают отбор тепла, содержащегося в сбрасываемом (исходящем) объеме рабочего тела - парогазовой смеси в контур теплового насоса.

Признак «…установка снабжена паровой турбиной, выполненной с возможностью работы на один вал с парогазовой турбиной» позволяет утилизировать тепловую энергию, которую невозможно вернуть в цикл парогазовой турбины.

Признак, указывающий, что «на газоотводящей линии между выходом парогазовой турбины и теплоотдающим контуром конденсатора размещен теплоотдающий контур теплообменника» обеспечивает утилизацию тепла сбрасываемого (исходящем) объеме рабочего тела - парогазовой смеси, при ее исходных температурных параметрах.

Признак «…газовый выход конденсатора сообщен с атмосферой…» обеспечивает сброс в атмосферу обезвоженной газовой компоненты исходящей парогазовой смеси.

Признак, указывающий, что конденсатный выход конденсатора «связан с конденсатоотводчиком» обеспечивает возврат конденсировавшейся воды в тепловоспринимающий контур теплообменника.

Признак, указывающий, что конденсатоотводчик «…сообщен с камерой сгорания…» обеспечивает возможность формирования в ней рабочего тела - парогазовой смеси.

Признаки, указывающие, что конденсатоотводчик сообщен с камерой сгорания и входом паровой турбины «линией включающей первый питательный насос и последовательно связанные тепловоспринимающие контуры теплообменника и испарителя» обеспечивают формирование пара из конденсата, за счет утилизации тепла сбрасываемого (исходящем) объеме рабочего тела - парогазовой смеси.

Признаки «выход паровой турбины сообщен со вторым конденсатором, конденсатный выход которого через второй питательный насос связан с конденсатоотводчиком» позволяет отбирать из испарителя избыточное тепло, не передаваемое основному рабочему телу и направить как потребителю, так и на привод компрессора теплового насоса.

Признаки, второго пункта формулы изобретения обеспечивают сброс в атмосферу продуктов сгорания топлива и позволяют увеличить срабатываемый теплоперепад в турбине.

На фиг.1 показана схема энергетической установки.

На чертеже показаны средство отбора атмосферного воздуха 1, камера сгорания 2, компрессор 3, источник топлива 4 и пароподводящая линия 5, парогазовая турбина 6, привод потребителя механической энергии 7, теплообменник 8, конденсатор 9, вакуумный 10 и первый питательный 11 насосы, испаритель 12, паровая турбина 13, дополнительный компрессор 14, а также теплонасосная линия 15, трубопровод 16, конденсатоотводчик 17, дроссельный клапан 18, второй конденсатор 19 и второй питательный насос 20.

Энергетическая установка, содержит парогазовую турбину 6, выполненную с возможностью привода потребителя механической энергии 7 (например, электрогенератор или движитель судна) и компрессора 3, выполненного с возможностью отбора воздуха из атмосферы через средство 1 (например, фильтр). Выход компрессора 3 сообщен с камерой сгорания 2 топлива, связанной с источником топлива 4 и источником пара (пароподводящая линия 5), выход которой сообщен со входом парогазовой турбины 6. В состав установки включено средство утилизации тепла отходящих газов, выполненное с возможностью его использования в качестве источника пара. Для этого установка снабжена тепловым насосом, контур которого включает испаритель 12, конденсатор 9 и дополнительный компрессор 14, выполненный с возможностью привода от парогазовой турбины 6. Газовый выход конденсатора 9 может быть снабжен вакуумным насосом 10. Выход дополнительного компрессора 14 через теплоотдающий контур испарителя 12 и дроссельный клапан 18 сообщен с тепловоспринимающим контуром конденсатора 9, выход которого сообщен со входом дополнительного компрессора 14. Кроме того установка снабжена паровой турбиной 13, выполненной с возможностью работы на один вал с парогазовой турбиной 6. На газоотводящей линии между выходом парогазовой турбины 6 и теплоотдающим контуром конденсатора 9 размещен теплоотдающий контур теплообменника 8. Газовый выход конденсатора 9 сообщен с атмосферой, а его конденсатный выход связан с конденсатоотводчиком 17, который через линию, включающую первый питательный насос 11 и последовательно связанные тепловоспринимающие контуры теплообменника 8 и испарителя 12, сообщен с камерой сгорания 2 и входом паровой турбины 13. Выход паровой турбины 13 сообщен со вторым конденсатором 19, конденсатный выход которого через второй питательный насос 20 связан с конденсатоотводчиком 17.

Газопаротурбинная установка работает следующим образом. Атмосферный воздух очищают в средстве отбора атмосферного воздуха 1, (например, в фильтре) сжимают компрессором 3 и направляют в камеру сгорания 2, куда подводят топливо из источника топлива 4. В зону горения из пароподводящей линии 5 подводят пар. Парогазовую смесь высокой температуры по трубопроводу 16 подают в парогазовую турбину 6. Работу парогазовой турбины 6 используют для сжатия воздуха в компрессоре 3 и приводе потребителя механической энергии 7 (например, выработки электроэнергии в электрогенераторе). Расширившуюся (отработанную) парогазовую смесь по трубопроводу 16 направляют в теплообменник 8, где утилизируют тепло отработанной парогазовой смеси. Из теплообменника 8 парогазовую смесь направляют в конденсатор 9, конденсируют паровую составляющую парогазовой смеси, а продукты сгорания топлива вакуумным насосом 10 (или непосредственно) отводят в атмосферу. Сконденсировавшийся пар посредством конденсатоотводчика 17 отбирают из конденсатора 9 и подают вместе с конденсатом от второго питательного насоса 20 в первый питательный насос 11, который повышает давление конденсата. Затем через теплообменник 8 и испаритель 12 пар направляют частично в камеру сгорания 2, частично в паровую турбину 13. Пар, отработавший в паровой турбине 13, конденсируется в конденсаторе 19. После чего конденсат поступает во второй питательный насос 20, где его давление поднимается до давления за конденсатором 9. Из питательного насоса 20 конденсат поступает к первому питательному насосу 11. Вторичный паротурбинный контур введен для утилизации избыточной теплоты, отведенной от конденсатора 9 тепловым насосом, которое не может быть эффективно передано в испарителе 12 воде, циркулирующей в основном контуре. Теплота конденсации пара отводится из конденсатора 9 хладагентом (например, водой) теплового насоса. Хладагент из конденсатора 9 по теплонасосной линии 15 поступает на вход дополнительного компрессора 14, кинематически связанного с валом парогазовой турбины 6, затем сжатый в компрессоре 14 хладагент с выхода компрессора 14 через теплоотдающие контуры испарителя 12, дроссель 18, поступает в конденсатор 9.

1. Энергетическая установка, содержащая парогазовую турбину, выполненную с возможностью привода потребителя механической энергии и компрессора, выполненного с возможностью отбора воздуха из атмосферы, выход которого сообщен с камерой сгорания топлива, связанной с источником топлива и источником пара, выход которой сообщен со входом парогазовой турбины, кроме того, в состав установки включено средство утилизации тепла отходящих газов, выполненное с возможностью его использования в качестве источника пара, отличающаяся тем, что установка снабжена тепловым насосом, контур которого включает испаритель, конденсатор и дополнительный компрессор, выполненный с возможностью привода от парогазовой турбины, при этом выход дополнительного компрессора через теплоотдающий контур испарителя и дроссельный клапан сообщен с тепловоспринимающим контуром конденсатора, выход которого сообщен со входом дополнительного компрессора, кроме того, установка снабжена паровой турбиной, выполненной с возможностью работы на один вал с парогазовой турбиной, кроме того, на газоотводящей линии между выходом парогазовой турбины и теплоотдающим контуром конденсатора размещен теплоотдающий контур теплообменника, при этом газовый выход конденсатора сообщен с атмосферой, а его конденсатный выход связан с конденсатоотводчиком, который через линию, включающую питательный насос и последовательно связанные тепловоспринимающие контуры теплообменника и испарителя, сообщен с камерой сгорания и входом паровой турбины, при этом выход паровой турбины сообщен со вторым конденсатором, конденсатный выход которого через второй питательный насос связан с конденсатоотводчиком.

2. Энергетическая установка по п.1, отличающаяся тем, что газовый выход конденсатора снабжен вакуумным насосом.



 

Похожие патенты:

Изобретение относится к энергетике. Энергетическая установка содержит парогазовую турбину, компрессор, камеру сгорания топлива.

Изобретение относится к энергетике и может быть использовано для выработки электроэнергии на электростанциях и автономно на различных предприятиях. .

Изобретение относится к теплоэнергетике. .

Изобретение относится к двигателестроению, Камерно-инжекторно-турбинный двигатель содержит сообщенные между собой посредством вала турбину и компрессор с электрогенератором, камеры сгорания, системы управления, охлаждения и зажигания.
Изобретение относится к области производства механической энергии в первичных тепловых двигателях роторного типа с газообразным рабочим телом, в которых повышение КПД осуществляется за счет регенерации тепла отработавших газов с использованием эндотермических процессов водно-парового преобразования углеводородного топлива.

Изобретение относится к теплоэнергетике. .

Изобретение относится к области теплоэнергетики. .

Изобретение относится к области энергетики - к парогазовым энергоустановкам. .

Изобретение относится к теплоэнергетике. .

Изобретение относится к теплоэнергетике - к парогазовым установкам. .

Парогазовая установка (ПГУ) относится к области энергетики. Установка имеет два рабочих контура: парогазовый, представляющий собой газотурбинную установку (ГТУ), и паровой, включающий в себя теплообменник-конденсатор, установленный во входном канале ГТУ, теплообменник-нагреватель, установленный в выходном канале ГТУ, паровую турбину и насос высокого давления, которые закольцованы. Рабочим телом ГТУ является смесь воздуха и водяного пара, которая образуется в результате испарения воды в теплообменнике-конденсаторе. Рабочим телом парового контура является пар, который образуется в результате испарения жидкости в теплообменнике-нагревателе с последующей конденсацией в теплообменнике-конденсаторе. Испарение воды и конденсация жидкости в теплообменнике-конденсаторе происходят одновременно. Изобретение позволяет повысить эффективность установки. 2 н. и 8 з.п. ф-лы, 8 ил.

Парогазотурбинная установка состоит из входного устройства, компрессора, камеры сгорания, камеры смешения, турбины привода компрессора, выходного устройства, теплообменника-испарителя, теплообменника-нагревателя, расположенного за теплообменником-испарителем, паровой турбины, теплообменника-конденсатора. Теплообменник-испаритель расположен в канале выходного устройства за турбиной привода компрессора и соединен с одной стороны с источником воды, а с другой - с камерой смешения. Вода, прежде чем попасть в теплообменник-испаритель, проходит через теплообменник-конденсатор паровой турбины. Паротурбинный контур закольцован: входной ресивер турбины соединен с выходом из теплообменника-нагревателя; выходной ресивер турбины через канал низкого давления теплообменника-конденсатора соединен с входом в насос, выход из которого соединен с входом в теплообменник-нагреватель. В паротурбинном контуре циркулирует легкоиспаряющаяся жидкость, переходящая в пар и обратно (например, этиловый спирт), имеющая температуру кипения менее 100°С. Достигается повышение эффективного кпд парогазотурбинной установки до 70-75%. 6 з.п. ф-лы, 4 ил.

Изобретение относится к энергетике. Парогазовая установка с паротурбинным приводом компрессора и высоконапорным парогенератором, содержащая компрессор, высоконапорный парогенератор, газовую турбину, котел-утилизатор, вакуумный деаэратор, конденсационную паровую турбину, противодавленческую паровую турбину, электрогенератор. Изобретение позволяет увеличить величину отношения расхода пара к расходу газов, повысить паропроизводительность, снизить металлоемкость теплообменных поверхностей, повысить электрическую мощность, снизить температуру газа во внутреннем корпусе двухкорпусной части высоконапорного парогенератора, а также уменьшить образование двуокиси азота в продуктах сгорания. 1 ил.

Изобретение относится к энергетике. Энергетическая установка, включающая парогазовую установку, может применяться для надстройки паротурбинных энергоблоков, причем надстраивают парогазовой установкой с приводом компрессора от конденсационной паровой турбины с суперсверхкритическими начальными параметрами пара. Изобретение позволяет повысить тепловую экономичность и мощность энергетических установок с типовыми паротурбинными энергоблоками. 2 ил.

Изобретение относится к области теплоэнергетики. Парогазовая установка содержит газотурбинную установку, связанную газоходом с котлом-утилизатором, в который встроены связанные между собой поверхности нагрева экономайзера, испарителя и пароперегревателя, который паропроводом связан с паровой турбиной высокого давления. Конденсатор-испаритель водопроводом через первый насос связан с экономайзером котла-утилизатора, который снабжен газоходом для отвода газов в дымовую трубу. Паровая турбина низкого давления паропроводом через рекуператор связана с конденсатором, который через второй насос водопроводом связан с рекуператором. Паровая турбина высокого давления валопроводом связана с паровой турбиной низкого давления, которая связана с электрическим генератором. Паровая турбина высокого давления паропроводом связана с конденсатором-испарителем, который водопроводом связан с первым насосом. Встроенный в котел-утилизатор второй пароперегреватель паропроводами связан с паровой турбиной низкого давления и конденсатором-испарителем, который водопроводом связан с встроенным в котел-утилизатор вторым экономайзером, который водопроводом связан с рекуператором. Изобретение позволяет увеличить КПД производства электроэнергии за счет увеличения температуры пара второго рабочего вещества на входе в турбину низкого давления и снижения температуры уходящих из котла-утилизатора газов. 1 ил.

Способ повышения КПД выработки электрической энергии микротурбинной парогазовой установки заключается в том, что компрессором сжимают воздух и подают в зону горения камеры сгорания. В камеру сгорания одновременно подают горючее, смешивают со сжатым воздухом и полученную топливную смесь сжигают. Полученные продукты сгорания смешивают в смесительной камере с водяным паром, получая парогазовую смесь. Парогазовую смесь направляют в турбину, где её энергию преобразуют в механическую энергию вращения ротора турбины. Отработавшая парогазовая смесь подается в рекуператор, где тепловая энергия передается встречному потоку воды, преобразуя его в пар. Пар, полученный в рекуператоре, подается к наружным стенкам камеры сгорания, обеспечивая дополнительный нагрев пара и охлаждение стенок камеры. Далее пар поступает в смесительную камеру, обеспечивая возврат значительной части тепловой энергии от стенок камеры сгорания в рабочий цикл. Достигаются повышение КПД и снижение температурной нагрузки на элементы установки. 1 ил.

Изобретение относится к способу регулируемой регенерации энергии реакции окисления, при которой образуется газовый поток, каковую реакцию осуществляют в реакторе окисления непрерывного действия, в который подают газообразный окислитель. Способ включает: (a) нагревание газового потока до температуры по меньшей мере 800°C; (b) направление газового потока на ступень турбины внутреннего сгорания с открытым циклом, в которой имеется турбинное колесо, соединенное с компрессором, каковой компрессор сжимает газообразный окислитель, подаваемый в реактор; (c) регулирование давления на ступени турбины; (d) поддержание давления на ступени турбины в диапазоне больше минимальной величины, соответствующей энергетической потребности компрессора на сжатие газообразного окислителя, подаваемого в реактор окисления, и меньше максимальной величины, определяемой пределами газовой турбины по мощности или давлению, путем добавления газа в газовый поток; (e) обеспечение расширительного устройства или вспомогательного компрессора после компрессора газовой турбины по технологическому потоку на входе газообразного окислителя в реактор окисления. Также изобретение относится к способу окисления прекурсора с получением ароматической карбоновой кислоты или ее сложного эфира. Использование настоящего изобретения позволяет турбине эффективно функционировать. 2 н. и 6 з.п. ф-лы, 10 ил.

Изобретение относится к энергетике. Способ работы парогазовой энергетической установки, при котором охлаждение расширенного рабочего тела, после выработки пара, производят в теплофикационном теплообменнике, а конденсацию его паровой составляющей осуществляют в контактном охладителе-конденсаторе за счет впрыска охлаждающей воды; меньшую часть выработанного пара расширяют в паровой турбине до давления, превышающего давление сжатого воздуха в камере сгорания, а его большую часть до давления, превышающего давление в камере дожигания; тепловую энергию сжатого осушенного рабочего тела утилизируют для подогрева части водного конденсата, используемого для генерирования пара. Также представлена парогазовая энергетическая установка для осуществления способа. Изобретение позволяет повысить удельную мощность и термодинамическую эффективность парогазовой энергетической установки. 2 н.п. ф-лы, 1 ил.

Изобретение относится к устройствам, преобразующим тепловую энергию в механическую, а более конкретно к тепловому приводу, обеспечивающему утилизацию тепла отводящих газов котельной и использование их энергии для привода, например конвейера удаления шлама. Тепловой привод содержит последовательно расположенные в парожидкостном тракте испаритель, заполненный кипящей жидкостью, парожидкостный патрубок, тепловую трубу, гидрорукав, гидродвигатель и холодильник. Холодильник совмещен с гидростатическим гидроаккумулятором, где последний расположен над тепловой трубой и парожидкостным патрубком, соосно с ним и отделен от него перегородкой, имеющей сквозное отверстие с клапаном, выполненным в виде подвижного золотника, расположенного на штоке, закрепленном к дну тепловой трубы, и снабженного свободно установленными и охватывающими золотник, поплавком и пружиной, размещенными между клапаном и буртом, которые связаны с золотником, а верхняя часть тепловой трубы сообщена с испарителем наклонно установленным патрубком, сечение которого значительно больше сечения проектируемого потока жидкости, поступающей самотеком от тепловой трубы в испаритель. 1 ил.

Изобретение относится к энергетике. Способ работы парогазовой установки (ПГУ) обеспечивается путем выполнения догревающего теплообменника охлаждения парогазовой смеси на выходе из турбины высокого давления в виде двух последовательно расположенных теплообменников с соответствующим перераспределением потоков нагреваемой воды, из которой генерируется охлаждающий водяной пар. Способ работы ПГУ содержит систему организации парового замкнутого и открытого охлаждения горячих элементов проточной части газовой турбины. Способ работы ПГУ предусматривает также работу в теплофикационном режиме с одновременной выработкой электрической и тепловой энергии. Изобретение позволяет повысить эффективность работы установки. 3 з.п. ф-лы, 4 ил.
Наверх