Наклеиваемый полупроводниковый тензорезистор (варианты)

Изобретение относится к измерительной технике и может быть использовано в прочностных испытаниях для определения напряженного состояния конструкций и в качестве чувствительного элемента в датчиках механических величин (силы, давления, веса, перемещения и т.д.). Сущность: тензорезистор содержит носитель из металлической фольги в виде нити с площадками на ее концах, сформированную с одной стороны носителя полимерную подложку, расположенные на другой стороне носителя диэлектрическую пленку и тензочувствительную пленку из поликристаллического моносульфида самария, а также металлическую пленку, сформированную на тензочувствительной пленке. Концы нити носителя выполнены в виде скобообразного элемента, соединенного концами с серединами боковых сторон площадок. Либо нить носителя выполнена с поперечными полосками на концах. Диэлектрическая и тензочувствительная пленки повторяют форму носителя. Металлическая пленка выполняет роль электрических контактов и также повторяет форму носителя, но с разрывом (промежутком) в ее средней части. Технический результат: повышение точности измерений за счет исключения искажающего влияния площадок носителя на деформацию рабочей нити. 2 н.п. ф-лы, 7 ил.

 

Изобретение относится к измерительной технике и может быть использовано как в прочностных испытаниях для определения напряженного состояния конструкций, так и в качестве чувствительного элемента в датчиках механических величин (силы, давления, веса, перемещения и т.д.).

Известен тензорезистор (SU 1717946 G01B 7/16, 7/18, опубл. 07.03.1992) [1], содержащий тензочувствительную полоску из моносульфида самария, контактные площадки и диэлектрическую подложку из силикатного стекла.

Недостатком такого решения является ограниченная область применения: определение напряженного состояния внутри массы бетона или других затвердевающих материалов.

Известен наклеиваемый полупроводниковый тензорезистор, содержащий полимерную подложку, тензочувствительную пленку и металлические контакты на концах тензочувствительной пленки (Д.Т.Анкудинов, К.Н.Мамаев. Малобазные тензодатчики сопротивления. М.: Машиностроение, 1968, стр.47-50) [2].

Тензочувствительная пленка, выполненная из висмута, имеет низкую тензочувствительность.

К предлагаемому изобретению по обоим вариантам наиболее близко техническое решение по заявке №2011125614 от 23.06.2011 (решение о выдаче патента от 11.05.2012) [3], представляющее собой наклеиваемый полупроводниковый тензорезистор, содержащий носитель из металлической фольги в виде нити с площадками на ее концах, сформированную с одной стороны носителя полимерную подложку, расположенные на другой стороне носителя диэлектрическую пленку и тензочувствительную пленку из поликристаллического моносульфида самария, выполненные послойно, с повторением формы носителя, а также сформированную на тензочувствительной пленке и выполняющую роль контактов металлическую пленку.

Недостатком прототипа является влияние площадок носителя на рабочую нить, в результате чего искажается передача деформации объекта, что уменьшает точность измерений.

Изобретение по обоим вариантам направлено на достижение технического результата, заключающегося в повышении точности измерений за счет исключения искажающего влияния площадок носителя на деформацию рабочей нити, на которой сформирован тензочувствительный элемент.

Ниже при раскрытии изобретения и рассмотрении его конкретной реализации будут названы и другие виды достигаемого технического результата.

Предлагаемый наклеиваемый полупроводниковый тензорезистор по первому варианту, как и указанный наиболее близкий к нему известный тензорезистор по заявке [3], содержит носитель из металлической фольги в виде нити с площадками на ее концах, сформированную с одной стороны носителя полимерную подложку, расположенные на другой стороне носителя диэлектрическую пленку и тензочувствительную пленку из поликристаллического моносульфида самария, выполненные послойно, с повторением формы носителя, а также металлическую пленку, выполняющую роль контактов и сформированную на тензочувствительной пленке.

Для достижения указанного технического результата в предлагаемом тензорезисторе по первому варианту, в отличие от наиболее близкого к нему известного наклеиваемого полупроводникового тензорезистора, концы нитей носителя и повторяющих его форму диэлектрической и тензочувствительной пленок выполнены в виде скобообразного элемента, концы которого соединены с серединами боковых сторон площадок, при этом металлическая пленка, сформированная на тензочувствительной пленке, также повторяет форму носителя, но с промежутком в средней части нити.

Таким образом, в предлагаемом наклеиваемом полупроводниковом тензорезисторе по первому варианту вышеуказанное выполнение нитей носителя, диэлектрической, тензочувствительной пленок, а также формирование металлической пленки, выполняющей роль контактов, повторяющей форму носителя, но с промежутком в средней части нити, позволяют исключить искажающее влияние площадок носителя на деформацию рабочей нити, что в свою очередь приводит к повышению точности измерений.

Предлагаемый наклеиваемый полупроводниковый тензорезистор по второму варианту, как и указанный наиболее близкий к нему известный тензорезистор по заявке [3], содержит носитель из металлической фольги в виде нити с площадками на ее концах, сформированную с одной стороны носителя полимерную подложку, расположенные на другой стороне носителя диэлектрическую пленку и тензочувствительную пленку из поликристаллического моносульфида самария, выполненные послойно, с повторением формы носителя, а также металлическую пленку, выполняющую роль контактов и сформированную на тензочувствительной пленке.

Для достижения указанного технического результата в предлагаемом тензорезисторе по второму варианту, в отличие от наиболее близкого к нему известного, наклеиваемого полупроводникового тензорезистора, нити носителя и повторяющих его форму диэлектрической и тензочувствительной пленок выполнены с симметрично расположенными, поперечными полосками на их концах, при этом металлическая пленка также повторяет форму носителя, но с промежутком в средней части нити.

Таким образом, в предлагаемом тензорезисторе по второму варианту, как и в тензорезисторе по первому варианту, выполнение поперечных элементов (поперечные полоски или скобообразные элементы) позволяет исключить искажающее влияние на размер рабочей нити, влияющее на точность измерений, и, соответственно, повысить ее.

Количество указанных полосок определяется при разработке тензорезистора и зависит от требований к его габаритам.

Выполнение на концах нити скобообразных элементов, соединенных с серединами боковых сторон площадок (вариант 1) позволяет получить тензорезистор с меньшим продольным размером по сравнению с тензорезистором по варианту 2, где на концах нити выполнены поперечные полоски, в тоже время он имеет большие размеры по ширине. Таким образом, тензорезисторы по 1-му варианту удобнее использовать в местах наклейки, где есть ограничения по длине, а по 2-му варианту - ограничения по ширине тензорезистора.

Предлагаемое изобретение иллюстрируются чертежами, на которых показаны:

- на фиг.1 - общий вид тензорезистора по первому варианту;

- на фиг.2 - продольный разрез А-А тензорезистора по первому варианту;

- на фиг.3 - общий вид тензорезистора по второму варианту;

- на фиг.4 - поперечный разрез Б-Б тензорезистора по второму варианту;

- на фиг.5 - механизм влияния площадок на нить тензорезистора на примере прототипа в статичном состоянии и под действием поперечной деформации (тонкие линии);

- на фиг.6 и 7 - тензорезисторы по вариантам 1 и 2 в статичном состоянии и под действием поперечной деформации (тонкие линии).

Предлагаемый наклеиваемый полупроводниковый тензорезистор, в случае его выполнения по первому варианту, иллюстрируемому фигурами 1, 2, содержит носитель 1, выполненный из тонкой (3÷10 мкм) металлической (например, константан) фольги. С одной стороны носителя 1 сформирована полимерная подложка 2, выполненная, например, из лака ВЛ-931 толщиной 20÷30 мкм. На другой стороне носителя 1 сформирована диэлектрическая разделительная пленка 3 (например, моноокись кремния SiO) толщиной (1+3 мкм). На диэлектрической пленке 3 выполнена тензочувствительная пленка 4 из поликристаллического моносульфида самария (SmS) толщиной 0,5÷1 мкм. На тензочувствительной пленке 4 сформирована, выполняющая роль контактов, металлическая пленка 5, например, из никеля толщиной 1-2 мкм. Носитель 1 после литографических операций представляет собой нить 6 шириной 50÷200 мкм с площадками 7 на ее концах, при этом концы нити 6 носителя 1 выполнены в виде скобообразного элемента 8, концы которого соединены с серединами боковых сторон площадок 7. Осажденные на носитель 1 в вакууме последовательно диэлектрическая 3 и тензочувствительная 4 пленки также повторяют его форму. Металлическая пленка 5, также повторяет форму носителя 1, но с промежутком (разрывом) нити в ее средней части.

В случае выполнения по второму варианту, который иллюстрируется фигурами 3, 4, предлагаемый тензорезистор, как и при выполнении по первому варианту, содержит носитель 9, выполненный из тонкой (3÷10 мкм) металлической (например, константан) фольги. С одной стороны носителя 9 сформирована полимерная подложка 10, выполненная, например, из лака ВЛ-931 толщиной 20÷30 мкм. На другой стороне носителя 9 сформирована диэлектрическая разделительная пленка 11 (например, моноокись кремния SiO) толщиной (1÷3 мкм). На диэлектрической пленке 11 выполнена тензочувствительная пленка 12 из поликристаллического моносульфида самария (SmS) толщиной 0,5÷1 мкм. На тензочувствительной пленке 12 сформирована выполняющая роль контактов металлическая пленка 13, например, из никеля толщиной 1-2 мкм. Носитель 9 после литографических операций представляет собой нить 14 шириной 50÷200 мкм с площадками 15 на ее концах, при этом концы нити 14 носителя 9 выполнены поперечными полосками 16. Полоски 16 расположены симметрично по обе стороны нити 14. Количество указанных полосок определяется при разработке тензорезистора и зависит от требований к его габаритам. Осажденные на носитель 9 в вакууме последовательно диэлектрическая 11 и тензочувствительная 12 пленки также повторяют его форму. Металлическая пленка 13 также повторяет форму носителя 9, но с промежутком (разрывом) нити в ее средней части.

Предлагаемый тензорезистор в обоих вариантах его выполнения используется и работает следующим образом.

Для начала рассмотрим механизм влияния площадок на нить тензорезистора на примере прототипа (фиг.5). По соответствующей технологии он наклеивается на поверхность исследуемой детали. Если наклеенный тензорезистор подвергнуть воздействию одноосного деформационного поля, как это изображено на фиг.5 (тонкие линии), то механизм воздействия площадок на рабочую нить тензорезистора будет наиболее нагляден. Пусть растягивающая деформация ε одноосного поля действует на тензорезистор в поперечном направлении, а в продольном ε=0, тогда площадки растянутся в поперечном направлении на величину B·ε, а в продольном сожмутся на величину L1µ·ε, где µ - коэффициент Пуассона материала носителя. Изменение размеров площадок происходит симметрично относительно центральной оси «0», и, как видим, в результате, изменившие размеры площадки растянут рабочую нить. В данном примере тензорезистор покажет наличие растягивающей деформации объекта, которой в действительности нет. Мы не будем здесь рассматривать более сложные напряженные состояния объекта, но практически можно всегда отметить искажающее влияние площадок. Так, на градуировочном стенде можно обнаружить парадоксальные вещи, например наличие поперечной чувствительности, когда ее не должно быть, или отрицательную ползучесть.

Теперь, в свете изложенного, можно понять, почему предлагаемый по первому варианту тензорезистор (фиг.6) не подвержен искажающему влиянию площадок 7. Последние могут изменять свои размеры только относительно поперечной оси симметрии площадок «0». Края площадок 7 перемещаются относительно этой оси, но так как рабочая нить 6 с помощью скобообразных элементов 8 соединяется с боковыми сторонами площадок 7 именно на оси «0», перемещения периферийных частей площадок 7 не влияют на продольные размеры рабочей нити 6 тензорезистора.

В случае выполнения тензорезистора по второму варианту, при воздействии поперечного усилия (фиг.7), площадки 15 также изменяют свои размеры, края площадок 15 перемещаются относительно поперечной оси симметрии площадок «0», но так как на концах нити 14 выполнены поперечные полоски 16, то они не дают возможности нити 14 растягиваться, изменяя свои размеры вслед за площадками 15 и соответственно перемещения площадок 15 не влияют на рабочую часть нити 13.

Предлагаемый тензорезистор по обоим вариантам работает так же, как и любые другие, т.е. будучи наклеен на объект, он повторяет его деформацию ΔL/L, изменяя электрическое сопротивление ΔR/R. Эти величины связаны между собой посредством коэффициента тензочувствительности К:

ΔR/R=КΔL/L,

где: К - коэффициент тензочувствительности;

ΔL/L - относительная деформация;

ΔR/R - относительное изменение сопротивления.

Измерение величины относительного изменения сопротивления производится с помощью тензоусилителей (не показаны).

Таким образом, вышеуказанное выполнение наклеиваемых тензорезисторов по первому и второму вариантам позволяет исключить деформирующее влияние площадок на нить в процессе работы, что в свою очередь приводит к повышению точности измерений.

Источники информации

1. Авторское свидетельство СССР SU 1717946, G01B 7/16, 7/18, опубл. 07.03.1992.

2. Д.Т. Анкудинов, К.Н. Мамаев. Малобазные тензодатчики сопротивления. М.: Машиностроение, 1968, стр.47-50.

3. Заявка №2011125614 от 23.06.2011 (решение о выдаче патента от 11.05.2012).

1. Наклеиваемый полупроводниковый тензорезистор, содержащий носитель из металлической фольги в виде нити с площадками на ее концах, сформированную с одной стороны носителя полимерную подложку, расположенные на другой стороне носителя диэлектрическую пленку и тензочувствительную пленку из поликристаллического моносульфида самария, выполненные послойно с повторением формы носителя, а также металлическую пленку, сформированную на тензочувствительной пленке и выполняющую роль контактных площадок, отличающийся тем, что концы нитей носителя и повторяющих его форму диэлектрической и тензочувствительной пленок выполнены в виде скобообразного элемента, концы которого соединены с серединами боковых сторон площадок, при этом металлическая пленка также повторяет форму носителя, но с промежутком в средней части нити.

2. Наклеиваемый полупроводниковый тензорезистор, содержащий носитель из металлической фольги в виде нити с площадками на ее концах, полимерную подложку, сформированную с одной стороны носителя, расположенные на другой стороне носителя диэлектрическую пленку и тензочувствительную пленку из поликристаллического моносульфида самария, выполненные послойно с повторением формы носителя, а также металлическую пленку, сформированную на тензочувствительной пленке и выполняющую роль контактов, отличающийся тем, что нити носителя и повторяющих его форму диэлектрической и тензочувствительной пленок выполнены с поперечными полосками на их концах, при этом металлическая пленка также повторяет форму носителя, но с промежутком в средней части нити.



 

Похожие патенты:

Изобретение относится к измерительной технике, в частности к тензометрии. Технический результат заключается в расширении области практического применения стенда и тензоэлемента, обеспечении мобильности стенда.

Изобретение относится к горному делу, в частности к приборам измерения проявления горного давления, а именно к датчикам для измерения натяжения анкера. .

Тензометр // 2483277
Изобретение относится к измерительной технике и может быть использовано для продолжительных измерений напряженно-деформированного состояния морских ледостойких сооружений.

Изобретение относится к области неразрушающего контроля, а именно к диагностике и мониторингу состояния конструкции зданий или других инженерно-строительных сооружений в процессе строительства и эксплуатации.

Изобретение относится к области измерительной техники и может быть использовано в приборостроении и машиностроении для измерения физических величин (температуры, давления, деформации).

Изобретение относится к измерительной технике, предназначено для измерения механических величин и может быть использовано в средствах автоматизации контроля технологических процессов.

Изобретение относится к области измерительной техники и может быть использовано в устройствах измерения, содержащих в своем составе тензорезисторные мостовые датчики и инструментальные усилители, запитанные от однополярного источника постоянного тока.

Изобретение относится к области измерительной техники и может быть использовано для измерения неэлектрических величин при помощи тензометрического мостового датчика с инструментальным усилителем, запитанных постоянным током.

Изобретение относится к способу нанесения покрытия на деталь с выполненной из карбида кремния (SiC) поверхностью. .

Изобретение относится к измерительной технике. Способ заключается в том, что при сопротивлении нагрузки Rн>500 кОм определяют температурный коэффициент чувствительности (ТКЧ) мостовой цепи и при температуре t+, и t-, соответствующей верхнему и нижнему пределу рабочего диапазона температур, и нелинейность ТКЧ мостовой цепи . Если полученное значение Δαдо является положительным, то преобразуют положительную нелинейность ТКЧ мостовой цепи в отрицательную путем включения термозависимого резистора Rαвх в диагональ питания при одновременном шунтировании входного сопротивления мостовой цепи термонезависимым резистором Rш. Для этого определяют входное сопротивление и ТКС входного сопротивления, а также ТКЧ тензорезисторов и при температуре t+ и t- и вычисляют нелинейность ТКЧ мостовой цепи Если и Δαд оказываются в области преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную, то принимают номинал термонезависимого резистора Rш равным входному сопротивлению, вычисляют номинал резистора Rαвх. Включают резисторы Rαвх и Rш в диагональ питания мостовой цепи. Определяют ТКЧ мостовой цепи при температуре t+ и t-, вычисляют нелинейность ТКЧ мостовой цепи Δαдо. Если Δαдо принимает отрицательное значение, то производят компенсацию мультипликативной температурной погрешности с учетом отрицательной нелинейности ТКЧ мостовой цепи путем включения термозависимого резистора Rαвых, зашунтированного термонезависимым резистором Rдвых, в выходную диагональ мостовой цепи при сопротивлении нагрузки Rн≤1 кОм. Технический результат: повышение точности компенсации. 3 ил., 3 табл.

Изобретение относится к области контроля технического состояния обсадных колонн, насосно-компрессорных труб и других колонн нефтяных и газовых скважин. Техническим результатом является повышение точности и достоверности выявления наличия и местоположения поперечных и продольных дефектов конструкции скважины и подземного оборудования как в магнитных, так и в немагнитных первом, втором и последующих металлических барьерах. Способ электромагнитной дефектоскопии в многоколонных скважинах включает измерение ЭДС самоиндукции, наведенной в катушке вихревыми токами, возбуждаемыми в исследуемых металлических барьерах процессом спада электромагнитного поля, вызванного импульсами тока намагничивания катушки. На каждую из приемно-генераторных катушек в отдельности подают серию импульсов фиксированной длительности из диапазона 0,1-1000 мс, намагничивая последовательно все металлические барьеры, начиная с ближайшего, причем длительность импульсов возрастает для каждого последующего металлического барьера. Полученные данные сохраняют и обрабатывают путем сравнения с модельными данными, по результатам обработки судят о наличии дефекта в металлических барьерах. Электромагнитный скважинный дефектоскоп содержит корпус, катушки, расположенные вдоль оси устройства, магнитная ось которых совпадает с осью устройства, блок электроники, по меньшей мере, две приемно-генераторных катушки, каждая из которых состоит из генераторной и приемной катушек с единым сердечником. Причем приемно-генераторные катушки выполнены разного размера, разнесены друг от друга на оси устройства на расстояние не меньше длины большей приемно-генераторной катушки. 2 н. и 36 з.п. ф-лы, 7 ил.

Изобретение относится к измерительной технике. Способ заключается в том, что определяют ТКЧ мостовой цепи α+ до и α- до при температуре t+ и t-, соответствующей верхнему и нижнему пределу рабочего диапазона температур, нелинейность ТКЧ мостовой цепи (Δαдо=α+ до-α- до). Если полученное значение Δαдо является положительным, то преобразуют положительную нелинейность ТКЧ мостовой цепи в отрицательную путем включения термозавимого резистора Rαвх. Для этого определяют входное сопротивление, а также значения ТКС входного сопротивления, ТКЧ тензорезисторов α+ д и α- д при температуре t+ и t-, вычисляют нелинейность ТКЧ мостовой цепи (Δαд=α+ д-α- д). Если α+ д и α- д оказываются в области преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную, то вычисляют номинал резистора Rαвх. Включают резистор Rαвх в диагональ питания мостовой цепи. Определяют ТКЧ мостовой цепи при температуре t+ и t-, вычисляют нелинейность ТКЧ мостовой цепи Δαдо. Если Δαдо принимает отрицательное значение, то производят компенсацию мультипликативной температурной погрешности с учетом отрицательной нелинейности ТКЧ мостовой цепи путем включения термозависимого резистора Rαвых, зашунтированного термонезависимым резистором Rдвых, в выходную диагональ мостовой цепи при сопротивлении нагрузки Rн≤2кОм. Технический результат: повышение точности компенсации. 3 ил., 3 табл.

Изобретение относится к измерительной технике. Способ заключается в том, что определяют температурный коэффициент чувствительности (ТКЧ) мостовой цепи α+ до и α- до при температуре t+ и t-, соответствующей верхнему и нижнему пределу рабочего диапазона температур, нелинейность ТКЧ мостовой цепи (Δαдо=α+ до-α- до). Если полученное значение Δαдо является положительным, то преобразуют положительную нелинейность ТКЧ мостовой цепи в отрицательную путем включения термонезависимого резистора Ri. Для этого определяют входное сопротивление, а также значения ТКС входного сопротивления, ТКЧ тензорезисторов α+ д и α- д при температуре t+ и t-, вычисляют нелинейность ТКЧ мостовой цепи (Δαд=α+ д-α- д). Если α+ д и Δαд оказываются в области преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную, то вычисляют номинал резистора Ri. Включают резистор Ri в диагональ питания мостовой цепи. Определяют ТКЧ мостовой цепи при температуре t+ и t-, вычисляют нелинейность ТКЧ мостовой цепи Δαдо. Если Δαдо принимает отрицательное значение, то производят компенсацию мультипликативной температурной погрешности с учетом отрицательной нелинейности ТКЧ мостовой цепи путем включения термозависимого резистора Rαвых, зашунтированного термонезависимым резистором Rдвых, в выходную диагональ мостовой цепи при сопротивлении нагрузки Rн≤2 кОм. Технический результат: повышение точности компенсации. 3 табл., 3 ил.

Изобретение относится к измерительной технике. Способ заключается в том, что при сопротивлении нагрузки Rн>500кОм определяют температурный коэффициент чувствительности (ТКЧ) мостовой цепи α+ до и α- до при температуре t+ и t-, соответствующей верхнему и нижнему пределу рабочего диапазона температур, и нелинейность ТКЧ мостовой цепи (Δαдо=α+ до-α- до). Если полученное значение Δαдо является положительным, то преобразуют положительную нелинейность ТКЧ мостовой цепи в отрицательную путем включения термонезависимого резистора Ri в диагональ питания и одновременного шунтирования входного сопротивления термозависимым шунтом, который образован последовательным включением термозависимого резистора Rαвx и термонезависимого резистора Rдвх. Для этого определяют входное сопротивление и ТКС входного сопротивления, а также ТКЧ тензорезисторов α+ д и α- д при температуре t+ и t- и вычисляют нелинейность ТКЧ мостовой цепи (Δαд=α+ д-α- д). Если α+ д и Δαд оказываются в области преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную, то принимают номинал термозависимого шунта равным входному сопротивлению, а номинал резистора Ri, равным 100 Ом. Вычисляют номиналы резисторов Rαвх и Rдвх. Включают резисторы Ri, Rαвх и Rдвх в диагональ питания мостовой цепи. Определяют ТКЧ мостовой цепи при температуре t+ и t-, вычисляют нелинейность ТКЧ мостовой цепи Δαдо. Если Δαдо принимает отрицательное значение, то производят компенсацию мультипликативной температурной погрешности с учетом отрицательной нелинейности ТКЧ мостовой цепи путем включения термозависимого резистора Rαвых, зашунтированного термонезависимым резистором Rдвых, в выходную диагональ мостовой цепи при сопротивлении нагрузки Rн≤2кОм. Технический результат: повышение точности компенсации. 2 табл., 2 ил.

Изобретение относится к измерительной технике, а именно к способам измерения деформаций и напряжений на поверхности деталей машин, подвергающихся циклическому нагружению. Целью изобретения является повышение чувствительности датчиков, изготавливаемых из фольги и применяемых для контроля циклических деформаций. Для достижения указанной цели используют липкую фольгу из пластичного металла, например алюминиевый скотч. Фольгу разрезают на фрагменты, растягивают в пределах упругих деформаций и в таком состоянии с помощью клеящего слоя фольги наклеивают на контролируемые поверхности деталей. Хвостовые участки фрагментов жестко фиксируют на поверхности детали механическим или иным известным способом. После чего в поперечной плоскости посередине длины фрагмента фольги выполняют сквозные прорези и отверстия. Техническим результатом изобретения является расширение арсенала технических средств для контроля циклических деформаций деталей машин, возникающих в процессе их эксплуатации. Возрастает оперативность контроля за счет повышения чувствительности датчиков к малым величинам циклических деформаций. 3 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения деформаций немагнитных материалов. Способ измерения деформаций из немагнитных материалов характеризуется тем, что на поверхности или внутри объекта размещают постоянные дипольные источники магнитного поля, например на основе магнитов из сплава неодим-железо-бор, при этом для вычисления параметров линейной (вдоль прямой линии) деформации используют как минимум два магнита не лежащие в одной точке, для вычисления параметров плоской деформации - минимум три магнита, не лежащие на одной прямой, для вычисления параметров объемной деформации - минимум четыре магнита, не лежащие в одной плоскости. Возле поверхности исследуемого объекта напротив каждого источника устанавливают систему датчиков, позволяющих измерить по 1, 2, 3 компоненты вектора индукции магнитного поля в нескольких точках, сосредоточенных в малой по сравнению с расстоянием до источников поля области пространства, или в качестве системы датчиков используют одно-, двух- или трехосевой датчик с системой 3D-позиционирования, сигналы с датчиков усиливают и преобразуют в цифровой вид, численные данные измерений: координаты точек измерения и значения компонент векторов индукции магнитного поля в них в лабораторной системе координат обрабатывают компьютерной программой, по полученным данным решают обратную задачу для системы слабо взаимодействующих магнитов и определяют их местоположение в лабораторной системе координат и векторы магнитных моментов в лабораторной системе координат до и после деформирования объекта, и, сравнивая эти решения, вычисляют параметры деформации. Описана установка для предлагаемого способа. Технический результат - возможность измерения линейной (вдоль прямой линии), плоской (в плоскости) и объемной (в пространстве) деформации объектов из немагнитных материалов. 2 н. и 3 з.п. ф-лы, 1 ил., 3 табл.

Изобретение относится к измерительной технике и может быть использовано при настройке тензорезисторных датчиков с мостовой измерительной цепью по мультипликативной температурной погрешности. Сущность: при сопротивлении нагрузки Rн≥500 кОм определяют температурный коэффициент чувствительности (ТКЧ) мостовой цепи α д о + и α д о − при температурах t+ и t-, соответствующих верхнему и нижнему пределу рабочего диапазону температур, и нелинейность ТКЧ мостовой цепи ( Δ α д о = α д о + − α д о − ) . Если полученное значение ∆αдо является положительным, то преобразуют положительную нелинейность ТКЧ мостовой цепи в отрицательную. Для этого определяют входное сопротивление и его температурный коэффициент сопротивления (ТКС), а также ТКЧ тензорезисторов α д + и α д − при температурах t+ и t- и вычисляют нелинейность ТКЧ тензорезисторов ( Δ α д = α д + − α д − ) . Вычисляют номинал термозависимого резистора Rαвх, и термонезависимых резисторов Rдвх, и Ri. Устанавливают резистор Ri в диагональ питания мостовой цепи, входное сопротивление которой шунтируют последовательно соединенными резисторами Rαвх и Rдвх. Определяют ТКЧ мостовой цепи при температурах t+ и t-, вычисляют нелинейность ТКЧ мостовой цепи ∆αдо. Если нелинейность ТКЧ принимает отрицательное значение, удовлетворяющее неравенству ∆αдо≤-2·10-6 1/°C, то производят компенсацию мультипликативной температурной погрешности путем вычисления и включения термозависимого резистора Rαвых, зашунтированного термонезависимым резистором Rдвых, в выходную диагональ мостовой цепи последовательно с нагрузкой. Технический результат: повышение точности настройки при положительной нелинейности ТКЧ мостовой цепи. 1 табл., 2 ил.

Изобретение относится к способу измерения прогиба металлических, деревянных и других по материалу балок при поперечном изгибе от эксплуатационной нагрузки и других причин в процессе эксплуатации балки. Способ неразрушающего измерения прогиба балок заключается в том, что на поверхностях верхнего и нижнего поясов балки в месте наибольшего прогиба Δ0 наклеивают тензорезисторы с одинаковыми характеристиками непосредственно на подготовленную поверхность верхнего и нижнего поясов балки. Рабочие и компенсационные тензорезисторы наклеивают в количестве от 3 до 5 штук в каждом поясе на участке длиной от 15 до 25 см с наибольшим прогибом Δ0. Рабочие тензорезисторы крепят вдоль главных напряжений σ вдоль балки, а компенсационные - между рабочими тензорезисторами поперек балки, защищают их от различных воздействий эпоксидной смолой, монтируют мостовые схемы для каждой пары тензорезисторов (рабочих и компенсационных) и соединяют провода от них с тензостанцией; измеряют начальное сопротивление R0 рабочих тензорезисторов, при этом прогиб балки Δ(t) в любой момент времени t определяют по формуле: Δ(t)=Δ0+r·(|ΔR1(t)|+|ΔR2(t)|), где Δ0 - начальный наибольший прогиб балки в момент времени t=0, измеренный с помощью высокоточной геодезической рейки и нивелира до наклейки тензорезисторов; r - постоянный коэффициент, зависящий от расчетных схем и размеров балки. Техническим результатом изобретения является повышение точности измерений. 4 ил., 1 табл.

Изобретение относится к измерительной технике. Устройство для измерения динамических деформаций содержит измерительные тензорезисторы, опорные резисторы, усилитель, электронно-вычислительную машину с программным обеспечением, источник постоянного напряжения, эталонный резистор, коммутатор, блок управления, аналоговую программируемую многофункциональную плату с программным обеспечением, подключенную к ЭВМ. Программируемая плата может быть подключена к ЭВМ интерфейсом USB или путем установки в слот расширения PCI или PCIExpress, а устройство может быть снабжено устройством сопряжения, при этом подключение источника питания к первому аналоговому входу платы, второго вывода усилителя к аналоговому выходу платы, входа блока управления к цифровому выходу платы, выхода усилителя к аналоговому входу платы производится через соответствующие входы и выходы устройства сопряжения, связанного интерфейсом с совместимым разъемом указанной платы. Технический результат - расширение диапазона измеряемых величин и линейности выходной характеристики, повышение надежности функционирования устройства. 2 з.п. ф-лы, 2 ил.
Наверх