Способ термической обработки конструкционных сталей на высокопрочное состояние


C21D1/78 - Изменение физической структуры черных металлов; устройства общего назначения для термообработки черных или цветных металлов или сплавов; придание ковкости металлам путем обезуглероживания, отпуска или других видов обработки (цементация диффузионными способами C23C; поверхностная обработка металлов, включающая по крайней мере один процесс, предусмотренный в классе C23, и по крайней мере другой процесс, охватываемый этим подклассом, C23F 17/00; однонаправленное отвердевание эвтектики или однонаправленное разделение эвтектик C30B)

Владельцы патента RU 2506320:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Балтийский государственный технический университет "ВОЕНМЕХ" им. Д.Ф. Устинова (БГТУ "ВОЕНМЕХ") (RU)

Изобретение относится к области металлургии, в частности к термической обработке конструкционных сталей. Способ включает закалку конструкционной стали на мартенсит с последующим воздействием на нее пульсирующего дозвукового воздушного потока с определенными частотой и звуковым давлением при комнатной температуре. Техническим результатом изобретения является сокращение продолжительности технологического процесса упрочняющей термической обработки конструкционных сталей при сохранении высоких значений показателей твердости и прочности и обеспечении достаточной надежности.

 

Заявляемое изобретение относится к области металлургии, а более конкретно к термической обработке, в частности к термической обработке конструкционных сталей. В качестве высокопрочных (предел прочности более 1600 МПа) часто используются легированные конструкционные улучшаемые стали, в том числе 38ХС и 40Х. Термообработка на высокопрочное состояние заключается в закалке на мартенсит с последующим низким отпуском продолжительностью 1,5-2 часа. Столь продолжительный отпуск требуется для полного осуществления процесса релаксации остаточных напряжений. Актуальной является задача уменьшения продолжительности отпуска без снижения конструктивной прочности. Известен способ термической обработки изделий из конструкционных сталей (см. патент RU 2422540 С1, 27.06.2011 г. Бюл. №18). Для повышения пластичности, ударной вязкости и прочности изделий из конструкционной стали осуществляют нагрев изделия до температуры аустенитизации и охлаждение на воздухе до температуры превращения аустенита в феррито-цементитную структуру с последующим охлаждением пульсирующим газовым потоком. Основным недостатком способа является недостаточно высокая прочность, не позволяющая применять данный способ термической обработки к высоконагруженным изделиям. Наиболее близким по технической сущности к заявляемому изобретению является способ снятия остаточных напряжений на поверхности металлических изделий (см. Иванов Д.А., Засухин О.Н. Газоимпульсная обработка машиностроительных материалов без предварительного нагрева // Двигателестроение. - 2010, №2, с.20-22), принятый в качестве ближайшего аналога.

Снятие растягивающих остаточных напряжений на поверхности металлических изделий осуществляют за счет воздействия на них пульсирующего дозвукового воздушного потока, имеющего частоту 1130-2100 Гц и звуковое давление 120-140 дБ при комнатной температуре.

Основным недостатком данного известного способа является отсутствие повышения твердости и прочности изделия.

Перед заявляемым изобретением поставлена задача сокращения продолжительности технологического процесса упрочняющей термической обработки конструкционных сталей при сохранении высоких значений показателей твердости и прочности и обеспечении достаточной надежности.

Решение поставленной задачи достигается тем, что конструкционные стали подвергают стандартной для сталей данных марок закалке на мартенсит с последующим воздействием на них пульсирующего дозвукового воздушного потока, имеющего частоту 1130-2100 Гц и звуковое давление 120-140 дБ при комнатной температуре.

Таким образом изобретение позволило получить технический результат, а именно: сократить в 3-4 раза продолжительность технологического процесса упрочняющей термической обработки конструкционных сталей при сохранении высоких значений показателей твердости и прочности и обеспечении достаточной надежности.

Заявляемое изобретение реализуется следующим образом.

Стальное изделие закаливается на мартенсит стандартно для стали данной марки, после чего при комнатной температуре размещается на выходе из резонатора установки и подвергается в течение 10-15 минут воздействию пульсирующего дозвукового воздушного потока, имеющего частоту 1130-2100 Гц и звуковое давление 120-140 дБ, оказывающего комплексное влияние на метастабильную структуру мартенсита и способствующее протеканию в ней процессов, аналогичных превращениям при низком отпуске, вызывая при этом более значительное, чем при низком отпуске снижение остаточных напряжений.

При этом выбор амплитудно-частотных характеристик воздушного потока и продолжительности обработки определяется геометрическими параметрами, а также материалом обрабатываемого изделия. Механические свойства сталей 40Х и 38ХС после описанной обработки более высокие в сравнении со свойствами после стандартной обработки на высокопрочное состояние, заключающейся в закалке и последующем низком отпуске. При твердости в среднем на 2 единицы HRC выше и более высоких значениях показателей прочности значения показателей пластичности и ударной вязкости не уступают стандартным. Подобно тому, как в случае механического воздействия на остаточный аустенит в закаленной стали он превращается в мартенсит, метастабильный мартенсит закалки может распадаться с образованием мартенсита отпуска и s-карбида в результате распространения в изделии механических волн. Также происходит релаксация остаточных закалочных напряжений вследствие перемещения дислокации.

Данный способ позволяет применять обработку пульсирующим воздушным потоком к изделиям из конструкционных легированных сталей, термообрабатываемых на высокопрочное состояние.

Таким образом изобретение позволило получить технический результат, а именно: сократить в 3-4 раза продолжительность технологического процесса упрочняющей термической обработки конструкционных сталей при сохранении высоких значений показателей твердости и прочности и обеспечении достаточной надежности.

Способ термической обработки конструкционных сталей на высокопрочное состояние, включающий воздействие на изделие пульсирующего дозвукового воздушного потока, имеющего частоту 1130-2100 Гц и звуковое давление 120-140 дБ, отличающийся тем, что перед воздействием упомянутого пульсирующего дозвукового воздушного потока осуществляют предварительную закалку стали на мартенсит.



 

Похожие патенты:

Изобретение относится к термической обработке доэвтектоидных низколегированных сталей. Для обеспечения диспергированной структуры и ее композиционной гетерогенизации с формированием наноразмерных фрагментов, позволяющих получить высокие и стабильные механические свойства, заготовку из стали, содержащую С 0,15-0,25 мас.% и Mn 1,2-1,7 мас.%, нагревают до полной аустенитизации структуры, затем проводят ее охлаждение в печи до температуры выдержки 735-740°C или на воздухе до комнатной температуры с последующим нагревом до температуры выдержки 735-740°C, при этом выдержку осуществляют для формирования двухфазной аустенитно-ферритной структуры, а охлаждение после выдержки ведут со скоростью, обеспечивающей неполное мартенситное превращение аустенита и формирование многофазной микроструктуры, после чего проводят высокотемпературный отпуск-старение при 550°C в течение 2-2,5 часов.
Изобретение относится к области термической обработки стали. Для повышения прочности и пластичности стали 30ХГСА ее нагревают в расплаве NaCl-KCl до температуры 900°C, выдерживают 2 часа, закаливают в масле, затем осуществляют трехкратную закалку с нагревом в этом же расплаве до 900°C с изотермической выдержкой в течение 10 сек и закалкой в масле, и проводят последующий низкий отпуск при температуре 200°C в течение 1 часа.
Изобретение относится к области черной металлургии. Для улучшения магнитных свойств и физико-механических свойств более устойчивых к эксплуатационным воздействиям анизотропной электротехнической стали Fe-3% стальные листы толщиной 0,05-0,50 мм, подвергнутые отжигу для вторичной рекристаллизации и имеющие изоляционные конечные покрытия, обрабатывают лазером непрерывного излучения путем сканирования движущегося листа в поперечном направлении относительно направления его движения, при этом в зонах лазерной обработки стальных листов, дополнительно насаждают локальные дефекты и одновременно формируют пластической деформацией локальное поверхностное сжатие на глубину не более 1/4 толщины листа стали, причем в качестве основы дефектов применяют слабомагнитные порошкообразные вещества, имеющие намагниченность насыщения 200-500 Гс, которые насыпают на поверхность стальных листов, или наносят магнитоактивным покрытием, или дополнительно насыпают на покрытие, а на заключительной стадии обработки осуществляют низкотемпературный отпуск в диапазоне 500-550°C.

Изобретение относится к области металлургии, в частности к технике вакуумно-плазменного напыления путем нанесения металлосодержащих покрытий на изделия из твердых сплавов.
Изобретение относится к области металлургии и нефтяного машиностроения и может быть использовано для изготовления и ремонта насосно-компрессорных труб (НКТ). Для обеспечения высокого комплекса прочностных свойств и мелкозернистой однородной структуры концы труб нагревают до Ас3+(180÷230)°C, затем фиксируют трубу одновременно в двух местах: в матрице и с помощью зажима на расстоянии 500÷4500 мм от высаживаемого конца трубы.

Изобретение относится к устройствам для термической обработки стали и может быть использовано в тракторо- и автомобилестроении, преимущественно при восстановлении или ремонте фрикционных дисков коробок передач.

Изобретение относится к строительству, в частности к свайным фундаментам, закладываемым в грунты с вечной мерзлотой. Способ включает разделку торцов элементов сваи.

Изобретение относится к области металлургии. Для обеспечения контролируемого равномерного охлаждения рулона горячей полосы и получения однородных свойств рулон (1) горячей полосы (2) размещают в устройстве промежуточного хранения, при этом рулон опирают и вращают (100) посредством контакта его боковой поверхности (5) с, по меньшей мере, одним элементом для охлаждения в виде ролика (3, 7).
Изобретение относится к прокатному производству и может быть использовано для получения листовой стали на толстолистовых реверсивных станах. Для повышения производительности процесса способ включает нагрев слябов, черновую прокатку в раскат промежуточной толщины, охлаждение раската и последующую его многопроходную чистовую прокатку с регламентированной температурой начала и конца прокатки в лист конечной толщины, при этом охлаждение раската осуществляют путем возвратно-поступательного перемещения по водоохлаждаемым роликам, внутренняя полость бочки которых предварительно заполнена шариками из теплопроводящего материала.

Изобретение относится к области машиностроения, в частности к термической обработке деталей с использованием индукционного нагрева. Для предохранения от окисления и улучшения качества внутренней поверхности детали осуществляют закалку детали с нагрева токами высокой частоты при одновременной подаче охлаждающей жидкости на внутреннюю и наружную поверхности трубных деталей в стенде, который содержит стойку, гидравлический подъемник, приспособление, состоящее из верхнего центра, корпуса и пружины сжатия, нижнего центра, индуктора, узла управления подачи охлаждающей жидкости, при этом в верхнем центре выполнены каналы с определенными сечением и углом для подачи и равномерного распределения охлаждающей жидкости на внутренней поверхности трубной детали.

Изобретение относится к области металлургии, а именно к изготовлению шестерней для приводных поездных систем, используемых для передачи высокого крутящего момента. Шестерня изготовлена из стали, имеющей следующий химический состав, мас.%: С: 0,1-0,40; Si: 0,35-3,0; Mn: 0,1-3,0; Cr: менее 0,2; Мо:0,1 или менее; P: 0,03 или менее; S: 0,15 или менее; Al: 0,05 или менее; N: 0,03 или менее; Fe и неизбежные примеси остальное. Шестерню подвергают науглероживанию для формирования науглероженного слоя на поверхности при низкой концентрации кислорода, охлаждению при низкой скорости охлаждения и закаливанию путем нагрева высокой плотностью энергии для аустенизации зоны, лежащей над сердцевинной частью и зубчатыми частями без аустенизации сердцевинной части, и быстрого охлаждения шестерни из такого состояния. Части поверхностного слоя зубчатых частей и зубчатая корневая часть являются частями с науглероженным слоем, остальная часть зубчатых частей и часть дисковой части, лежащая ниже науглероженного слоя, является частями с закаленным слоем, а зона дисковой части, лежащая глубже закаленного слоя, является зоной с незакаленным слоем. Получаемые шестерни имеют высокую твердость поверхностных и глубинных слоев без ее неоднородности, а также высокую точность формы. 2 н. и 12 з.п.ф-лы., 11 ил., 4 табл., 1 пр.

Изобретение относится к методам тепло-прочностных испытаний конструкционных материалов преимущественно при прогнозировании и оценке работоспособности необлучаемых конструктивных элементов в атомной технике. Для продления срока службы корпусов реакторов типа ВВЭР предварительно определяют уровни зернограничных сегрегаций фосфора в образцах-свидетелях, изготовленных из стали исследуемого корпуса реактора, подвергавшихся воздействию рабочих температур реактора с выдержками в течение различного времени, определяют методом экстраполяции уровень накопления сегрегаций на момент окончания эксплуатации реактора, затем изготавливают экспериментальные образцы из стали, близкой по составу и микроструктуре к стали исследуемого корпуса реактора, проводят охрупчивающий отжиг экспериментальных образцов в исходном состоянии при температуре максимального развития отпускной хрупкости в течение различного времени, определяют сдвиг критической температуры хрупкости (ТК) и уровень сегрегаций на экспериментальных образцах, подвергшихся отжигу, определяют корреляцию между сдвигом критической температуры хрупкости и уровнем сегрегаций. По полученным корреляционной кривой и экстрополяции уровня накопления сегрегаций определяют степень охрупчивания исследуемой стали в прогнозируемый период срока эксплуатации корпуса реактора. 2 ил.
Изобретение относится к области машиностроения и может быть использовано при изготовлении шестерен, крестовин, втулок, зубчатых колес и т.д., в том числе работающих при температуре до 500°C и испытывающих при эксплуатации динамические нагрузки и износ. Для обеспечения более высокого комплекса прочностных и пластических характеристик, значений ударной вязкости, а также эффективного упрочнения поверхности деталей получают отливки из стали с содержанием углерода 0,2-0,28 мас.%, хрома 3,5-4,5 мас.%, затем отливки подвергают термической обработке путем закалки с температуры 850-870°C в масло и последующего отпуска при 600-620°C. Полученные отливки механически обрабатывают по заданным техническими условиями поверхностям и проводят низкотемпературную химико-термическую обработку деталей, например азотирование или карбонитрацию. Упрочненный слой детали обладает повышенной теплостойкостью и износостойкостью с микротвердостью поверхности не менее 850HV.

Изобретение относится к области металлургии. Для уменьшения магнитных потерь в текстурованном листе из электротехнической стали на поверхности листа формируют канавки, каждая из которых имеет заданную длину и вытянута в направлении, перпендикулярном направлению транспортировки листа электротехнической стали, при этом канавки сформированы при заданных интервалах посредством сканирования поверхности листа лазерным лучом. Лазерный луч представляет собой луч лазера непрерывного излучения с длиной волны λ от 1,0 мкм до 2,1 мкм, плотностью мощности Pd [Вт/мм2], полученной делением интенсивности Р лазерного луча на площадь S сфокусированного луча, составляющей 5×105 Вт/мм2 или более, при этом плотность мощности Pd [Вт/мм2] и скорость сканирования V [мм/с] сфокусированного пятна лазерного луча на поверхности текстурованного листа электротехнической стали, удовлетворяет соотношению 0,005×Pd+3000≤V≤0,005×Pd+40000. 2 н. и 7 з.п. ф-лы, 7 ил., 1 табл.

Изобретение относится к области металлургии. Для уменьшения магнитных потерь лист электротехнической стали с ориентированной зеренной структурой содержит желобок, сформированный от геометрического места точек прохождения лазерного луча при его сканировании от кромки одного конца до кромки другого конца в направлении ширины листа, и линию раздела кристаллического зерна, которая имеет протяженность вдоль упомянутого желобка и пронизывает лист кремнистой стали с ориентированной зеренной структурой от передней поверхности до задней поверхности, причем в упомянутом желобке сформировано стеклянное покрытие, в котором коэффициент интенсивности Ir рентгеновского излучения характерной интенсивности рентгеновского излучения магния на участке желобка заключен в диапазоне 0≤Ir≤0,9, при этом среднее значение характерной интенсивности рентгеновского излучения магния участков поверхности листа текстурованной электротехнической стали, отличных от участка желобка, установлено как 1. 1 з.п. ф-лы, 8 ил., 3 пр., 1 табл.

Изобретение относится к области машиностроения и может быть использовано при формировании износостойкого покрытия на поверхностях деталей с подачей ремонтно-восстановительных составов на поверхность и последующим пластическим деформированием с помощью безабразивной ультразвуковой финишной обработки. Осуществляют нанесение слоя ревитализанта на поверхность металлической детали и безабразивную ультразвуковую финишную обработку с поперечной подачей рабочей головки относительно поверхности обрабатываемой детали 0,16 - 0,08 мм/об до получения шероховатости поверхности Ra = 0,3 - 0,125 мкм. Изобретение обеспечивает не только снижение шероховатости поверхности за счет смятия вершин микронеровностей до Ra=0,125 мкм, но и дополнительно упрочняет поверхностный слой детали на глубину до 100 мкм, с образованием поверхностного слоя. 3 пр., 1 табл.

Группа изобретений относится к нагревательному устройству, устройству для термообработки и способу нагрева для индукционного нагрева кольцеобразной заготовки. Нагревательное устройство содержит опору, предназначенную для установки кольцеобразной заготовки, привод вращения в сборе и нагреватель, предназначенный для нагрева заготовки. Опора для заготовки содержит несколько установленных с возможностью вращения роликов, расположенных в окружном направлении. Привод вращения в сборе выполнен с возможностью передачи вращения указанным роликам для обеспечения вращения заготовки, размещенной на опоре, в направлении кольцевой формы заготовки. Нагреватель содержит нагревательную катушку, предназначенную для индукционного нагрева заготовки на месте ее расположения на опоре для заготовки, опорный короб, поддерживающий нагревательную катушку. Нагревательное устройство снабжено исполнительным механизмом, предназначенным для перемещения нагревательной катушки относительно заготовки с возможностью регулирования расстояния между заготовкой и нагревательной катушкой и включающим в себя участок вертикального перемещения, предназначенной для вертикального перемещения опорного короба, и участок горизонтального перемещения опорного короба в радиальном направлении от центра вращения заготовки. Устройство для термообработки содержит вышеупомянутое нагревательное устройство и блок охлаждения, предназначенный для охлаждения заготовки, нагретой нагревателем, характеризующееся тем, что приводное устройство расположено выше заготовки. Технический результат заключается в облегчении процесса термообработки кольцеобразных заготовок. 3 н. и 12 з.п. ф-лы, 18 ил.
Изобретение относится к области металлургии, в частности к производству магнитотвердых сплавов на основе системы Fe-Cr-Co, которые применяются в приборостроении, релейной технике, электромашиностроении, медицине, автомобильной промышленности. Для повышения остаточной индукции сплав подвергают гомогенизации, закалке, термомагнитной обработке и многоступенчатому отпуску, причем нагрев сплава до температуры проведения термомагнитной обработки ведут в магнитном поле. 1 табл.
Изобретение относится к области машиностроения. Для обеспечения требуемого распределения физико-механических свойств оправку длиной до 15 метров и диаметром от 137 до 200 мм из легированной инструментальной стали с содержанием хрома свыше 4 мас.%, каждого другого карбидообразующего элемента и кремния до 1 мас.%, углерода в пределах от 0,32 до 0,44 мас.% подвергают закалке путем индукционного нагрева при частоте тока 50-1000 Гц до температуры от 1040°С до 1080°С, охлаждения спрейером и отпуску при температуре от 705°С до 725°С с охлаждением на воздухе, при этом оправку при закалке перемещают со скоростью от 70 мм/мин до 180 мм/мин, а при отпуске - со скоростью от 70 мм/мин до 180 мм/мин. 1 табл.
Изобретение относится к области металлургии. Для снижения магнитных потерь при повышении уровня магнитной индукции и обеспечения температурной устойчивости величины магнитных потерь в готовой листовой стали к последующему отжигу способ включает выплавку электротехнической стали, непрерывную разливку, горячую прокатку, холодную прокатку, обезуглероживающий отжиг, вторую холодную прокатку с получение листа конечной толщины, обработку лазером, нанесение защитного покрытия, высокотемпературный отжиг, нанесение электроизоляционного покрытия, выпрямляющий отжиг, при этом обработку лазером осуществляют с помощью источника непрерывного лазерного луча и источника импульсного лазерного луча, причем импульсный лазерный луч имеет меньший диаметр проекции на поверхность листа, чем непрерывный лазерный луч, и большее значение плотности энергии излучения в проекции на поверхность полосы стали, чем непрерывный лазерный луч, каждый линейный след лазерного воздействия образуют путем синхронизованного перемещения проекций непрерывного и импульсного лазерных лучей по поверхности листа с отставанием импульсного лазерного луча от непрерывного, причем воздействием непрерывного лазерного луча формируют осевую область линейного следа лазерного воздействия с литой структурой и периферийную область со структурой частичной рекристаллизации, а воздействием импульсного лазерного луча образуют в осевой области листа канавку с литой структурой. Лист имеет на поверхности линейные следы лазерного воздействия, расположенные параллельно друг другу под углом к направлению прокатки, каждый линейный след лазерного воздействия имеет осевую область с литой структурой шириной от 0,2 до 0,35 толщины листа и глубиной от 0,15 до 0,2 толщины листа и канавкой шириной от 0,05 до 0,1 толщины листа и глубиной от 0,05 до 0,1 толщины листа вдоль нее. 2 н. и 12 з.п. ф-лы, 1 табл., 8 ил.
Наверх