Пористый керамический каталитический модуль и способ переработки отходящих продуктов процесса фишера-тропша с его использованием

Настоящее изобретение относится к получению водородсодержащего газа и может быть использовано в промышленности при переработке отходящих продуктов процесса Фишера-Тропша в присутствии пористой мембранно-каталитической системы. Пористая каталитическая мембрана представляет собой продукт вибропрессования высокодисперсной смеси, содержащей никель и кобальт, взятых в соотношении 1:1, термообработанный в муфельной печи до температуры самовоспламенения, выдержанный, а затем охлажденный. Также предложен способ переработки отходящих продуктов процесса Фишера-Тропша, который включает переработку газообразных продуктов - метана, углекислого газа и растворенных в воде примесей органических веществ (метанол, этанол, метилэтилкетон, уксусную кислоту и ацетон) путем углекислотно-паровой конверсии в присутствии указанного каталитического модуля и осуществляемой при температуре 680-780°C, давлении 1-1,5 атм и скорости подачи исходной парогазовой смеси совместно с парами воды, выделяемой в процессе, 16000-96000 ч-1 с получением продуктов конверсии - синтез-газа и воды, очищенной от примесей органических веществ. Технический результат - эффективная переработка отходящих продуктов в синтез-газ, что позволяет увеличить выход ценных углеводородов; и очистка больших количеств воды, выделяемой в процессе. 2 н. и 2 з.п. ф-лы, 1 ил., 4 табл., 9 пр.

 

Предлагаемое изобретение относится к способу переработки углеводородов и других органических веществ в водородсодержащий газ, а именно к способу регенерации отходящих продуктов (метана, углекислого газа и растворенных в воде органических примесей) процесса Фишера-Тропша обратно в синтез-газ углекислотно-паровой конверсией в присутствии мембранно-каталитических систем.

В настоящее время одной из проблем внедрения процесса Фишера-Тропша в промышленности является накопление большого количества воды, стехиометрически образующейся в результате реакции (1), которая содержит растворенные в ней вредные для окружающей среды примеси органических веществ - спиртов, карбоновых кислот, кетонов.

Основная рекция процесса Фишера-Тропша:

Соотношение парафины:вода=1:1 (масс). Также образуется некоторое количество метана и углекислого газа. Соотношение CH4:H2O:CO2=1:2,5:10 моль/моль. Поэтому было бы целесообразно перерабатывать образующиеся отходящие продукты обратно в синтез-газ.

Одним из перспективных и новых подходов к решению вопросов переработки отходящих продуктов можно рассматривать процессы, базирующиеся на пористых каталитических мембранах, представляющих собой ансамбль микрореакторов.

Задача изобретения заключается в создании каталитических систем на базе пористых мембран, которые будут активны в способе регенерации побочных продуктов синтеза Фишера-Тропша путем углекислотно-паровой конверсии с использованием воды, выделяемой непосредственно в процессе превращения отходящих продуктов процесса Фишера-Тропша в синтез-газ.

Для решения поставленной задачи предложен пористый керамический каталитический модуль для переработки отходящих продуктов процесса Фишера-Тропша, представляющий собой продукт вибропрессования высокодисперсной смеси никеля и кобальта, взятых в соотношении 1:1, термообработанный в муфельной печи до температуры самовоспламенения, выдержанный, а затем охлажденный.

Для увеличения активности каталитической системы в процессе переработки органических продуктов пористый керамический каталитический модуль может дополнительно содержать во внутреннем объеме каналов буферный слой оксида титана и активный компонент, например палладий в количестве 0,066% масс., по отношению к массе модуля.

Также для решения поставленной задачи предложен способ переработки отходящих продуктов процесса Фишера-Тропша, характеризующийся тем, что он включает переработку газообразных продуктов - метана, углекислого газа и растворенных в воде примесей органических веществ путем углекислотно-паровой конверсии в присутствии каталитического модуля по п.1 и осуществляемой при температуре 680-780°C, давлении 1-1,5 атм и скорости подачи исходной парогазовой смеси совместно с парами воды, выделяемой в процессе 16000-96000 ч-1 с получением продуктов конверсии - синтез-газа и воды, очищенной от примесей органических веществ. Выбор повышенной температуры процесса мотивирован тем, что при данной температуре метан, как наиболее устойчивое соединение, содержащееся в исходной смеси, практически полностью перерабатывается.

В предложенном способе переработке подвергают отходящие продукты процесса Фишера-Тропша, содержащие в качестве примесей органических веществ метанол, этанол, метилэтилкетон, уксусную кислоту и ацетон, растворенные в воде без дополнительной ее очистки.

Технический результат, который может быть получен от использования предлагаемого технического решения заключается:

- в достижении практически полной конверсии побочных продуктов процесса Фишера-Тропша;

- в возможности осуществлять переработку продуктов процесса Фишера-Тропша при более высокой объемной скорости и добиться более высокой производительности по выходу синтез-газа (на 20-30%);

- в решении важной экологической задачи по очистке больших количеств выделяемой в процессе Фишера-Тропша воды, содержащей органические примеси.

Нижеследующие примеры иллюстрируют настоящее изобретение, но никоим образом не ограничивают его область.

Для получения образца №1 пористого керамического каталитического модуля берут порошки никеля и кобальта, взятые в соотношении 1:1(никеля -50% масс. и кобальта - 50% масс.) и помещают в барабан. Перемешивают в течение одного часа. Затем полученную высокодисперсную смесь загружают в графитовую пресс-форму, помещают в вакуумную печь и подвергают вибропрессованию в режиме теплового взрыва (в объеме образца), т.е. исходную шихту доводят до температуры самовоспламенения внешним нагревом, после чего происходит самопроизвольное горение шихты по всему объему. Осуществляют выдержку в течение 10 мин и охлаждение.

Образец номер №2 пористого керамического каталитического модуля готовят сначала аналогичным образом. А затем формируют во внутреннем объеме каналов мембран каталитический слой металлооксидов с использованием золь-гель метода на основе органических растворов металлокомплексных предшественников в толуоле, взятых в заданных количествах, для получения оксидов заданного состава с добавкой агентов, стабилизирующих маточные растворы. Перед формированием каталитического покрытия сложного металлооксида на внутренние стенки каналов микропор мембраны наносят буферный слой оксида титана со структурой анатаза с целью увеличения их удельной поверхности и уменьшения объема пор. Для этого готовят коллоидный раствор на основе н-бутилата титана следующим образом: н-бутилат титана в атмосфере аргона разбавляют абсолютированным толуолом в объемном соотношении 1:1 и тщательно перемешивают на магнитной мешалке при комнатной температуре. Полученный золь стабилизируют ацетилацетоном, добавляя последний к золю бутилата титана в молярном соотношении Ti(OC4H9):AcAcH=1:1. Стабилизированный золь алкоголята титана наносят на внутреннюю поверхность мембранного модуля, контролируя количество нанесения по весу. После нанесения мембранный модуль подвергают термоудару в муфельной печи при температуре 500°C в течение 20 минут для удаления органических фрагментов. Количество нанесенного оксида титана контролируют по привесу мембраны после нанесения. По окончании нанесения оксида титана мембрану прокаливают в муфельной печи при температуре 500°C в течение 5 часов. Количество нанесенного буферного слоя соответствует - 3-4% масс. относительно мембранного модуля.

После нанесения буферного слоя оксида титана на внутренней поверхности микроканалов проводят формирование металлооксидного каталитического покрытия, содержащего 0,066% масс. Pd по отношению к массе модуля.

Для этого коллоидный раствор, содержащий предшественники металлооксидной каталитической системы (ацетат палладия) смешивают с приготовленным раствором алкоксида титана и наносят на слой сформированного ранее оксида титана, распределенного на внутренней поверхности каналов мембраны. После нанесения 0,066% Pd мембранно-каталитическую систему в атмосфере Ar, прокаливают при температуре 500°C в течение 5 часов.

Образец №3 пористого керамического каталитического модуля получают как образец №1, но берут порошки, никеля и алюминия, взятые в соотношении 4:1(никеля - 80% масс. и алюминия - 20% масс.). Далее формируют во внутреннем объеме каналов модуля каталитический слой металлооксидов как описано при получении образца №2.

На фиг.1 представлена схема мембранно-каталитической установки, с помощью которой проводят переработку отходящих газов в условиях углекислотно-паровой конверсии, где

1 - баллон с реакционной смесью; 2 - редуктор; 3 - регулятор расхода газа; 4 - печь предварительного нагрева; 5 - манометр; 6, 7 - термопары; 8 - мембранно-каталитический реактор; 9 - сборник жидкости; 10 - запорный вентиль; 11 - CO/CO2 - анализатор; 12 - хроматограф; 13 - АЦП; 14 - ПК; 15 - жидкостной дозатор.

Углекислотно-паровую конверсию отходящих продуктов процесса Фишера-Тропша (метана, углекислого газа и растворенных в воде примесей органических веществ) проводят в фильтрационном режиме на мембранно-каталитических системах: Ni-Co (50% масс. - 50% масс.) (образец 1), Ni-Co (50% масс. - 50% масс.) с нанесенным катализатором Pd (0,066% масс.) (образец 2) и Ni-Al (80% масс. - 20% масс.) с нанесенным катализатором Pd (0,066% масс.) (образец 3) - при температуре 780°C и объемной скорости подачи смеси 16000-96000 ч-1.

Состав исходной смеси СН4:H2O:CO2=1:2,5:10 моль/моль.

Из жидкостного дозатора подают воду с растворенными в ней примесями органических веществ, которая смешивается с газовым потоком (метана и углекислого газа) и попадает на внешнюю сторону мембраны.

Концентрации растворенных в воде органических примесей, идентифицированные методом хромато-масс-спектрометрии, представлены в таблице 1.

Табл.1.
Содержание органических примесей в воде
Компонент Метанол Этанол Ацетон Уксусная кислота Метил-этил-кетон Бутанол Пентанол
Концентрация, %масс. 2,8 18,2 1,3 5,0 4,0 1,3 0,4

Образование синтез-газа происходит по реакциям 2 и 3.

Реакция углекислотно-паровой конверсии метана в синтез-газ:

Реакция углекислотно-паровой конверсии органических веществ, содержащихся в воде:

Примеры 1-9.

Результаты экспериментов на мембранно-каталитической системе, (образец 1) представлены в примерах 1-3 (мембрана Ni-Co, 50% масс.-50% масс.), результаты экспериментов на мембранно-каталитической системе (образец 2) - в примерах 4-6 (мембрана Ni-Co, 50% масс.-50% масс., с катализатором, содержащим Pd в количестве 0,066% масс. от массы модуля), результаты экспериментов на мембранно-каталитической системе (образец 3) - в примерах 7-9 (мембрана Ni-Al, 80% масс.-20% масс., с катализатором, содержащим Pd в количестве 0,066% масс. от массы модуля).

Таблица 2.
Углекислотно-паровая конверсия отходящих продуктов процесса Фишера-Тропша при 780°C
№№ примеров Q, ч-1 (н.у.) XCH4, % ρH2, л/(ч·дм3мембр.) ρCO, л/(ч·дм3мембр.) ρсинтез-газ, л/(ч·дм3мембр.) H2/CO
1 16000 99 3100 3900 7000 0,8
2 32000 96 6100 6900 13000 0,9
3 64000 85 11800 11200 23000 1,1
4 32000 99 6400 7000 13400 0,9
5 64000 98 14000 12500 26500 1,1
6 96000 92 21500 17500 39000 1,2
7 6400 30 500 800 1300 0,6
8 9600 20 750 950 1700 0,8
9 16000 10 1100 1400 2500 0,8
Q - скорость подачи отходящих продуктов Фишера-Тропша; XCH4 - конверсия по метану; ρH2 - производительность по водороду; ρCO - производительность по CO; ρсинтез-газ - производительность по синтез-газу.

Исходя из таблицы 2, при использовании образца 1 при объемной скорости подачи 16000 ч-1, конверсия метана 99% достигается и с ростом скорости подачи снижается до 85%, при этом растет удельная производительность мембраны по синтез-газу. При использовании образца 2 конверсия метана 98-99% достигается при объемной скорости подачи 64000 ч-1 и с ростом скорости подачи снижается до 92%, при этом растет удельная производительность мембраны по синтез-газу. При использовании состава, включающего никель и алюминий (образец 3), достигается довольно низкая конверсия метана до 30% даже при невысоких скоростях подачи.

Таблица 3.
Состав газовой смеси на выходе
№№ примеров Q, ч-1 (н.у.) СН2, %об. CCO, %об. CCH4, %об. CCO2, %об.
1 16000 17,8 22,7 0,1 59,4
2 32000 18,6 21,1 0,3 56,0
3 64000 19,0 18,0 1,0 62,0
4 32000 19,5 21,4 0,1 59,0
5 64000 21,0 18,8 0,1 60,1
6 96000 21,2 17,3 0,5 61,0
7 6400 8,2 13,7 5,4 72,7
8 9600 8,2 10,7 6,2 74,9
9 16000 7,3 9,3 6,8 76,6
C - концентрация водорода, CO, метана и CO2 соответственно.

Из таблицы 3 видно, что остаточная концентрация метана может составлять 0,1% и с ростом скорости подачи парогазовой смеси достигает 0,5-1%. При использовании состава, включающего никель и алюминий (образец 3), в газовой смеси на выходе остается большое количество метана 5-7%. Анализ состава газовой смеси проводился методом газовой хроматографии.

Таблица 4.
Содержание органических примесей в воде
Компонент Q, ч-1 (н.у.) Метанол Этанол Ацетон Уксусная кислота Метил -этил-кетон Бутанол Пентанол
Концентрация, % масс. 16000 0 0,001 0 0 0 0 0
32000 0,001 0,001 0 0 0 0 0
64000 0,001 0,002 0 0 0 0 0
32000 0 0 0 0 0 0 0
64000 0 0,001 0 0 0 0 0
96000 0 0,001 0 0 0 0 0
6400 0,001 0,002 0 0 0 0 0
9600 0,002 0,010 0 0 0 0 0
16000 0,006 0,020 0 0 0 0 0

По данным таблицы 4, остаточное содержание метанола и этанола в воде не превышает 0,001% масс., а остальные органические примеси полностью отсутствуют. При использовании состава, включающего никель и алюминий (образец 3), остаточное содержание этанола в воде не превышает 0,001-0,002% масс. только при скорости подачи 6400 ч-1, а остальные органические примеси также полностью отсутствуют.

Таким образом, практически полная конверсия побочных продуктов процесса Фишера-Тропша достигается на мембранно-каталитической системе, изготовленной на основе Ni-Co; модификация этой мембраны небольшим количеством палладия позволяет осуществлять переработку продуктов процесса Фишера-Тропша при более высокой объемной скорости и добиться более высокой производительности по выходу синтез-газа. Использование предлагаемого способа позволяет достигнуть положительного эффекта по двум факторам: 1 - переработка отходящих газообразных продуктов в синтез-газ на 20-30% позволяет увеличить выход ценных углеводородов, что приведет к существенному повышению экономического эффекта процесса в целом; 2 - решается важная экологическая задача по очистке больших количеств выделяемой в процессе воды, которую после очистки можно использовать для технических целей.

1. Пористый керамический каталитический модуль для переработки отходящих продуктов процесса Фишера-Тропша, представляющий собой продукт вибропрессования высокодисперсной смеси, содержащий никель и кобальт, взятые в соотношении 1:1, термообработанный в муфельной печи до температуры самовоспламенения, выдержанный, а затем охлажденный.

2. Модуль по п.1, отличающийся тем, что на внутреннюю поверхность его каналов наносят буферный слой оксида титана, а затем каталитически активный компонент, включающий Pd в количестве 0,066 мас.% по отношению к массе модуля.

3. Способ переработки отходящих продуктов процесса Фишера-Тропша, характеризующийся тем, что он включает переработку газообразных продуктов - метана, углекислого газа и растворенных в воде примесей органических веществ путем углекислотно-паровой конверсии в присутствии каталитического модуля по п.1, и осуществляемой при температуре 680-780°C, давлении 1-1,5 атм и скорости подачи исходной парогазовой смеси совместно с парами воды, выделяемой в процессе, 16000-96000 ч-1 с получением продуктов конверсии - синтез-газа и воды, очищенной от примесей органических веществ.

4. Способ переработки отходящих продуктов процесса Фишера-Тропша по п.3, отличающийся тем, что в качестве примесей органических веществ вода содержит метанол, этанол, метилэтилкетон, уксусную кислоту и ацетон.



 

Похожие патенты:

Настоящее изобретение относится к способу осуществления синтеза Фишера-Тропша. Описан способ осуществления синтеза Фишера-Тропша, в котором: неочищенный газ, содержащий CO и H2, полученный при газификации угля, обессеривают и затем в качестве исходного газа подают в устройство (3) для синтеза Фишера-Тропша, в котором посредством каталитических реакций из оксида углерода и водорода образуются углеводороды, при этом углеводороды отводят в виде жидких продуктов (4), газовый поток, содержащий CO и CO2, выходящий из устройства (3) для синтеза Фишера-Тропша, сжимают и подают на участок (6) конверсии, на котором CO превращают водяным паром в H2 и CO2, и выходящий с участка (6) конверсии после очистки (9, 14) газ, из которого удалены CO2 и/или другие компоненты, кроме H2, отводится обратно в качестве газа с высоким содержанием H2 вместе с обессеринным исходным газом в устройство (3) для синтеза Фишера-Тропша, отличающийся тем, что частичный поток (8) обессеринного исходного газа отводят и подают перед компрессором (5) в контур с циркулирующим газовым потоком и что в газовом потоке, подаваемом в устройство (3) для синтеза Фишера-Тропша, задают молярное соотношение между H2 и CO, составляющее не менее 1,5:1.

Изобретение относится к способам получения предшественника катализатора, катализатора синтеза Фишера-Тропша и к самому способу синтеза Фишера-Тропша. Способ получения предшественника катализатора синтеза Фишера-Тропша включает стадии, на которых: (i) используют раствор карбоксилата Fe(II); (ii) если молярное отношение карбоксильных и карбоксилатных групп, которые вступили в реакцию или способны вступать в реакцию с железом, и Fe(II) в растворе, используемом на стадии (i), не составляет, по меньшей мере, 3:1, в раствор добавляют источник карбоксильной или карбоксилатной группы, чтобы упомянутое молярное отношение составляло, по меньшей мере, 3:1, до завершения окисления карбоксилата Fe(II) на следующей стадии (iii); (iii) обрабатывают раствор карбоксилата Fe(II) окислителем, чтобы преобразовать его в раствор карбоксилата Fe(III) в условиях, исключающих такое окисление одновременно с растворением Fe(0); (iv) осуществляют гидролиз раствора карбоксилата Fe(III), полученного на стадии (iii), и осаждение одного или нескольких продуктов гидролиза Fe(III); (v) восстанавливают один или несколько продуктов гидролиза, полученных на стадии (iv); и (vi) добавляют источник активатора в форме растворимой соли переходного металла и химический активатор в форме растворимой соли щелочного металла или щелочноземельного металла во время или после осуществления любой из предшествующих стадий, чтобы получить предшественник катализатора синтеза Фишера-Тропша.
Изобретение относится к новому способу получения оксидного кобальт-цинкового катализатора синтеза Фишера-Тропша. Способ включает получение водной дисперсии порошка оксида цинка в реакторе, добавление водного раствора соли кобальта и осаждение кобальта из раствора на оксид цинка за счет добавления карбоната аммония.

Изобретение относится к регенерации катализаторов. Описан способ регенерации отработавшего порошкообразного, парафинсодержащего катализатора синтеза Фишера-Тропша на основе кобальта, при этом способ включает в себя следующие последовательные обработки: (i) депарафинизационную обработку, (ii) окислительную обработку с регулированием рабочей температуры путем отвода тепла из слоя частиц катализатора с использованием охлаждающего устройства, содержащего средство обеспечения прохождения охлаждающей среды и охлаждающую среду, проходящую через это средство обеспечения прохождения, обеспечивающее тем самым теплопроводящие поверхности, расположенные в и/или вокруг слоя катализатора, с получением окисленных частиц катализатора, и (iii) восстановительную обработку.

Изобретение относится к комбинированному способу, состоящему в том, что на установке A получают чистый порошок карбонила железа путем разложения чистого пентакарбонила железа, а освобождающуюся при разложении пентакарбонила железа моноокись углерода (CO) используют для получения дальнейшего порошка карбонила железа из железа на установке A, или подводят к присоединенной установке B для получения синтез-газа, или подводят к присоединенной установке C для получения углеводородов из синтез-газа.

Изобретение относится к области химии. Заменитель природного газа получают из свежего сырьевого синтез-газа 11 в секции 10 метанирования, содержащей но меньшей мере первый адиабатический реактор 101 и по меньшей мере дополнительный адиабатический реактор 102-104, включенные последовательно.

Изобретение относится к катализаторам. Описаны способы получения кобальтового катализатора синтеза Фишера-Тропша, включающие приготовление гранулированного носителя из исходного сырья - оксидов металлов III и IV групп Периодической таблицы Д.И.

Изобретение относится к катализаторам Фишера-Тропша. Описан способ получения катализатора синтеза Фишера-Тропша, включающий прокаливание сырья: нитрата, оксонитрата, гидроксид или оксогидроксид алюминия, циркония, кремния или титана при температуре 400-800°С с измельчением частиц до размеров не выше 0,5 мм, гранулирование, прокаливание гранул при температуре 400-800°С, пропитывание раствором соединений кобальта в количестве от 20 до 30 мас.% и промоторов, выбранных из группы: Re, Ru, с последующим прокаливанием при температуре 270-450°С, последующее измельчение гранул до размеров частиц не выше 0,5 мм, смешивание с цеолитом, выбранным из группы: ZSM-5, Y, β, содержание которого составляет от 30 до 70 мас.% от массы готового катализатора, гранулирование полученной смеси вместе с бемитом, масса которого составляет от 10 до 20% от массы смеси, и прокаливание при температуре 400-600°С, ионный обмен гранул с растворимыми соединениями палладия или Fe, Co, Ni, при их содержании 0,5-8,0 мас.% от массы готового катализатора, в суспензии гранул и раствора указанных соединений металлов при температуре 60-80°С в течение 1-3 часов, высушивание суспензии при температуре 80-150°С и прокаливание остатка при температуре 300-500°С, активирование катализатора водородом при 250-500°С в реакторе синтеза Фишера-Тропша с неподвижным слоем катализатора при пропускании водорода с объемной скоростью 3000 ч-1 при атмосферном давлении.

Изобретение относится к катализаторам получения алифатических углеводородов из оксида углерода и водорода и их использованию. Описан катализатор для получения алифатических углеводородов из оксида углерода и водорода, содержащий наноразмерные каталитически активные частицы металлического кобальта или железа, причем он получен путем пиролиза макромолекул полиакрилонитрила (ПАН) в присутствии солей железа или кобальта в инертной атмосфере под действием ИК-излучения при температуре 300-700°C после предварительного отжига на воздухе.

Изобретение относится к катализатору Фишера-Тропша, содержащему кобальт и цинк, а также к использованию такого катализатора в способе Фишера-Тропша. .

Изобретение относится к технологиям малотоннажной утилизации непромышленных газов в газовой промышленности. Изобретение касается малотоннажной установки по утилизации ресурсов малых месторождений природного газа, состоящей из последовательно соединенных очистительного модуля, теплообменника предварительного нагрева, теплообменника-рекуператора для тепловой обработки сырья, реактора плазмохимического синтеза для образования водородно-сажевой смеси, теплообменника-рекуператора для закалки, теплообменника-охладителя для охлаждения смеси, циклона для выделения и подачи в рукавный фильтр для сбора с последующей подачей в гранулятор и конденсатор, гранулятора для гранулирования частиц сажи при увлажнении водой из конденсатора и последующей подачи в сушильный барабан, конденсатора для подачи воды в гранулятор и конденсации воды с подачей водородной смеси в компрессор, сушильного барабана для осушки и выделения, компрессора для сжатия водорода и подачи в мембранный блок для обогащения и последующего выделения.

Изобретение относится к отрасли переработки нефти и газа и может быть использовано для получения синтетических жидких углеводородов и метанола на установке, интегрированной в объекты промысловой подготовки газовых, газоконденсатных и нефтяных месторождений.

Изобретение относится к способу производства синтез-газа. Способ производства синтез-газа включает: риформинг углеводорода в присутствии пара и одного или более первых катализаторов в первой реакционной зоне с получением выходящего потока, содержащего часть углеводорода, моноксид углерода, диоксид углерода и водород при первой температуре, при этом первая реакционная зона может включать одну или более содержащих катализатор трубок; непрямой нагрев выходящего потока от первой температуры до второй температуры; и риформинг выходящего потока при второй температуре в присутствии одного или более окислителей, и одного или более вторых катализаторов в условиях, достаточных для получения синтез-газа, имеющего температуру примерно 1030°C или выше, включающего водород, моноксид углерода, диоксид углерода и меньше чем примерно 5 моль.% метана на сухое вещество, при этом синтез-газ используют для нагрева выходящего потока непрямым образом от первой температуры до второй температуры.

Изобретение относится к области катализаторов. Описан катализатор, предназначенный для применения в реакции высокотемпературного сдвига, в своей активной форме содержащий смесь цинк-алюминиевой шпинели и оксида цинка в комбинации со щелочным металлом, выбранным из группы, включающей Na, K, Rb, Cs и их смеси, указанный катализатор обладает молярным отношением Zn/Al, находящимся в диапазоне от 0,5 до 1,0, и содержанием щелочного металла, находящимся в диапазоне от 0,4 до 8,0 мас.% в пересчете на массу окисленного катализатора.

Изобретение относится к области химии. Для получения водорода проводят реакцию паровой каталитической конверсии углеродсодержащей жидкости с получением продуктов реакции, содержащих водород.

Изобретение относится к разработке катализаторов для осуществления термохимической конверсии углеводородных и кислородсодержащих топлив за счет тепла отходящих газов двигателей внутреннего сгорания, являющихся составной частью гибридных силовых установок.

Изобретение относится к области химии. Устройство для получения водорода из воды, состоящее из корпуса, в котором размещен реактор, где закреплены электроды с приложенным к ним электрическим напряжением, отличающееся тем, что рабочие электроды выполнены сетчатыми цилиндрами из алюминиевых сплавов, вставленными друг в друга с зазором и образующими пакет, причем снизу пакета вставлена форсунка, подключенная к насосу высокого давления, связанного с нагревательной емкостью, установленной на выпускной коллектор автомобиля, которая вместе с пакетом подключена к источнику высокого прерывистого напряжения, а пакет сетчатых цилиндров-электродов установлен в разгонном высоковольтном электрическом поле между электродами, подключенными к источнику высоковольтного поля.

Изобретение относится к способу получения углеводородов, водорода и кислорода с использованием диоксида углерода и воды. Согласно способу насыщают воду диоксидом углерода с получением карбонизированной воды; пропускают карбонизированную воду, по меньшей мере, через один реактор, содержащий катализатор, с осуществлением реакции: n C O 2 + [ 4 n + 2 ( k + 1 ) ] H 2 O = C n H 2 n + 2 + [ 3 n + 2 k + 1 ] H 2 + [ 3 n + k + 1 ] O 2   , где k - целое число, большее или равное 0, n - целое число, большее или равное 1, с получением углеводородов, водорода и кислорода, поступающих далее, по меньшей мере, в один разделитель; по меньшей мере, в одном разделителе отделяют продукты реакции от исходной карбонизированной воды путем сепарации газообразной и жидкой фаз, при этом из жидкой и газообразной фаз выделяют углеводороды, а из газообразной фазы дополнительно выделяют водород и кислород.

Изобретения относятся к области химии. Синтез-газ из газогенератора 10 подают в реактор 64 для преобразования окиси углерода в диоксид углерода.
Изобретение относится к способу получения синтез-газа. Способ включает стадии, в которых готовят парофазную смесь, состоящую из водного пара и распыленного углеводорода или окисленного углеводорода, и проводят каталитическую конверсию парофазной смеси в синтез-газ в установке для риформинга.

Изобретение относится к области катализа. Описан катализатор гидроочистки масляных фракций и рафинатов селективной очистки, характеризующийся следующим соотношением компонентов, % мас.: оксид молибдена (MOo3) 12,0-20,0, оксид вольфрама (WO3) 1,0-6,0, оксид никеля или оксид кобальта (NiO или CoO) 4,0-6,0, оксид фосфора (P2O5) 0,5-0,9, оксид цинка (ZnO) 0,2-6,0, оксид алюминия 61,1-82,3.
Наверх