Распределение энергии

Изобретение относится к установке распределения энергии. Техническим результатом является упрощение изменения параметров в установке распределения энергии. В соответствии с изобретением множество отдельных вычислительных устройств через коммуникационную сеть соединены друг с другом и образуют децентрализованную вычислительную систему установки распределения энергии, полевые приборы уровня полевых приборов, станционные приборы уровня станционных приборов, а также приборы техники управления уровня техники управления подключены к децентрализованной вычислительной системе или образованы посредством отдельных или нескольких вычислительных устройств децентрализованной вычислительной системы, и параметры для определения режима функционирования полевых приборов, станционных приборов, а также приборов техники управления распределены на по меньшей мере два различных вычислительных устройства децентрализованной вычислительной системы, и доступ полевых приборов, станционных приборов и приборов техники управления к параметрам осуществляется через коммуникационную сеть. 2 н. и 13 з.п. ф-лы, 3 ил.

 

Изобретение относится к установке распределения энергии с уровнем полевых приборов, иерархически вышестоящим станционным уровнем, а также уровнем техники управления, который является иерархически вышестоящим по отношению к станционному уровню, причем режим функционирования полевых приборов, относящихся к уровню полевых приборов, режим функционирования станционных приборов, относящихся к станционному уровню, и режим функционирования приборов техники управления, относящихся к уровню техники управления, определяются параметрами. Подобные установки распределения энергии являются в настоящее время общепринятыми, например, в электрических сетях распределения энергии.

В основе изобретения лежит задача предложить установку распределения энергии, в которой изменение параметров можно выполнить проще, чем в нынешних установках распределения энергии.

Эта задача решается установкой распределения энергии с признаками согласно пункту 1 формулы изобретения. Предпочтительные варианты осуществления соответствующей изобретению установки распределения энергии приведены в зависимых пунктах формулы изобретения.

В соответствии с изобретением предусмотрено, что множество отдельных вычислительных устройств через коммуникационную сеть соединены друг с другом и образуют децентрализованную вычислительную систему установки распределения энергии, полевые приборы уровня полевых приборов, станционные приборы уровня станционных приборов, а также приборы техники управления уровня техники управления подключены к децентрализованной вычислительной системе или образованы посредством отдельных или нескольких вычислительных устройств децентрализованной вычислительной системы, и параметры для определения режима функционирования полевых приборов, станционных приборов, а также приборов техники управления распределены на по меньшей мере два различных вычислительных устройства децентрализованной вычислительной системы, и доступ полевых приборов, станционных приборов и приборов техники управления к параметрам осуществляется через коммуникационную сеть.

Существенное преимущество соответствующей изобретению установки распределения энергии следует усматривать в том, что в ней параметры, которые устанавливают режим функционирования полевых приборов, станционных приборов и приборов техники управления, могут изменяться децентрализовано за счет того, что просто получают доступ к децентрализованной вычислительной системе установки распределения энергии. В отличие от традиционных установок распределения энергии, при которых параметры реализованы или сохранены в отдельных приборах и поэтому должны изменяться также индивидуально для прибора, в соответствующей изобретению установке распределения энергии возможно независимое от прибора изменение параметров. Тем самым, можно намного быстрее и экономичнее переконфигурировать установку распределения энергии и изменить распределение энергии в сети распределения энергии, если, например, ввиду неожиданного изменения погоды в распоряжение предоставляется меньше альтернативной энергии (например, энергии ветра или электрогальванической энергии), чем ожидалось.

Другое существенное преимущество соответствующей изобретению установки распределения энергии состоит в том, что предусмотрено распределение параметров в децентрализованной вычислительной системе. За счет децентрализованного хранения параметров становится возможным учитывать пространственное или географическое размещение полевых приборов, станционных приборов и приборов техники управления, и сохранять параметры там, где они требуются; это снижает нагрузку коммуникационной сети и проблемы передачи или ошибки передачи при передаче параметров к соответствующим полевым приборам, станционным приборам и приборам техники управления. Также параметры могут сохраняться избыточным образом, чтобы избегать возможных потерь данных при выходе из строя отдельных вычислительных устройств.

Согласно особенно предпочтительному выполнению предусмотрено, что управляющее программное обеспечение, которое управляет распределением энергии посредством установки распределения энергии и/или защитой установки распределения энергии за счет того, что оно устанавливает или изменяет параметры для определения режима функционирования полевых приборов, станционных приборов, а также приборов техники управления, распределено по различным вычислительным устройствам децентрализованной вычислительной системы. Такое распределение вычислительной мощности предоставляет преимущество, заключающееся в том, что могут привлекаться и такие вычислительные устройства, которые отдельно не пригодны для того, чтобы манипулировать или выполнять полное управляющее программное обеспечение, но вполне в состоянии самостоятельно решать по меньшей мере частичные задачи.

Предпочтительным образом управляющее программное обеспечение имеет модули распределения энергии, которые самостоятельно управляют распределением энергии посредством установки распределения энергии по меньшей мере в зависимости от доступности энергии и потребности энергии посредством установки или изменения параметров. Обеспечение отдельных модулей распределения энергии предоставляет преимущество, состоящее в том, что вычислительную мощность для локального распределения энергии целенаправленно можно предоставить там, где она пространственно или географически требуется; это повышает скорость обработки и снижает вероятность ошибок. В качестве альтернативы или дополнительно, управляющее программное обеспечение может также иметь отдельные защитные модули, которые самостоятельно управляют защитой установки распределения энергии путем установления или изменения параметров.

Предпочтительным образом модули распределения энергии выполнены таким образом, что они самостоятельно распознают, следует ли в сети распределения энергии соответствующих поставщиков энергии или потребителей энергии дополнительно ввести или исключить, и в зависимости от возникающего изменения сетевой структуры предпринимают подстройку параметров.

Принимая во внимание оптимальное распределение вычислительной мощности и загрузки памяти вычислительных устройств децентрализованной вычислительной системы, рассматривается в качестве предпочтительного, если управляющее программное обеспечение имеет центральную часть программы управления, которая контролирует сопоставление модулей распределения энергии и/или модулей защиты отдельным вычислительным устройствам децентрализованной вычислительной системы в зависимости от текущей доступности и/или текущего статуса функционирования вычислительных устройств регулярным, нерегулярным или управляемым событиями образом, и при необходимости изменяет его.

Предпочтительным образом локальным участкам установки распределения энергии сопоставлены индивидуальные модули распределения энергии и/или индивидуальные модули защиты, для которых модули распределения энергии управляют распределением энергии в зависимости от локальной доступности энергии и локальной потребности в энергии и/или модули защиты локально управляют защитой.

Также в качестве предпочтительного рассматривается, если центральная часть программы управления выполнена таким образом, что она выбирает соотнесение модулей распределения энергии и/или модулей защиты с вычислительными устройствами децентрализованной вычислительной системы в зависимости от географического положения вычислительных устройств и географического положения локальных участков, а именно таким образом, что при соотнесении модулей распределения энергии и/или модулей защиты с вычислительными устройствами находящиеся на соответствующих локальных участках вычислительные устройства или соседние с ними вычислительные устройства рассматриваются как предпочтительные по сравнению с такими вычислительными устройствами, которые имеют большее расстояние до соответствующих локальных участков.

Предпочтительным образом, по меньшей мере один из модулей распределения энергии подходит для того, чтобы прогнозировать будущую потребность в энергии на его локальном участке, чтобы обеспечить оптимальное распределение энергии.

Модули распределения энергии и/или модули защиты могут, например, быть соотнесены с соответствующим одним вычислительным устройством децентрализованной вычислительной системы.

Центральная часть программы управления предпочтительно распределена на по меньшей мере два вычислительные устройства децентрализованной вычислительной системы, так как она ввиду ее сложности, как правило, имеет относительно большую потребность в вычислительной мощности. Предпочтительным образом центральная часть программы управления образована модулями части программы управления, которые соотнесены с по меньшей мере двумя вычислительными устройствами децентрализованной вычислительной системы.

Чтобы избежать потери данных, в качестве предпочтительного рассматривается, если коммуникационное соединение между по меньшей мере двумя вычислительными устройствами децентрализованной вычислительной системы и/или между по меньшей мере одним полевым прибором уровня полевых приборов, станционным прибором уровня станционных приборов или прибором техники управления уровня техники управления и по меньшей мере одним из вычислительных устройств децентрализованной вычислительной системы осуществляется с избыточностью.

Например, коммуникация по коммуникационной сети может осуществляться по меньшей мере согласно протоколу IEC61850. Протокол IEC61850 обеспечивает возможность особенно простого способа обработки значений напряжения и тока в децентрализованной вычислительной системе.

Изобретение также относится к способу функционирования установки распределения энергии с уровнем полевых приборов, иерархически вышестоящим станционным уровнем, а также уровнем техники управления, который является иерархически вышестоящим по отношению к станционному уровню, причем режим функционирования полевых приборов, относящихся к уровню полевых приборов, режим функционирования станционных приборов, относящихся к станционному уровню, и режим функционирования приборов техники управления, относящихся к уровню техники управления, определяются параметрами.

В соответствии с изобретением предусмотрено, что параметры для определения режима функционирования полевых приборов, станционных приборов, а также приборов техники управления распределяются на по меньшей мере два различных вычислительных устройства децентрализованной вычислительной системы, и доступ полевых приборов, станционных приборов и приборов техники управления к параметрам осуществляется через коммуникационную сеть.

Относительно преимуществ соответствующего изобретению способа можно сослаться на преимущества соответствующей изобретению установки распределения энергии, так как преимущества соответствующей изобретению установки распределения энергии в значительной степени соответствуют преимуществам соответствующего изобретению способа.

В качестве особенно предпочтительного рассматривается, если локальным участкам установки распределения энергии сопоставлены индивидуальные модули распределения энергии и/или индивидуальные модули защиты, для которых модули распределения энергии локально управляют распределением энергии и/или модули защиты локально управляют защитой, и если соотнесение модулей распределения энергии и/или модулей защиты с вычислительными устройствами децентрализованной вычислительной системы выбирается в зависимости от географического положения вычислительных устройств и географического положения локальных участков, а именно таким образом, что при соотнесении модулей распределения энергии и/или модулей защиты с вычислительными устройствами те вычислительные устройства, которые находятся на локальных участках, соотнесенных с модулями распределения энергии и/или модулями защиты, или вблизи них, рассматриваются как предпочтительные по сравнению с более удаленными вычислительными устройствами.

Изобретение поясняется далее более подробно со ссылками на чертежи, на которых показано следующее:

Фиг.1 - незаявленная установка распределения энергии для общего пояснения,

Фиг.2 - пример выполнения соответствующей изобретению установки распределения энергии, на основе которой также поясняется пример осуществления для соответствующего изобретению способа, и

Фиг.3 - другой пример выполнения соответствующей изобретению установки распределения энергии.

На чертежах для одинаковых или сопоставимых компонентов использованы одни и те же ссылочные позиции.

На фиг.1 показана установка 10 распределения энергии, которая подключена к непоказанной детально сети 20 энергоснабжения. Установка 10 распределения энергии иерархически структурирована и имеет уровень 30 полевых приборов, к которому относятся полевые приборы 31, 32, 33 и 34. Полевые приборы 31, 32, 33 и 34 могут быть образованы, например, защитными приборами, счетчиками, регулирующими приборами, переключателями, распределительными устройствами и тому подобным. Полевые приборы 31, 32, 33 и 34 непосредственно или опосредованно соединены с сетью энергоснабжения 20, например, через измерительный преобразователь, переключающие элементы или иные устройства и приборы.

По отношению к уровню 30 полевых приборов, иерархически вышестоящим является станционный уровень 40, который образован, например, из станционных приборов 41 и 42.

Установка 10 распределения энергии содержит, кроме того, уровень 50 техники управления, который является вышестоящим по отношению к станционному уровню 40 и включает в себя один или более приборов 51 техники управления.

Режим функционирования полевых приборов 31, 32, 33 и 34, относящихся к уровню 30 полевых приборов, режим функционирования станционных приборов 41 и 42, относящихся к станционному уровню 40, и режим функционирования приборов 51 техники управления, относящихся к уровню 50 техники управления, определяются, соответственно, посредством параметров, которые реализованы или сохранены в соответствующих приборах. Если должно осуществляться изменение конфигурации установки 10 распределения энергии, то все связанные с этим приборы должны перепараметризироваться, что влечет за собой значительные затраты, поскольку перепараметризация, как правило, затрагивает все иерархические уровни 30, 40, и 50.

На фиг.2 показан пример выполнения для соответствующей изобретению установки 10 распределения энергии. В этой установке 10 распределения энергии полевые приборы 31, 32, 33 и 34, станционные приборы 41 и 42 и прибор 51 техники управления соединены через коммуникационную сеть 80. Кроме того, они через эту коммуникационную сеть 80 подключены к децентрализованной вычислительной системе 100 установки 10 распределения энергии.

Децентрализованная вычислительная система 100 включает в себя в этом примере выполнения шесть вычислительных устройств 101, 102, 103, 104, 105 и 106. На одном из этих шести вычислительных устройств, например вычислительном устройстве 101, или распределенным образом на нескольких из этих вычислительных устройств инсталлировано управляющее программное обеспечение SW, которое управляет распределением энергии посредством установки 10 распределения энергии и/или защитой установки 10 распределения энергии.

Задача управляющего программного обеспечения SW состоит, в числе прочего, в том, чтобы устанавливать и/или изменять параметры Р для определения режима функционирования или работы полевых приборов 31, 32, 33 и 34, станционных приборов 41 и 42, а также прибора 51 техники управления, и, соответственно, сохранять действительные параметры Р в децентрализованной вычислительной системе 100. Предпочтительным образом управляющее программное обеспечение SW загружает параметры Р для полевых приборов, станционных приборов и прибора техники управления в те вычислительные устройства децентрализованной вычислительной системы 100, которые имеют по возможности меньшее пространственное удаление от соответствующих полевых приборов, станционных приборов и приборов техники управления, так что реализуется распределение параметров Р на по меньшей мере два различных вычислительных устройства децентрализованной вычислительной системы 100. В примере выполнения согласно фиг.2 параметры Р сохранены, например, в вычислительных устройствах 102 и 103.

Полевые приборы 31, 32, 33 и 34, станционные приборы 41 и 42, а также приборы 51 техники управления получают через коммуникационную сеть 80 свои соответствующие параметры Р, которые загружены в вычислительную систему 100.

Управляющее программное обеспечение SW имеет предпочтительным образом один или более модулей ЕМ распределения энергии, которые самостоятельно управляют распределением энергии, осуществляемым установкой 10 распределения энергии, по меньшей мере в зависимости от доступности энергии и потребности в энергии, за счет того, что они устанавливают или изменяют параметры Р для установления режима функционирования полевых приборов, станционных приборов и приборов техники управления согласно заданному алгоритму оптимизации с целью оптимального распределения энергии.

Кроме того, управляющее программное обеспечение предпочтительно имеет один или более модулей SM защиты, которые самостоятельно управляют защитой установки распределения энергии за счет того, что они устанавливают или изменяют параметры Р для установления режима функционирования полевых приборов, станционных приборов и приборов техники управления согласно заданному алгоритму оптимизации с целью оптимального защитного действия.

Предпочтительным образом модули ЕМ распределения энергии выполнены таким образом, что они самостоятельно проверяют - например, регулярно, нерегулярно или при управлении событиями - следует ли в сети распределения энергии дополнительно ввести или исключить соответствующих поставщиков энергии или потребителей энергии, и что они в зависимости от возникающего изменения сетевой структуры предпринимают подстройку параметров Р.

Фиг.3 показывает другой пример выполнения для соответствующей установки 10 распределения энергии. В этой установке 10 распределения энергии полевые приборы, станционные приборы и прибор техники управления образованы вычислительными устройствами децентрализованной вычислительной системы 100:

- полевой прибор 31 согласно фиг.1 и 2 образован вычислительным устройством 31',

- полевой прибор 32 согласно фиг.1 и 2 образован вычислительным устройством 32',

- полевой прибор 33 согласно фиг.1 и 2 образован вычислительным устройством 33',

- полевой прибор 34 согласно фиг.1 и 2 образован вычислительным устройством 34',

- станционный прибор 41 согласно фиг.1 и 2 образован вычислительным устройством 41',

- станционный прибор 42 согласно фиг.1 и 2 образован вычислительным устройством 42', и

- прибор 51 техники управления согласно фиг.1 и 2 образован вычислительным устройством 51'.

В варианте выполнения согласно фиг.3 каждый полевой прибор, станционный прибор и прибор техники управления образован отдельным индивидуальным вычислительным устройством. В качестве альтернативы, отдельные или все эти приборы могут также быть реализованы несколькими вычислительными устройствами децентрализованной вычислительной системы 100, или их функциональность может быть распределена на несколько вычислительных устройств децентрализованной вычислительной системы 100. Также возможно, что отдельные или все вычислительные устройства децентрализованной вычислительной системы 100 полностью или частично обеспечивают или отображают функциональность двух или более полевых приборов, станционных приборов и приборов техники управления.

На одно или несколько из вычислительных устройств - здесь в качестве примера на вычислительные устройства 101 и 102 - распределено управляющее программное обеспечение, которое управляет распределением энергии посредством установки 10 распределения энергии и/или защитой установки 10 распределения энергии. Управляющее программное обеспечение образовано модулями SW1 и SW2 управляющего программного обеспечения.

Задача модулей SW1 и SW2 управляющего программного обеспечения заключается, в числе прочего, в том, чтобы установить и/или изменить параметры для определения режима функционирования или работы полевых приборов, станционных приборов и приборов техники управления и, соответственно, сохранить действительные параметры Р в децентрализованной вычислительной системе 100. Предпочтительным образом модули SW1 и SW2 управляющего программного обеспечения загружают параметры Р для полевых приборов, станционных приборов и приборов техники управления в те вычислительные устройства децентрализованной вычислительной системы 100, которые имеют по возможности меньшее пространственное удаление от соответствующих полевых приборов, станционных приборов и приборов техники управления, так что реализуется распределение параметров Р на по меньшей мере два различных вычислительных устройства децентрализованной вычислительной системы 100. В примере выполнения согласно фиг.3 параметры Р сохранены, например, в вычислительных устройствах 103 и 104.

Модули SW1 и SW2 управляющего программного обеспечения имеют предпочтительным образом один или более модулей распределения энергии, которые самостоятельно управляют распределением энергии, осуществляемым установкой 10 распределения энергии по меньшей мере в зависимости от доступности энергии и потребности в энергии, за счет того, что они устанавливают или изменяют параметры Р для установления режима функционирования полевых приборов, станционных приборов и приборов техники управления согласно заданному алгоритму оптимизации с целью оптимального распределения энергии. Модули распределения энергии, которые, например, могут соответствовать таковым по фиг.2 или могут быть идентичными или подобными им, для наглядности на фиг.3 в явном виде не показаны.

В качестве альтернативы или дополнительно, модули SW1 и SW2 управляющего программного обеспечения имеют предпочтительным образом один или более модулей защиты, которые самостоятельно управляют защитой установки распределения энергии за счет того, что они устанавливают или изменяют параметры Р для установления режима функционирования полевых приборов, станционных приборов и приборов техники управления согласно заданному алгоритму оптимизации с целью оптимального защитного действия. Модули защиты, которые, например, могут соответствовать таковым по фиг.2 или могут быть идентичными или подобными им, для наглядности на фиг.3 в явном виде не показаны.

1. Установка (10) распределения энергии с уровнем (30) полевых приборов, иерархически вышестоящим станционным уровнем (40), а также уровнем (50) техники управления, который является иерархически вышестоящим по отношению к станционному уровню, причем режим функционирования полевых приборов (31, 32, 33, 34), относящихся к уровню полевых приборов, режим функционирования станционных приборов (41, 42), относящихся к станционному уровню, и режим функционирования приборов (51) техники управления, относящихся к уровню техники управления, определяются параметрами (Р),
отличающаяся тем, что
множество отдельных вычислительных устройств (101, 102, 103, 104, 105, 106) через коммуникационную сеть (80) соединено друг с другом и образует децентрализованную вычислительную систему установки распределения энергии,
полевые приборы уровня полевых приборов, станционные приборы уровня станционных приборов, а также приборы техники управления уровня техники управления подключены к децентрализованной вычислительной системе или образованы посредством отдельных или нескольких вычислительных устройств децентрализованной вычислительной системы, и
параметры для определения режима функционирования полевых приборов, станционных приборов, а также приборов техники управления распределены на по меньшей мере два различных вычислительных устройства децентрализованной вычислительной системы, и доступ полевых приборов, станционных приборов и приборов техники управления к параметрам осуществляется через коммуникационную сеть.

2. Устройство по п.1, отличающееся тем, что управляющее программное обеспечение (SW), которое управляет распределением энергии посредством установки распределения энергии и/или защитой установки распределения энергии за счет того, что оно устанавливает или изменяет параметры для определения режима функционирования полевых приборов, станционных приборов, а также приборов техники управления, распределено по различным вычислительным устройствам децентрализованной вычислительной системы.

3. Устройство по п.2, отличающееся тем, что управляющее программное обеспечение имеет модули (ЕМ) распределения энергии, которые самостоятельно управляют распределением энергии посредством установки распределения энергии по меньшей мере в зависимости от доступности энергии и потребности в энергии посредством установки или изменения параметров, и/или имеет модули (SM) защиты, которые самостоятельно управляют защитой установки распределения энергии путем установления или изменения параметров.

4. Устройство по п.3, отличающееся тем, что управляющее программное обеспечение имеет центральную часть программы управления, которая контролирует соотнесение модулей распределения энергии и/или модулей защиты с отдельными вычислительными устройствами децентрализованной вычислительной системы в зависимости от текущей доступности и/или текущего статуса функционирования вычислительных устройств регулярным, нерегулярным или управляемым событиями образом, и при необходимости изменяет его.

5. Устройство по п.3 или 4, отличающееся тем, что с локальными участками установки распределения энергии соотнесены индивидуальные модули распределения энергии и/или индивидуальные модули защиты, для которых модули распределения энергии управляют распределением энергии в зависимости от локальной доступности энергии и локальной потребности в энергии и/или модули защиты локально управляют защитой.

6. Устройство по п.5, отличающееся тем, что центральная часть программы управления выполнена таким образом, что она выбирает соотнесение модулей распределения энергии и/или модулей защиты с вычислительными устройствами децентрализованной вычислительной системы в зависимости от географического положения вычислительных устройств и географического положения локальных участков, а именно таким образом, что при соотнесении модулей распределения энергии и/или модулей защиты с вычислительными устройствами находящиеся на соответствующих локальных участках вычислительные устройства или соседние с ними вычислительные устройства рассматриваются как предпочтительные по сравнению с такими вычислительными устройствами, которые имеют большее расстояние до соответствующих локальных участков.

7. Устройство по п.3, отличающееся тем, что по меньшей мере один из модулей распределения энергии подходит для того, чтобы прогнозировать будущую потребность в энергии на его локальном участке.

8. Устройство по п.3, отличающееся тем, что модули распределения энергии и/или модули защиты соотнесены с соответствующим одним вычислительным устройством децентрализованной вычислительной системы.

9. Устройство по п.4, отличающееся тем, что центральная часть программы управления распределена на по меньшей мере два вычислительных устройства децентрализованной вычислительной системы.

10. Устройство по п.9, отличающееся тем, что центральная часть программы управления образована модулями части программы управления, которые соотнесены с по меньшей мере двумя вычислительными устройствами децентрализованной вычислительной системы.

11. Устройство по п.2, отличающееся тем, что управляющее программное обеспечение имеет модули (SW1, SW2) управляющего программного обеспечения, которые соответственно соотнесены с одним вычислительным устройством децентрализованной вычислительной системы.

12. Устройство по п.1, отличающееся тем, что коммуникационное соединение между по меньшей мере двумя вычислительными устройствами децентрализованной вычислительной системы и/или между по меньшей мере одним полевым прибором уровня полевых приборов, станционным прибором уровня станционных приборов или прибором техники управления уровня техники управления и по меньшей мере одним из вычислительных устройств децентрализованной вычислительной системы осуществляется с избыточностью.

13. Устройство по п.1, отличающееся тем, что коммуникация по коммуникационной сети осуществляется по меньшей мере согласно протоколу IEC61850.

14. Способ функционирования установки (10) распределения энергии с уровнем (30) полевых приборов, иерархически вышестоящим станционным уровнем (40), а также уровнем (50) техники управления, который является иерархически вышестоящим по отношению к станционному уровню, причем режим функционирования полевых приборов (31, 32, 33, 34), относящихся к уровню полевых приборов, режим функционирования станционных приборов (41, 42), относящихся к станционному уровню, и режим функционирования приборов (51) техники управления, относящихся к уровню техники управления, определяются параметрами (Р),
отличающийся тем, что
параметры для определения режима функционирования полевых приборов, станционных приборов, а также приборов техники управления распределяются на по меньшей мере два различных вычислительных устройства (101, 102, 103, 104, 105, 106) децентрализованной вычислительной системы (100), и
доступ полевых приборов, станционных приборов, а также приборов техники управления к параметрам осуществляется через коммуникационную сеть (80).

15. Способ по п.14, отличающийся тем, что локальным участкам установки распределения энергии сопоставлены индивидуальные модули (ЕМ) распределения энергии и/или индивидуальные модули (SM) защиты, для которых модули распределения энергии локально управляют распределением энергии и/или модули защиты локально управляют защитой и
соотнесение модулей распределения энергии и/или модулей защиты с вычислительными устройствами децентрализованной вычислительной системы выбирается в зависимости от географического положения вычислительных устройств и географического положения локальных участков, а именно таким образом, что при соотнесении модулей распределения энергии и/или модулей защиты с вычислительными устройствами те вычислительные устройства, которые находятся на локальных участках, соотнесенных с модулями распределения энергии и/или модулями защиты, или вблизи них, рассматриваются как предпочтительные по сравнению с более удаленными вычислительными устройствами.



 

Похожие патенты:

Использование: в области электротехники. Технический результат - расширение функциональных возможностей.

Использование: в области электротехники. Технический результат - расширение функциональных возможностей способа.

Изобретение относится к электрическим сетям и предназначено для повышения коэффициента полезного действия воздушной линии электропередачи, а также качества электроэнергии, отпускаемой сельскохозяйственным потребителям.

Изобретение относится к электротехнике и может быть использовано при передаче электрической энергии потребителю с помощью симметричной линии электропередачи четырехпроводного исполнения, входящей в состав симметричной электроэнергетической системы.

Изобретение относится к электротехнике и может быть использовано при передаче электрической энергии потребителю с помощью неоднородной неизолированной линии электропередачи трехпроводного исполнения.

Использование: в области электротехники. Технический результат - расширение функциональных возможностей.

Использование: в области электротехники. Технический результат - расширение функциональных возможностей способа.

Использование: в области электротехники. Технический результат - расширение функциональных возможностей.

Изобретение относится к области электротехники и может быть использовано во вспомогательном устройстве подачи энергии бытовых электроприборов, использующем интеллектуальную сеть. Техническим результатом является сокращение потерь электроэнергии и экологические загрязнения при выработке электроэнергии. Изобретение связано с сетью подачи энергии, которая содержит: измерительное устройство, которое осуществляет двунаправленную связь с источником энергии и измеряет и отображает информацию по энергии в режиме реального времени; и устройство управления электроэнергией, которое подключено к измерительному устройству и подает электричество бытовым электроприборам на основе информации по энергии, предоставляемой с внешней стороны. Таким образом, изобретение заряжается с помощью источника энергии, имеющего информацию по относительно небольшой стоимости, и выборочно связано с бытовыми электроприборами так, что заряженное электричество может быть использовано как источник рабочей энергии. В соответствии с изобретением, бытовые электроприборы могут быть использованы при меньшей стоимости. 2 н. и 13 з.п. ф-лы, 10 ил.

Использование: в области электротехники. Технический результат - обеспечение возможности двунаправленного обмена информацией. Способ заключается в том, что в начале линии размещают главный узел, вдоль линии размещают множество подчиненных узлов, каждый из которых имеет свой порядковый номер (идентификатор); информацию, передаваемую от главного узла, кодируют последовательностью символов из заранее заданного алфавита, причем каждому символу соответствует его порядковый номер в алфавите (код символа), полученную последовательность символов формируют в пакет, состоящий из полей чисел, в первом поле пакета записывают идентификатор подчиненного узла, в оставшихся полях записывают коды символов передаваемой последовательности, в начале каждого поля выполняют прерывание питающего напряжения (маркер начала поля), передачу символа осуществляют подачей в линию соответствующего его коду количества полуволн питающего напряжения, после передачи последнего поля выполняют прерывание питающего напряжения (маркер окончания пакета). К линии электроснабжения подключают конденсатор, в каждом подчиненном узле устанавливают последовательно соединенные резистор и управляемый коммутатор, подключенные к линии электроснабжения между нулевым и фазным проводниками. Информацию, передаваемую от подчиненного узла к главному, кодируют последовательностью двоичных бит, при передаче бита "1" подключают резистор к линии электроснабжения, при передаче бита "0" резистор не подключают, главный узел с помощью порогового датчика напряжения определяет наличие либо отсутствие прерывания напряжения в линии на интервале маркера приема, если напряжение на интервале маркера приема прерывалось, считают, что подчиненный узел передал бит "1", иначе - бит "0", далее процесс повторяют для каждого бита двоичной последовательности, передаваемой от подчиненного узла к главному. 1 з.п.ф-лы, 3 ил.

Использование: в области электроэнергетики. Технический результат - расширение функциональных возможностей. Согласно способу при контроле текущих режимов работы электроэнергетической системы (ЭС) формируют в дискретные моменты времени синхронизированные внешним источником единого времени сигналы, пропорциональные параметрам векторов напряжений, вырабатываемых контролируемыми объектами единой ЭС, в качестве которых выбирают генераторы напряжений, входящих в ее состав, определяют на заданном скользящем интервале времени оценки математических ожиданий фазовых углов и их приращений в каждый дискретный момент времени, а при наблюдении переходных процессов в ЭС выявляют группу возмущенных контролируемых объектов по резкому изменению фазовых углов, по крайней мере, на двух контролируемых объектах на основе сравнения приращений фазовых углов с их допустимыми пороговыми значениями, по максимальному приращению фазовых углов возмущенных контролируемых объектов определяют источник возмущений, определяют в дискретные моменты времени среднее расстояние между возмущенными объектами группы и источником возмущений, по которому судят о пространственном характере переходного процесса в ЭС, по скорости изменения этого расстояния судят о скорости переходного процесса и его изменении во времени, а по длительности интервала времени от момента выявления группы возмущенных контролируемых объектов до момента прекращения возмущений судят о длительности переходного процесса в ЭС. 2 н. и 1 з.п. ф-лы, 1 ил.

Использование: в области электротехники. Технический результат - расширение функциональных возможностей. Автоматизированная система (10) энергоснабжения для электрической сети (11) энергоснабжения c полевыми приборами (14), которые с одной стороны для регистрации измеренных значений соединены с сенсорами (12), а с другой стороны - с вышестоящей коммуникационной шиной (15), по меньшей мере одним электрическим станционным прибором (16) управления, который с одной стороны соединен с коммуникационной шиной (15), а с другой - с вышестоящим коммуникационным соединением (17) центра управления, и по меньшей мере одним прибором (18а, 18b) сетевого центра управления, который соединен с коммуникационным соединением (17) центра управления. Полевые приборы (14), станционный прибор (16) управления и прибор (18а, 18b) сетевого центра управления выполнены для обработки данных управления функционированием, и коммуникационная шина (15) и коммуникационное соединение (17) центра управления выполнены для передачи данных управления функционированием согласно первому коммуникационному протоколу или первой службе передачи данных. Полевые приборы (14), станционный прибор (16) управления и прибор (18а, 18b) сетевого центра управления выполнены также для обработки данных качества электроэнергии, и коммуникационная шина (15) и коммуникационное соединение (17) центра управления выполнены также для передачи данных качества электроэнергии согласно второму коммуникационному протоколу или второй службе передачи данных. 9 з.п. ф-лы, 1 ил.

Изобретение относится к области электротехники и может быть использовано в энергетических системах. Технический результат заключается в улучшении управления сетями электроэнергетической системы. Интеллектуальная энергосистема для улучшения управления энергосистемой общего пользования включает в себя использование датчиков на различных участках энергосистемы общего пользования, с применением технологии передачи данных и компьютерной технологии, таких как дополнительные структуры шины, для обновления электроэнергетической системы таким образом, чтобы она могла работать более эффективно и надежно, и для поддержания дополнительных услуг для потребителей. Интеллектуальная энергосистема может включать в себя распределенное интеллектуальное средство в энергосистеме общего пользования (отдельное от интеллектуальных средств центра управления), включающее в себя устройства, которые генерируют данные на разных участках энергосистемы, анализируют сгенерированные данные и автоматически модифицируют работу участка электроэнергетической системы. 6 н. и 40 з.п. ф-лы, 37 ил.

Изобретение относится к способу функционирования энергетической автоматизированной системы (10) для электрической сети энергоснабжения, которая имеет локальное устройство (11) обработки данных, которое предоставляет программу, которая при ее выполнении предоставляет функции для управления и/или контроля сети энергоснабжения и которое соединено с множеством устройств (13) автоматизации и с, по меньшей мере, одним удаленным запоминающим устройством (15а, 15b, 15с), в котором сохранен, по меньшей мере, один программный компонент, который необходим для выполнения, по меньшей мере, одной программы. Технический результат - сокращение временного интервала фазы запуска программы. Для достижения технического результата предложено, что в локальном запоминающем устройстве (16) содержится копия, по меньшей мере, одного программного компонента, и локальное устройство (11) при запуске выполнения программы проверяет, совпадает ли имеющаяся на локальном запоминающем устройстве (16) копия, по меньшей мере, одного программного компонента с сохраненным на удаленном запоминающем устройстве (15а, 15b, 15с) программным компонентом; причем при совпадении локальное устройство (11) выполняет программу с применением, по меньшей мере, одной копии программного компонента, а при отсутствии совпадения вызывает, по меньшей мере, один программный компонент из, по меньшей мере, одного удаленного запоминающего устройства (15а, 15b, 15с) и выполняет программу с применением вызванного программного компонента. 2 н. и 11 з.п. ф-лы, 2 ил.

Изобретение относится к области регулирования потребления электрической энергии, в частности, к системе и способу снижения потребления в системах потребления по запросу. Технический результат заключается в создании улучшенной системы регулирования с целью снижения потребления электроэнергии. Система для снижения потребления электроэнергии включает центральный сервер и множество снижающих потребление электроэнергии устройств. Центральный сервер системы содержит сетевой интерфейс, сконфигурированный для передачи и приема информации в/из коммуникационной сети; модуль, определяющий состояние электрической сети, соединенный с сетевым интерфейсом и сконфигурированный для передачи сообщения о состоянии потребления электроэнергии через сетевой интерфейс и сеть по меньшей мере двум снижающим потребление электроэнергии устройствам, соединенным с сетью; модуль, вычисляющий вознаграждение за экономию электроэнергии, сконфигурированный для определения суммарного вознаграждения, заработанного за обеспечение суммарного снижения потребления электроэнергии, инициируемого по меньшей мере двумя снижающими потребление электроэнергии устройствами в ответ на прием сообщения о состоянии потребления электроэнергии, а также сконфигурированный для определения в суммарном вознаграждении индивидуальных частей, относящихся к каждому из снижающих потребление электроэнергии устройств. 5 н. и 9 з.п. ф-лы, 8 ил.

Изобретение относится к дистанционному контролю (мониторингу) объектов электроэнергетики и предназначено для получения и передачи на терминал обслуживаемой подстанции или диспетчерский пункт энергосистемы данных, позволяющих оценить состояние контролируемого элемента воздушной линии электропередачи (ВЛ) и дать кратковременный прогноз его изменений. Технический результат - увеличение информативности получаемых данных и, как следствие, повышение достоверности оценки и прогноза поведения контролируемого провода, грозозащитного троса или размещенного на ВЛ кабеля. В корпусе (2), устанавливаемом и на контролируемом элементе (1) ВЛ, размещены источник (3) автономного питания и управляющий блок (4), к которому подключены измерительный блок (5) и беспроводный приемопередатчик (6). Блок (4) выполнен с возможностью привязки результатов измерения к меткам точного времени, передачи данных и приема управляющих команд через приемопередатчик (6), а блок (5) снабжен датчиком (7) тока на основе эффекта Холла и датчиком температуры (8) контролируемого элемента (1) и, по меньшей мере, одним измерителем из группы: инклинометр (9), трехпозиционный акселерометр (10) с функцией G-сенсора, анемометр (11), ориентированный поперек ВЛ. Блок (4) снабжен автономным хронометром (12) и/или приемником (13) сигналов точного времени от спутниковой навигационной системы, ультразвуковым или лазерным дальномером (14), ориентированным в направлении земли, датчиком (17) температуры воздуха. Устройство снабжено автономным видеорегистратором (15), солнечной батареей (16) для подзарядки источника (3). 10 з.п.ф., 2 ил. Референт Головинова И.В.

Использование: в области электротехники. Технический результат - расширение функциональных возможностей. Согласно способу при появлении броска тока КЗ в линии основного источника питания начинают отсчет времени, равный времени выдержки срабатывания защиты ГВ этой линии, и если в момент окончания этого отсчета ток КЗ исчезнет, то делают вывод об отключении ГВ линии основного источника питания, с момента отключения тока КЗ начинают отсчет времени, равный времени выдержки включения выключателя пункта АВР, и в момент окончания отсчета этого времени в линии резервного источника питания контролируют появление броска рабочего тока, и если он появляется значением меньше, чем значение отключенного рабочего тока линии основного источника питания и равный значению, определяемому нагрузкой подключенной к участку линии основного источника питания, расположенного в ней смежно с пунктом АВР, то делают вывод о ложном отключении секционирующего выключателя. Таким образом, предлагаемый способ позволяет получать информацию об аварийном отключении головного выключателя и ложном отключении секционирующего выключателя в линии кольцевой сети. 2 ил.

Использование: в области электротехники. Технический результат - упрощение реализации и расширение функциональных возможностей способа. Согласно способу с момента отключения броска тока короткого замыкания (КЗ), возникшего в линии основного источника питания, начинают отсчет времени, равный времени выдержки автоматического включения резерва (АВР), при этом контролируют наличие рабочего тока в этой линии и, если он равен нулю, а в момент окончания отсчета времени в линии резервного источника питания появляется бросок рабочего тока значением, определяемым нагрузкой участка линии основного источника питания, смежного с пунктом АВР, то делают вывод о повреждении головного участка этой линии, а если рабочий ток не равен нулю и определяется нагрузкой, подключенной к головному участку линии основного источника питания, а в момент окончания отсчета времени в линии резервного источника питания появляется бросок тока КЗ, то делают вывод о повреждении участка линии основного источника питания, смежного с пунктом АВР. 3 ил.
Наверх