Жидкостный ракетный двигатель

Изобретение относится к ракетному двигателестроению. Жидкостный ракетный двигатель, содержащий камеру двигателя, турбину, топливный насос и предвключенный по отношению к нему струйный преднасос, согласно изобретению сопло впрыска струйного преднасоса сообщено со входом, или выходом из турбины, или с трактом охлаждения камеры. Изобретение обеспечивает повышение эффективности струйных преднасосов. 3 ил.

 

Изобретение относится к ракетному двигателестроению и может быть использовано при создании жидкостных ракетных двигателей (ЖРД).

Одной из основных задач, стоящих при проектировании ЖРД, является создание, возможно, простой конструкции в сочетании с высокими энергетическими характеристиками.

Большинство современных ЖРД выполняются с турбонасосной системой подачи топлива, причем для обеспечения необходимых кавитационных запасов основных лопастных насосов применяют дополнительные насосы малой напорности, которые устанавливаются перед основными насосами (преднасосы).

В российской практике наиболее часто применяют в качестве преднасосов лопастные насосы осевого или оседиагонального типа с винтовой нарезкой лопастей (шнеков), которые монтируются на одном валу с основным рабочим колесом насоса и входят, таким образом, в состав турбонасосного агрегата. Однако для быстроходных современных насосов предвключенного шнека бывает недостаточно, и тогда применяют автономно работающий преднасос лопастного типа, работающий от гидравлической или газовой турбины или струйный преднасос типа «жидкость-жидкость» - прототип. Струйные преднасосы широко применяются на двигателях разработки 1960-1970 годов (см. «Конструкция и проектирование жидкостных ракетных двигателей», Г.Г.Гахун и др., Москва, Машиностроение, 1989 г., стр.224, 225). К преимуществам струйных преднасосов (их иногда называют эжекторами или инжекторами) является их конструктивная простота и надежность в работе. К недостаткам следует отнести низкий коэффициент полезного действия, из-за чего требуются относительно большие расходы высоконапорной активной жидкости, отбираемой после основных насосов, что сказывается отрицательным образом на общем мощностном балансе турбонасосного агрегата. Например, для создания напора в 4-5 атм для компонента топлива, подаваемого на вход основного насоса, на сопла струйного преднасоса нужно подать высоконапорной жидкости с давлением порядка 300 атм в количестве, составляющем порядка 15-20% от расхода компонента топлива, подаваемого в камеру сгорания. Этот недостаток стал препятствием к использованию струйных преднасосов в конструкциях современных ЖРД, отличающихся предельно высокими уровнями удельных параметров.

Целью предлагаемого изобретения является устранение отмеченных недостатков двигателей, использующих струйные преднасосы, а именно, повысить эффективность струйных преднасосов

Поставленная цель достигается тем, что в жидкостных ракетных двигателях, содержащих камеру двигателя, турбину, топливный насос и предвключенный по отношению к нему струйный преднасос с соплом впрыска, согласно изобретению сопло впрыска струйного преднасоса сообщено с входом, или выходом из турбины или с трактом охлаждения камеры.

В этом случае эффективность струйного преднасоса существенно возрастает за счет более высокой адиабатической работы газа на соплах по сравнению с адиабатической работой жидкости при одних и тех же срабатываемых перепадах давлений на соплах. Например, при срабатывании перепада давления в 300 атм. на соплах струйного преднасоса для создания напора в пассивном потоке в 4 атм. (при входном давлении 4 атм и к.п.д., равном 7%, рабочее тело - водород) требуется:

для преднасоса «жидкость-жидкость» расход активной жидкости, равный 19% от общего расхода в насос;

для преднасоса «газ-жидкость» (температура газа 300 К) - 3% общего расхода.

Следует при этом иметь в виду, что для нормальной работы основного насоса ТНА рабочий газ струйного преднасоса должен полностью сконденсироваться в пассивном потоке, а подогрев пассивного потока, вызванный конденсацией пара, не должен ухудшить показатели кавитационного срыва основного насоса. Это может быть достигнуто при условии, что в качестве рабочего газа используются пары компонента топлива и при ограничении соотношения расходов активного пара и пассивной жидкости при заданных температуре и давлении.

Поскольку в подавляющем большинстве практических случаев требуется небольшое приращение давления, создаваемого преднасосом, то вышесказанные ограничительные условия должны выполняться практически для всех используемых при эксплуатации легко газифицируемых компонентов топлива: жидкого водорода, сжиженного природного газа, жидкого кислорода, азотного тетраоксида.

Оптимальным вариантом будет вариант использования в качестве активного рабочего тела чистого пара компонента топлива, способного к полной конденсации на выходе струйного насоса. Однако возможен и вариант использования продуктов сгорания при большом избытке одного из компонентов топлива (продукты сгорания содержат кроме паров компонента топлива и другие газы в небольших количествах, например, водяного пара, углекислоты). В этом случае, если в качестве компонента топлива рассматривать криогенный продукт (например, жидкий водород или кислород), небольшие примеси будут кристаллизоваться и не оказывать существенного влияния на работу основного насоса ТНА.

Предлагаемое изобретение в варианте, когда сопло впрыска струйного преднасоса сообщено с выходом из турбины (т.е. когда используются выхлопные газы), иллюстрируется схемой двигателя, приведенной на фиг.1.

На фиг.1 представлены:

1. Камера двигателя.

2. Газогенератор.

3. Насос горючего.

4. Насос окислителя

5. Турбина.

6. Входная магистраль горючего.

7. Струйный преднасос.

8. Сопла впрыска.

9. Магистраль отбора.

Двигатель, представленный на фиг.1, состоит из камеры 1, газогенератора 2, насоса горючего 3, насоса окислителя 4, турбины 5. Газогенератор 2 сообщен с турбиной 5 и далее с камерой 1. Насос горючего 3 сообщен с камерой 1 и с газогенератором 2. Входная магистраль горючего 6 представляет собой трубопровод, по которому поступает горючее в насос 3, а входная магистраль окислителя представляет собой струйный преднасос 7, по которому окислитель подается в насос 4. Сопла впрыска 8 преднасоса питаются по магистрали отбора 9, сообщенной с выходом из турбины 5.

Двигатель, представленный на фиг.1, работает следующим образом. Компоненты топлива (например, жидкий кислород в качестве окислителя и жидкий водород в качестве горючего) поступают в двигатель. Окислитель проходит струйный преднасос 7, где получает небольшое приращение давления. Преднасос горючего в данной схеме отсутствует. Компоненты топлива поступают в основные насосы 3 и 4, где создается основной напор, и далее окислитель подается полным расходом в газогенератор 2, где он газифицируется за счет тепла, выделяемого при сгорании в нем небольшого количества горючего, подаваемого из насоса. Газифицированный окислитель, состоящий в данном случае, в основном из паров кислорода и небольшого количества паров воды, поступает на турбину 5, приводя ее во вращение, и далее в камеру сгорания 1, где он вступает в реакцию горения с горючим, поступающим туда основным расходом из насоса горючего 3. Часть продуктов сгорания отбирается после турбины и подается под избыточным давлением на сопла впрыска 8 струйного преднасоса 7, где газ при срабатывании перепада давления разгоняется и, взаимодействуя с жидкостью основного потока, отдает ей свою кинетическую энергию, вследствие чего основной поток жидкости приобретает приращение напора. В данном варианте при работе двигателя газ, пройдя сопла преднасоса, конденсируется не полностью, а с остатками водяного пара, который кристаллизуется и в общем потоке с концентрацией кристаллов льда порядка 0,5-0,6% поступает на вход в насос 4 и далее согласно схеме фиг.1. На фиг.2 изображена схема ЖРД, где в отличие от схемы, изображенной на фиг.1, сопло впрыска струйного преднасоса сообщено с входом в турбину 5 трубопроводом 9. Состав агрегатов и их обозначения те же, что и на фиг.1.

Предлагаемое изобретение в варианте использования преднасоса, сообщенного с трактом охлаждения камеры, иллюстрируется схемой ЖРД, приведенной на фиг.3.

На фиг.3 представлены:

1. Камера двигателя.

3. Насос горючего.

4. Насос окислителя.

5. Турбина.

8. Сопла впрыска.

9. Магистраль отбора.

10. Входная магистраль окислителя.

12. Штуцер отбора.

13. Струйный преднасос.

14. Охлаждающий тракт камеры.

15. Магистраль подвода.

16. Магистраль отвода.

Двигатель, представленный на фиг.3, состоит из камеры 1, насоса горючего 3, насоса окислителя 4, турбины 5. Турбина соединена магистралью подвода 15 с охлаждающим трактом камеры, выход из турбины соединен с камерой магистралью отвода 16. Входная магистраль окислителя 10 представляет собой трубопровод, по которому окислитель подается в насос 4 и далее в камеру 1. Входная магистраль горючего представляет собой струйный преднасос 13, который подает горючее на вход в насос 3. Сопло впрыска 8 струйного преднасоса 13 сообщено с трактом охлаждения камеры через магистраль отбора 9 и штуцером отбора 12, расположенного на охлаждающем тракте камеры.

Двигатель, представленный на фиг.3, работает следующим образом. Компоненты топлива (например, жидкий кислород в качестве окислителя и жидкий водород в качестве горючего) поступают в двигатель. Горючее проходит струйный преднасос 13, где получает небольшое приращение давления. Окислитель поступает по входной магистрали окислителя 10. Преднасос окислителя в данной схеме отсутствует. Компоненты топлива поступают в основные насосы 3 и 4, где создается основной напор, и далее окислитель подается полным расходом в камеру 1, где он вступает в реакцию горения с парообразным горючим, поступающим туда основным расходом из насоса горючего 3 через охлаждающий тракт камеры 14, турбину 5 и магистраль отвода 16.

Из тракта охлаждения камеры газифицированное горючее в виде чистых паров, в данном случае водорода, частично отбирается через штуцер отбора 12 и по магистрали отбора 9 подается под избыточным давлением на сопла впрыска 8 струйного преднасоса 13, где пар при срабатывании перепада давления разгоняется и, взаимодействуя с жидкостью основного потока, отдает ей свою кинетическую энергию, вследствие чего основной поток жидкости приобретает приращение напора. При контакте с жидкостью пар охлаждается, конденсируется и далее совместным потоком поступает в насос горючего 3.

Таким образом, использование предлагаемого изобретения позволит улучшить внутреннюю энергетику ЖРД, упростить конструкцию и тем самым повысить его эксплуатационные показатели (ресурс, экономичность и надежность).

Жидкостный ракетный двигатель, содержащий камеру двигателя, турбину, топливный насос и предвключенный по отношению к нему струйный преднасос с соплом впрыска, отличающийся тем, что сопло впрыска струйного преднасоса сообщено с входом, или выходом из турбины, или с трактом охлаждения камеры.



 

Похожие патенты:

Изобретение относится к устройству моторизации насоса (2), обеспечивающего питание ракетного двигателя космического летательного аппарата, отличающемуся тем, что оно содержит инерционное колесо (1) и средство передачи вращения от инерционного колеса к насосу.

Изобретение относится к области привода ракетного двигателя. .

Изобретение относится к конструкции насосных агрегатов жидкостных ракетных двигателей (ЖРД) и может быть использовано в авиационной и ракетной технике. .

Изобретение относится к области двигателестроения и может быть использовано при создании жидкостных ракетных двигателей (ЖРД). .

Изобретение относится к ракетной технике, конкретно к многоступенчатой ракете-носителю, к способу его запуска, а также к жидкостным ракетным двигателям, работающим на трех компонентах.

Изобретение относится к области двигателестроения и может быть использовано при создании жидкостных ракетных двигателей (ЖРД), работающих по безгенераторной схеме.

Изобретение относится к двигателям летательных аппаратов и предназначено для разгонных блоков, имеющих повышенную надежность и высокие энергетические и экологические характеристики.

Изобретение относится к ракетной технике и может быть использовано в жидкостных ракетных двигателях, работающих на трехкомпонентном топливе, например кислороде, углеродном горючем и водороде.

Изобретение относится к ракетным двигателям. Турбонасос, в котором импеллер насоса соединен с одним концом вращающегося вала, а турбина соединена с другим концом вращающегося вала. Турбонасос выполнен так, что эквивалентная область между кривой КПД турбины, полученной на основе условного выражения, в котором число оборотов вращающегося вала поддерживается постоянным независимо от скорости потока насоса, и кривой КПД турбины реальной машины, становится рабочей областью. Рассмотрен ракетный двигатель, использующий турбонасос, который выполнен так, что эквивалентная область между кривой КПД турбины, полученной на основе условного выражения, в котором число оборотов вращающегося вала поддерживается постоянным независимо от скорости потока насоса, и кривой КПД турбины реальной машины, становится рабочей областью. Изобретение обеспечивает уменьшение момента инерции турбонасоса и улучшает быстроту реагирования ракетного двигателя турбонасосного типа. 2 н. и 3 з.п. ф-лы, 10 ил.

Изобретение относится к области ракетного двигателестроения. Трехкомпонентный жидкостный ракетный двигатель (ЖРД), содержащий камеру, газогенератор, агрегаты управления и регулирования, по крайней мере, один турбонасосный агрегат с, как минимум, двумя насосами для двух горючих, причем газовый тракт после, как минимум, одной турбины соединен с смесительной головкой камеры, согласно изобретению насос горючего с меньшей плотностью установлен на отдельном валу, а в газовый тракт, соединяющий газогенератор и турбину, помещен смеситель, связанный трубопроводом с коллектором, установленным после тракта охлаждения камеры, или турбоприводом, связанным с выходной полостью насоса одного из горючих, причем агрегат регулирования установлен на трубопроводе, соединяющем выход из насоса окислителя и смесительную головку газогенератора, или на трубопроводе, соединяющем коллектор после тракта охлаждения камеры и смесительную головку газогенератора, или на трубопроводе, соединяющем выход из насоса горючего с меньшей плотностью и смесительную головку газогенератора. Изобретение обеспечивает повышение удельного импульса тяги и снижение массы ЖРД. 3 ил.

Изобретение относится к области ракетного двигателестроения и может быть использовано при проектировании жидкостных ракетных двигателей (ЖРД). ЖРД содержит камеру сгорания с трактом охлаждения и форсуночной головкой, парогазогенератор, турбонасосный агрегат, включающий в себя насос окислителя, насос горючего, насос воды, турбину, вход которой сообщается с выходом из тракта охлаждения, а выход - с форсуночной головкой, дополнительную турбину, при этом выход парогазогенератора сообщается с входом дополнительной турбины, а на выходе дополнительной турбины установлена выхлопная труба, в выходной части которой расположено сопло. Изобретение обеспечивает повышение энергетических характеристик и надежности ЖРД. 1 ил.

Изобретение относится к области криогенных технологий, в частности к способу охлаждения устройства (3), соединенного с криогенным резервуаром (2) посредством основного подводящего трубопровода (4) для подачи криогенной текучей среды в устройство (3) после охлаждения устройства. В процессе охлаждения криогенную текучую среду вводят в устройство (3) по подводящему трубопроводу (10) охлаждения, который выполнен отдельно от основного подводящего трубопровода (4) и живое сечение которого меньше, чем живое сечение основного подводящего трубопровода (4). Изобретение обеспечивает уменьшение потери напора после охлаждаемого устройства. 9 з.п. ф-лы, 4 ил.

Изобретение относится к области ракетных двигателей, более конкретно к системе подачи ракетного топлива в ракетный двигатель (2), включающей в себя первый бак (3), второй бак (4), первую систему питания (6), соединенную с первым баком (3), и вторую систему питания (7), соединенную со вторым баком (4). Для охлаждения ракетного топлива, содержащегося во втором баке (4), первая система питания (6) включает в себя ответвление (12), проходящее через первый теплообменник (14), встроенный во второй бак (4). Изобретение также относится к способу подачи ракетного топлива в ракетный двигатель (2). Изобретение обеспечивает поддержание давления внутри баков выше минимального предела. 2 н. и 12 з.п. ф-лы, 9 ил.

Изобретение относится к авиационно-космической области, и, в частности, к области летательных аппаратов, приводимых в движение ракетными двигателями. В частности, изобретение относится к схеме (6) питания для снабжения ракетного двигателя (2) по меньшей мере первым жидким топливом, причем упомянутая схема питания включает в себя по меньшей мере один буферный бак (20) для упомянутого первого жидкого топлива и первый теплообменник (18), который встроен в упомянутый буферный бак (20) и приспособлен для подсоединения к схеме (17) охлаждения для охлаждения по меньшей мере одного источника питания, чтобы охлаждать упомянутый источник тепла посредством передачи тепла первому топливу. Изобретение обеспечивает улучшение охлаждения бортовых источников тепла. 4 н. и 7 з.п. ф-лы, 3 ил.

Изобретение относится к жидкостным ракетным двигателям. Ракетный двигатель в сборе (5), включающий в себя бак (30B) для жидкого кислорода, двигатель (10), имеющий камеру сгорания (12), и «нагреватель» теплообменник (46) для превращения в пар жидкого кислорода. Ракетный двигатель в сборе имеет контур паров кислорода (60) для направления паров кислорода с помощью нагревателя в камеру сгорания или в бак. При направлении паров кислорода в камеру сгорания двигатель развивает малую тягу. Изобретение обеспечивает работу двигателя на большой и малой тяге, избегая появления колебательных явлений в системе подачи горючего. 11 з.п. ф-лы, 4 ил.

Изобретение относится к аэрокосмической области, в частности к области летательных аппаратов, приводимых в движение ракетными двигателями, а также к подающей цепи (6) для запитки ракетного двигателя (2) по меньшей мере первым компонентом жидкого топлива, при этом подающая цепь включает в себя по меньшей мере один первый теплообменник (18), пригодный, чтобы быть присоединенным к цепи (17) охлаждения для охлаждения по меньшей мере одного источника тепла посредством передачи тепла первому компоненту топлива, и дополнительно после упомянутого первого теплообменника - ответвление, проходящее через второй теплообменник. Изобретение обеспечивает регулирование температуры источника тепла с возможностью регулирования скорости тока охлаждающей текучей среды в цепи охлаждения. 5 н. и 5 з.п. ф-лы, 2 ил.
Наверх