Способ преобразования потенциальной энергии химических веществ в кинетическую энергию газового потока

Изобретение относится к двигателестроению, в частности к способам преобразования потенциальной энергии химических веществ в кинетическую энергию газового потока. Изобретение позволяет получить движущийся газовый поток, преобразуемый в механическую работу с высокими удельными характеристиками. Способ заключается в преобразовании потенциальной энергии химических веществ в кинетическую энергию газового потока, при этом образуется движущийся высокотемпературный газовый поток. Высокотемпературный газовый поток образуется, в независимости от окружающей среды, в результате окисления горючих веществ кислородом, образующимся в результате термического или термокаталитического разложения закиси азота (N2O) или закиси азота в смеси с инертными газами в реакторе.

 

Изобретение относится к способам получения движущегося потока газа за счет преобразования потенциальной энергии химических веществ, используемых для исполнительных систем приводов различного назначения.

Известен способ преобразования потенциальной энергии химических веществ в кинетическую энергию газового потока, а затем в механическую работу в химических двигателях внутреннего сгорания. Он заключается в сжигании химических веществ (топлив) в среде окислителя и получающемся при этом движущемся газовом потоке с образованием гетерогенных продуктов сгорания, представляющих собой многофазные смеси газообразных, жидких и твердых компонентов (Большаков Г.Ф. Физико-химические основы применения топлив и масел. Теоретические аспекты химмотологии. - Новосибирск: Наука, 1987. С.11-25).

Во всех типах химических двигателей топливо подается через регулятор подачи и распыливающее устройство в камеру сгорания, где происходит окисление и в результате увеличения объема газа образуется движущийся газовый поток.

Недостатком способа получения высокотемпературного газового потока за счет разложения закиси азота является то, что ввиду протекания процесса разложения закиси азота с выделением сравнительно небольшого количества тепла, удельные характеристики привода, в котором этот процесс используется (коэффициент полезного действия и т.п.), находятся на довольно низком уровне.

Целью изобретения является получение движущегося газового потока, преобразуемого в механическую работу с высокими удельными характеристиками, за счет увеличения температуры процесса путем термического или термокаталитического разложения закиси азота в смеси с горючими газами или парами горючих веществ, т.к., чем выше температура процесса, тем выше давление в камере привода и соответственно выше его удельные характеристики.

Указанная цель достигается тем, что в способе, заключающемся в преобразовании потенциальной энергии химических веществ в кинетическую энергию газового потока, при котором образуется движущийся высокотемпературный газовый поток, согласно изобретению, высокотемпературный газовый поток образуется, в независимости от окружающей среды, в результате окисления горючих веществ кислородом, образующимся в результате термического или термокаталитического разложения закиси азота (N2O) или закиси азота в смеси с инертными газами в реакторе.

С целью регулировки температуры процесса закись азота может разбавляться инертными газами (азот, гелий, аргон, углекислый газ и т.д.).

Данный процесс происходит по следующим двум схемам.

По первой схеме газообразная закись азота в смеси с горючими веществами через регулятор поступает в реактор, где происходит ее термическое или термокаталитическое разложение, затем в газовый поток может производиться добавление инертных газов с целью регулировки температуры газового потока. Полученный таким образом высокотемпературный газовый поток используется в соответствующем приводе для получения механической работы.

По второй схеме газообразная закись азота в смеси с горючими веществами и инертными газами через регулятор поступает в реактор, где происходит ее термическое или термокаталитическое разложение, а также окисление горючих веществ продуктами разложения закиси азота. Затем в газовый поток может дополнительно производиться добавление инертных газов с целью регулировки температуры газового потока. Полученный таким образом высокотемпературный газовый поток используется в соответствующем приводе для получения механической работы.

По третьей схеме газообразования закись азота через регулятор поступает в реактор, где происходит ее термическое или термокаталитическое разложение, затем в полученный высокотемпературный газовый поток, содержащий кислород, происходит добавление горючих веществ, которые, окисляясь, значительно увеличивают давление и конечную температуру газового потока. Затем в газовый поток может дополнительно производиться добавление инертных газов с целью регулировки температуры газового потока.

Образующиеся при этом газы имеют больший объем, что приводит к их движению. Методы превращения энергии движущихся газов в механическую работу зависят от назначения привода.

С целью инициирования процесса каталитического разложения закиси азота в смеси с горючими веществами на катализаторе, катализатор в реакторе предварительно нагревается. В дальнейшем, так как реакция экзотермическая, процесс регулируется подачей рабочего тела и теплопотерями в окружающую среду.

Способ преобразования потенциальной энергии химических веществ в кинетическую энергию газового потока, при котором образуется движущийся высокотемпературный газовый поток, отличающийся тем, что высокотемпературный газовый поток образуется в независимости от окружающей среды в результате окисления горючих веществ кислородом, образующимся в результате термического или термокаталитического разложения закиси азота (N2O) или закиси азота в смеси с инертными газами в реакторе.



 

Похожие патенты:

Изобретение относится к машиностроению, в частности к двигателестроению. .

Изобретение относится к области тепловых двигателей и волновых компрессоров и предназначено преимущественно для применения в энергетике и на транспорте. .

Изобретение относится к области автомобилестроения, а именно к технологии организации процесса горения топливовоздушной смеси в цилиндре двигателя внутреннего сгорания с внешним смесеобразованием и принудительным воспламенением.
Изобретение относится к двигателестроению, в частности к способам преобразования потенциальной энергии химических веществ в кинетическую энергию газового потока.

Изобретение относится к двигателестроению, в частности к двигателям внутреннего сгорания. .

Изобретение относится к двигателестроению, в частности к интенсификации горения топлива посредством введения в камеру сгорания дополнительного окислителя топлива.

Изобретение относится к двигателям внутреннего сгорания, конкретно к горюче-смазочным материалам и присадкам. .

Изобретение относится к машиностроению, в частности к двигателям внутреннего сгорания. .

Изобретение относится к области транспорта и может быть использовано в процессах сгорания топлива в двигателях внутреннего сгорания (ДВС). Технический результат - расширение диапазона степеней обеднения смеси, что повышает экономичность и чистоту выхлопных ДВС. В способе обеспечивается как послойное, так и гомогенное смесеобразование путем изменения по меньшей мере одного параметра впрыска. Способ заключается в регулировании глубины впрыскивания топлива посредством изменения давления впрыска. Глубину впрыскивания регулируют в пределах всей глубины камеры сгорания, а давление впрыска изменяют либо плавно, либо ступенчато, в частности посредством задатчика режимов. Задатчик режимов обеспечивает по меньшей мере два фиксированных режима послойного смесеобразования с возможностью их выбора и переключения между ними. При этом в пределах используемых режимов параметр длительности впрыска могут задавать в пропорцианальной или в одном из видов нелинейной зависимости от давления впрыска: дифференциальной, интегральной, логарифмической или любой другой нелинейной зависимости. 7 з.п. ф-лы, 1 ил.

Изобретение может быть использовано в двигателях внутреннего сгорания. Способ работы двигателя заключается в том, что осуществляют сжигание воздушно-топливной смеси в каждом цилиндре двигателя и направляют выхлопные газы из каждого цилиндра через единственный выпускной коллектор. Деактивируют только один выпускной клапан каждого цилиндра двигателя при первом рабочем режиме двигателя, причем этот клапан остается деактивированным в течение по меньшей мере двух циклов двигателя. Активируют только один выпускной клапан каждого цилиндра при втором рабочем режиме двигателя. Раскрыт вариант способа работы двигателя. Технический результат заключается в увеличении крутящего момента при работе двигателя на низких оборотах. 2 н. и 8 з.п. ф-лы, 6 ил.

Представлены способы автоматической остановки и запуска двигателя. В одном варианте способ предусматривает при автоматическом выключении двигателя подачу водосодержащей жидкости на закрытый впускной клапан цилиндра, пока двигатель находится в бездействии, а при последующем запуске подачу топлива в цилиндр после выполнения в цилиндре по крайней мере одного такта всасывания и последующего такта выхлопа. Техническим результатом является контроль выбросов при повторном автоматическом запуске двигателя. 3 н. и 15 з.п. ф-лы, 5 ил.
Наверх