Способ настройки тензорезисторных датчиков с мостовой измерительной цепью по мультипликативной температурной погрешности с учетом положительной нелинейности температурной характеристики выходного сигнала датчика

Изобретение относится к измерительной технике. Способ заключается в том, что при сопротивлении нагрузки Rн>500кОм определяют температурный коэффициент чувствительности (ТКЧ) мостовой цепи α+до и α-до при температуре t+ и t-, соответствующей верхнему и нижнему пределу рабочего диапазона температур, и нелинейность ТКЧ мостовой цепи (Δαдо+до-до). Если полученное значение Δαдо является положительным, то преобразуют положительную нелинейность ТКЧ мостовой цепи в отрицательную путем включения термонезависимого резистора Ri в диагональ питания и одновременного шунтирования входного сопротивления термозависимым шунтом, который образован последовательным включением термозависимого резистора Rαвx и термонезависимого резистора Rдвх. Для этого определяют входное сопротивление и ТКС входного сопротивления, а также ТКЧ тензорезисторов α+д и α-д при температуре t+ и t- и вычисляют нелинейность ТКЧ мостовой цепи (Δαд+д-д). Если α+д и Δαд оказываются в области преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную, то принимают номинал термозависимого шунта равным входному сопротивлению, а номинал резистора Ri, равным 100 Ом. Вычисляют номиналы резисторов Rαвх и Rдвх. Включают резисторы Ri, Rαвх и Rдвх в диагональ питания мостовой цепи. Определяют ТКЧ мостовой цепи при температуре t+ и t-, вычисляют нелинейность ТКЧ мостовой цепи Δαдо. Если Δαдо принимает отрицательное значение, то производят компенсацию мультипликативной температурной погрешности с учетом отрицательной нелинейности ТКЧ мостовой цепи путем включения термозависимого резистора Rαвых, зашунтированного термонезависимым резистором Rдвых, в выходную диагональ мостовой цепи при сопротивлении нагрузки Rн≤2кОм. Технический результат: повышение точности компенсации. 2 табл., 2 ил.

 

Изобретение относится к измерительной технике и может быть использовано при настройке тензорезисторной датчиковой аппаратуры с мостовой измерительной цепью по мультипликативной температурной погрешности.

Известен способ настройки тензорезисторных датчиков с мостовой измерительной цепью по мультипликативной температурной погрешности с учетом нелинейности температурной характеристики выходного сигнала датчика (см. Патент на изобретение RU 2443973 С1, G01В 7/16 «Способ настройки тензорезисторных датчиков с мостовой измерительной цепью по мультипликативной температурной погрешности с учетом нелинейности температурной характеристики выходного сигнала датчика», опубликованный 27.02.2012 в Бюл. №6), принятый за прототип, в котором для компенсации мультипликативной температурной погрешности при сопротивлении нагрузки Rн>500кОм определяют ТКЧ мостовой цепи α+дo и α-до для диапазона температур Δt+=t+-t0 и Δt-=t--t0, где t0, t+, t- - нормальная температура, верхний и нижний предел рабочего диапазона температур соответственно. Вычисляют нелинейность ТКЧ мостовой цепи (Δαдo+дo-до). Если Δαдо принимает отрицательное значение, то датчик подключают к нагрузке Rн≤2кОм. Определяют выходное сопротивление мостовой цепи, ТКС выходного сопротивления датчика. Проверяют нахождение ТКЧ мостовой цепи и его нелинейности в области применения способа, если данные параметры датчика оказываются в области применения, вычисляют требуемый номинал термозависимого резистора Rαвых и термонезависимого резистора Rдвых, устанавливают резистор Rαвых, зашунтированный термонезависимым резистором Rдвых, последовательно с нагрузкой.

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что нелинейность ТКЧ мостовой цепи может принимать как отрицательные, так и положительные значения, как показано в описании прототипа. Прототип позволяет производить полную компенсацию мультипликативной температурной погрешности с учетом отрицательной нелинейности ТКЧ мостовой цепи, удовлетворяющей неравенству Δαдо≤2·10-6 1/°С. В описании прототипа также показано, что отсутствие учета нелинейности ТКЧ мостовой цепи позволяет произвести компенсацию мультипликативной температурной погрешности в одной крайней точке рабочего диапазона температур, для которой вычислялись номиналы компенсационных резисторов Rαвых и Rдвых, что позволяет получить мультипликативную чувствительность датчика к температуре в пределах ±1·10-4 1/°С в данной точке рабочего диапазона температур. В другой крайней точке рабочего диапазона температур мультипликативная чувствительность датчика к температуре составляет порядка ±2·10-4 1/°С и более, превышая допустимое значение, которое составляет ±1·10-4 1/°С.

Сущность изобретения заключается в следующем.

Задачей, на решение которой направлено заявляемое изобретение, является разработка способа настройки тензорезисторных датчиков с мостовой измерительной цепью по мультипликативной температурной погрешности, который позволил бы повысить точность компенсации мультипликативной температурной погрешности в процессе настройки при положительной нелинейности ТКЧ мостовой цепи.

Технический результат заключается в повышении точности в процессе настройки тензорезисторных датчиков с мостовой измерительной цепью по мультипликативной температурной погрешности при положительной нелинейности ТКЧ мостовой цепи.

Указанный технический результат при осуществлении изобретения достигается тем, что производят предварительное преобразование положительной нелинейности ТКЧ мостовой цепи датчика в отрицательную и последующую компенсацию мультипликативной температурной погрешности в соответствии с прототипом.

Это достигается тем, что в реальных датчиках для подгонки чувствительности в диагональ питания мостовой цепи включают термонезависимый резистор Ri. Для преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную параллельно входному сопротивлению мостовой цепи включают термозависимый резистор Rαвх и термонезависимый резистор Rдвх, которые соединены друг с другом последовательно, что дает смещение нелинейности ТКЧ мостовой цепи датчика в сторону отрицательных значений. Соотношение номиналов термозависимого резистора Rαвх и термонезависимого резистора Rдвх выбирают исходя из необходимости обеспечения отрицательной нелинейности ТКЧ мостовой цепи Δαдо≤2·10-6 1/°С, при которой появляется возможность использовать прототип. Для этого, если нелинейность ТКЧ мостовой цепи является положительной, при Rн>500кОм определяют ТКЧ тензорезисторов α+д и α-д для диапазона температур Δt+ и Δt- соответственно и вычисляют нелинейность ТКЧ тензорезисторов Δαд+д-д. Определяют величину входного сопротивления Rвх, ТКС входного сопротивления α+вх, α-вх для диапазона температур Δt+ и Δt- соответственно. Проверяют принадлежность α+д и Δαд области преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную. Если α+д и Δαд удовлетворяют области преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную, то по аналогии с прототипом принимают номинал термонезависимого резистора равным 100Ом, поскольку номинал термонезависимого резистора Ri, в реальных датчиках составляет от 10Ом до 200Ом. Сопротивление шунта, образованного путем последовательного соединения термозависимого резистора Rαвх и термонезависимого резистора Rдвх, принимают равным входному сопротивлению мостовой цепи, поскольку меньшие номиналы шунта приведут к чрезмерному уменьшению чувствительности, что затруднит последующую настройку датчика по чувствительности. Вычисляют номинал термозависимого резистора Rαвх и термонезависимого резистора Rдвх. Устанавливают резистор Ri, в диагонали питания мостовой цепи. Параллельно входному сопротивлению включают резисторы Rαвх и Rдвх, соединенные друг с другом последовательно. Вычисляют ТКЧ мостовой цепи и его нелинейность после включения резисторов Ri, Rαвх и Rдвх в диагональ питания мостовой цепи. Если нелинейность ТКЧ мостовой цепи принимает отрицательное значение, то производят дальнейшую компенсацию мультипликативной температурной погрешности в соответствии с прототипом.

Сущность изобретения поясняется чертежами, где на фиг.1 представлена область преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную, на фиг.2 - схема включения резисторов Ri, Rαвх, Rдвх, Rαвых, Rдвых.

Способ осуществляется следующим образом.

Как показано в описании прототипа, нелинейность ТКЧ мостовой цепи включает в себя две составляющие:

1. нелинейность, вносимая тензорезисторами, установленными на упругом элементе, которая может принимать как отрицательное, так и положительное значение;

2. нелинейность, вносимая измерительной схемой, которая всегда является отрицательной при использовании мостовой цепи.

В соответствии с пунктом 2 можно получить отрицательную нелинейность ТКЧ мостовой цепи, изменяя составляющую нелинейности ТКЧ мостовой цепи, вносимую измерительной схемой.

В соответствии с описанием прототипа при наличии термонезависимого резистора Ri, включенного в цепь питания мостовой

цепи, зависимость напряжения питания примет вид:

где Uвыхt - выходное напряжение мостовой цепи при воздействии температуры;

Uпит - напряжение питания мостовой цепи;

k=R1/R2=R3/R4 - коэффициент симметрии;

Rвх - входное сопротивление мостовой цепи датчика;

αвх - ТКС входного сопротивления;

Δt=t-t0 - изменение температуры; - ТКЧ тензорезисторов;

Ri - номинал термонезависимого резистора, включенного в цепь питания;

t - воздействующая температура;

t0 - нормальная температура;

εj - относительное изменение сопротивления плеча Rj мостовой цепи.

Анализ знаменателя зависимости (1) позволяет сделать вывод о том, что после включения резистора Ri у зависимости напряжения питания от температуры будет составляющая, обратно пропорциональная росту температуры, что приведет к смещению нелинейности ТКЧ мостовой цепи в сторону отрицательных значений, которое увеличивается с ростом ТКС входного сопротивления, что подтверждается и прототипом.

Для увеличения ТКС входного сопротивления можно включить термозависимый шунт параллельно входному сопротивлению мостовой цепи. Номинал шунта следует брать не менее величины входного сопротивления мостовой цепи, как это показано выше. В дальнейшем будем считать, что сопротивление термозависимого шунта равно входному сопротивлению мостовой цепи (Rαвх+Rдвх=Rвх).

Произведем вывод зависимости нелинейности ТКЧ мостовой цепи. При воздействии температуры сопротивление шунта составит:

где Rшt - сопротивление шунта, образованного путем последовательного включения резистора Rαвх и Rдвх, при воздействии температуры;

αк - ТКС термозависимого резистора Rαвх;

Δt=t-t0 - изменение температуры;

t - температура, при которой производится измерение;

t0 - нормальная температура.

Сопротивление шунта при воздействии температуры может быть представлено также следующим образом:

где αш - ТКС термозависимого шунта.

Приравнивая правые части уравнения (2) и (3) с учетом (1) можно вывести зависимость ТКС шунта от номинала резистора Rαвх и Rдвх:

Величина входного сопротивления мостовой цепи после шунтирования с учетом равенства входного сопротивления мостовой цепи и сопротивления термозависимого шунта составит:

Входное сопротивление зашунтированной мостовой цепи при воздействии температуры можно представить следующим образом:

Входное сопротивление зашунтированной мостовой цепи можно также представить следующим образом:

где αвхш - ТКС входного сопротивления зашунтированной мостовой цепи.

Приравнивая правые части уравнения (6) и (7) с учетом (5) и равенства сопротивления шунта и входного сопротивления мостовой цепи можно вывести зависимость ТКС входного сопротивления зашунтированной мостовой цепи:

Выходное напряжение мостовой цепи после шунтирования входного сопротивления с учетом зависимости (1) и (5) может быть представлено следующим образом:

При воздействии температуры выходное напряжение датчика после включения резистора Ri и термозависимого шунта, образованного последовательным соединением резисторов Rαвх и Rдвх, с учетом (1) (5), (8) может быть представлено следующим образом:

Как показано в описании прототипа, ТКЧ можно выразить через выходные сигналы датчика:

Подставляя (9) и (10) в выражение (11) можно получить зависимость ТКЧ мостовой цепи:

Нелинейность ТКЧ мостовой цепи составит:

где Δt+=t+-t0, Δt-=t--t0 - положительный и отрицательный диапазон температур;

t0 - нормальная температура;

t+, t- - верхний и нижний предел рабочего диапазона температур;

α+дo, α-до - ТКЧ мостовой цепи датчика при температуре t+ и t- соответственно;

α+д, α-д - ТКЧ тензорезисторов при температуре t+ и t- соответственно;

α+вхш, α-вхш - ТКС входного сопротивления зашунтированной мостовой цепи датчика при температуре t+ и t- соответственно;

Δαдо - нелинейность ТКЧ мостовой цепи.

Прототип позволяет произвести компенсацию мультипликативной температурной погрешности с учетом нелинейности температурной характеристики выходного сигнала датчика, когда нелинейность ТКЧ мостовой цепи соответствует условию Δαдо≤-2·10-6 1/°С. По этой причине следует обеспечить Δαдo≤-2·10-6 1/°С, выбирая ТКС термозависимого шунта, задаваемый соотношением номинала Rαвх и Rдвх. Таким образом, для поиска требуемого соотношения номиналов резистора Rαвх и Rдвх следует решить уравнение:

Для преобразования положительной нелинейности ТКЧ мостовой цепи датчика в отрицательную в уравнение (14) подставляют выражение (8) и (4), решают полученное уравнение относительно номинала термозависимого резистора Rαвх. Номинал резистора Rдвх вычисляют по формуле:

Для определения области преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную необходимо решить уравнение (14) с учетом (8) и (4), относительно Rαвх, а также вычислить номинал резистора Rдвх по формуле (15) при следующих исходных данных:

1. Входное сопротивление мостовой цепи: Rвх=1000Ом;

2. Номинал термозависимого шунта: Rαвх+Rдвх=1000Ом;

3. Сопротивление резистора для подгонки чувствительности: Ri=100Ом;

4. ТКЧ тензорезисторов принимает значения: αд=(0…10)·10-4 1/°С;

5. нелинейность ТКЧ тензорезистора принимает значения: Δαд=(0, … 10)-10-6 1/°С;

6. ТКС входного сопротивления: αвх=(0…10)·10-4 1/°С;

7. нелинейность ТКС входного сопротивления: Δαвх=5·10-6 1/°С;

8. ТКС термозависимого резистора Rαвх: αк=4·10-3 1/°С;

При оценке области преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную рассматривалось одно из предельных значений нелинейности ТКС входного сопротивления (Δαвх=-5·10-6 1/°С), поскольку ранее был проведен численный эксперимент, который позволил установить, что влияние нелинейности ТКС входного сопротивления на предельное значение нелинейности ТКЧ мостовой цепи, при котором возможно преобразование положительной нелинейности ТКЧ мостовой цепи в отрицательную, во всем диапазоне возможных значений ТКС входного сопротивления и его нелинейности является малым (не более 2%).

Результаты вычислений для Δαд=(0, 1, 5, 10)·10-6 1/°С сведены в таблицу 1.

Taблица 1
Пределы области преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную
αвх·10-4, 1/°С Δαвх·10-6, 1/°С Δαд·10-6, 1/°С αд·10-4, 1/°С вх, Ом Rдвх, Ом
0 -5 0 0,000 80,500 919,500
10,000 295,101 704,899
0 -5 1 0,000 102,849 897,151
10,000 307,444 692,556
0 -5 5 0,000 164,190 835,910
10,000 349,669 650,331
0 -5 10,000 0,000 217,677 782,323
10,000 392,624 607,376
1 -5 0,000 0,000 78,624 921,376
10,000 317,181 682,819
1 -5 1,000 0,000 101,927 898,073
10,000 328,216 671,784
1 -5 5,000 0,000 164,527 835,473
10,000 366,972 633,028
1 -5 10,000 0,000 218,535 781,465
10,000 407,463 592,537
5 -5 0,000 2,223 Корней нет
2,224 47,704 952,296
10,000 362,982 637,018
5 -5 1,000 1,283 Корней нет
1,284 32,327 967,673
10,000 372,190 627,810
5 -5 5,000 0,000 118,123 881,877
10,000 405,655 594,345
5 -5 10,000 0,000 190,208 809,792
10,000 441,990 558,010
10 -5 0,000 6,507 Корней нет
6,508 132,873 867,127
10,000 351,817 648,183
10 -5 1,000 6,066 Корней нет
6,067 121,046 878,954
10,000 362,122 637,878
10 -5 5,000 4,293 Корней нет
4,294 79,149 920,851
10,000 398,838 601,162
10 -5 10,000 1,916 Корней нет
1,917 47,315 952,685
10,000 437,792 562,208

Анализ полученных результатов (таблица 1) позволяет сделать следующие выводы:

1. Шунтирование мостовой цепи термозависимым резистором Rαвх и термонезависимым резистором Rдвх, позволяет преобразовать положительную нелинейность ТКЧ мостовой цепи датчика в отрицательную в ограниченной области (фиг.1, таблица 2).

2. С увеличением нелинейности ТКЧ тензорезисторов происходит расширение области преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную (фиг.1).

3. С увеличением ТКЧ мостовой цепи область применения схемного способа для преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную расширяется (фиг.1).

На основе результатов решения уравнения (14) были получены области преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную, заданные таблицей 2.

Таблица 2
Область преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную
Нелинейность ТКЧ тензорезистора Δαд·10-6, 1/°С ТКС входного сопротивления Минимальное значение ТКЧ тензорезистора αдмин·10-4, 1/°С
0 0,000…10,000 -300,175·αвх2+1,354·αвх-4,033·10-4
1 0,000…10,000 -453,191·αвх2+1,668·αвх-6,079·10-4
2 0,000…10,000 -554,642·αвх2+1,911·αвх-7,945·10-4
3 0,000…10,000 -661,533·αвх2+2,169·αвх-9,892·10-4
4 0,000…10,000 -774,878·αвх2+2,442·αвх-11,932·10-4
5 0,000…10,000 -895,654·αвх2+2,734·αвх-14,091·10-4
6 0,000…10,000 -1011,958·αвх2+3,026·αвх-16,299·10-4
7 0,000…10,000 -1138·αвх2+3,340·αвх-18,648·10-4
8 0,000…10,000 -1261,565·αвх2+3,658·αвх-21,067·10-4
9 0,000…10,000 -1213,603·αвх2+3,669·αвх-22,140·10-4
10 0,000…10,000 -1292,238·αвх2+3,910·αвх-24,263·10-4

Для проверки правильности предложенного решения произведем расчет компенсационных элементов и мульти пликативной чувствительности датчика после компенсации.

Пример

Произвести компенсацию мультипликативной температурной погрешности и определить температурные чувствительности датчика с равноплечей мостовой измерительной цепью при температурах, соответствующих пределам рабочего диапазона температур, с учетом следующих исходных данных:

- входное сопротивление мостовой цепи Rвх=1000Ом;

- выходное сопротивление мостовой цепи Rвых=1000Ом;

- сопротивление резистора Ri, включенного в цепь питания: Ri=100Ом.

- ТКС термозависимого резистора Rαвх и Rαвых составляет αк=4·10-3 1/°С;

- ТКС выходного сопротивления при температурах, соответствующих пределам рабочего диапазона температур: α+вых=10-3 1/°С, α-вых=1,005·10-3 1/°С;

- ТКС входного сопротивления при температурах, соответствующих пределам рабочего диапазона температур: α+вх=10-3 1/°С, α-вх=1,005·10-3 1/°С;

- ТКЧ тензорезисторов при температурах, соответствующих пределам рабочего диапазона температур: α+д=6,06·10-3 1/°С, α-д=6·10-4 1/°С;

- суммарное относительное изменение сопротивления тензорезисторов при номинальном значении измеряемого параметра ;

- температурный диапазон эксплуатации датчика: 20±100°С;

- напряжение питания Uпит=10В.

Поскольку нелинейность ТКЧ мостовой цепи Δαд+д-д=6·10-6 1/°С и сопротивление источника питания пренебрежимо мало, то для обеспечения отрицательной нелинейности ТКЧ мостовой цепи датчика следует включить термонезависимый резистора Ri в цепь питания и произвести шунтирование входного сопротивления термозависимым шунтом, образованным термозависимым резистором Rαвх и термонезависимым резистором Rдвх. Для проверки возможности применения предлагаемого схемного способа следует проверить принадлежность ТКЧ мостовой цепи и его нелинейности области, заданной таблицей 2. В соответствии с таблицей 2 и с учетом того, что Δαд=6·10-6 1/°С, α+вых=10-3 1/°С и α-д=6,0·10-4 1/°С, неравенство, определяющее область преобразования положительной нелинейности в отрицательную, примет вид:

Выполнение данного неравенства позволяет сделать вывод о возможности получения требуемой отрицательной нелинейность ТКЧ мостовой цепи Δαдо≤-2·10-6 1/°С, шунтируя входное сопротивление мостовой цепи датчика термозависимым шунтом. Сопротивления шунта следует принять равным входному сопротивлению мостовой цепи датчика:

Rαвх+Rдвх=Rвх=1000Ом.

Входное сопротивление зашунтированной мостовой цепи с учетом (5) составит:

.

Для определения номинала термозависимого резистора Rαвх, входящего в шунт, решим уравнение (14) с учетом (4) и (8):

,

где в соответствии с (4) и (8):

;

;

.

Решением уравнения является значение номинала термозависимого резистора Rαвх=247,097Ом. Сопротивление термонезависимого резистора Rдвх, входящего в шунт в соответствии с (15), составит:

.

Для определения ТКЧ мостовой цепи после включения термозависимого шунта следует вычислить выходные напряжения датчика в нормальных условиях и при температурах, соответствующих пределам рабочего диапазона температур. При нормальных условиях выходное напряжение в соответствии с (9) составит:

;

ТКС термозависимого шунта в соответствии с (4) составит:

.

ТКС входного сопротивления мостовой цепи после включения термозависимого шунта при температурах, соответствующих пределам рабочего диапазона температур, в соответствии с (8) составит:

;

.

В данном случае выходные сигналы датчика при температурах, соответствующих пределам рабочего диапазона температур, в соответствии с (10) составят:

;

.

ТКЧ мостовой цепи при температурах, соответствующих пределам рабочего диапазона температур, в соответствии с (14) составит:

;

.

Таким образом, нелинейность ТКЧ мостовой цепи составит:

.

Проверим принадлежность ТКЧ мостовой цепи и ее нелинейности области применения прототипа, заданной системой:

С учетом значения ТКС выходного сопротивления (α+вых=10-3 1/°С), ТКЧ мостовой цепи (α+дo=7,683·10-4 1/°С) и его нелинейности (Δαд=-2·10-6 1/°С) система (16) примет вид:

Выполнение данного неравенства позволяет сделать вывод о том, что можно произвести дальнейшую компенсацию мультипликативной температурной погрешности с использованием прототипа. Для определения номиналов компенсационных резисторов следует решить систему уравнений:

Решением данной системы уравнений являются следующие номиналы компенсационных резисторов: Rαвых=405,324Ом и Rдвых=289084,900Ом. После включения резисторов Ri, Rαвx, Rдвх, Rαвых и Rдвых электрическая схема датчика примет вид, представленный на фиг.2.

Сопротивление резистора Rαвых, зашунтированного резистором Rдвых, составит:

.

В данном случае напряжение выходного сигнала в соответствии с описанием прототипа составит:

.

При температуре t+=120°С сопротивление резистора Rαвых, зашунтированного компенсационным резистором Rдвых, составит:

.

Таким образом, выходное напряжение датчика примет следующее значение:

.

При температуре t-=-80°С сопротивление резистора Rαвых, зашунтированного компенсационным элементом Rдвых, составит:

.

Таким образом, выходное напряжение датчика примет следующее значение:

.

При полученных значениях выходного напряжения датчика

мультипликативная чувствительность датчика к температуре в соответствии с прототипом составит:

;

.

Таким образом, полученная после компенсации чувствительность значительно меньше предельно допустимого значения температурной чувствительности (Sktдоп=10-4 1/°С).

Предлагаемый способ полной компенсации мультипликативной температурной погрешности показал высокую точность компенсации, которая зависит только от точности изготовления компенсационных резисторов и точности определения физических характеристик тензорезисторов.

Способ настройки тензорезисторных датчиков с мостовой измерительной цепью по мультипликативной температурной погрешности с учетом положительной нелинейности температурной характеристики выходного сигнала датчика, заключающийся в том, что при сопротивлении нагрузки Rн>500 кОм определяют температурный коэффициент чувствительности (ТКЧ) мостовой цепи α+до и α-до для диапазона температур Δt+=t+-t0 и Δt-=t-t0, где t0, t+, t- - нормальная температура, верхний и нижний предел рабочего диапазона температур соответственно, вычисляют нелинейность ТКЧ мостовой цепи Δαдо+до-до, если нелинейность ТКЧ мостовой цепи принимает отрицательное значение, то при сопротивлении нагрузки Rн≤2 кОм определяют выходное сопротивление мостовой цепи, ТКС выходного сопротивления мостовой цепи для диапазона температур Δt+ и Δt-, проверяют нахождение ТКЧ мостовой цепи и нелинейности ТКЧ мостовой цепи в области применения и, если параметры датчика находятся в области применения, вычисляют номинал резисторов Rαвых и Rдвых, устанавливают термозависимый резистор Rαвых, зашунтированный термонезависимым резистором Rдвых, в выходную диагональ мостовой цепи датчика, отличающийся тем, что, если нелинейность ТКЧ мостовой цепи принимает положительное значение, то после определения нелинейности ТКЧ мостовой цепи и до определения выходного сопротивления мостовой цепи, а также ТКС выходного сопротивления мостовой цепи, преобразуют положительную нелинейность ТКЧ мостовой цепи в отрицательную путем шунтирования входного сопротивления мостовой цепи термозависимым шунтом, который образован последовательным включением термозависимого резистора Rαвх и термонезависимого резистора Rдвх, при включении в цепь питания термонезависимого резистора Ri, для чего определяют при Rн>500 кОм ТКЧ тензорезисторов α+д и α-д для диапазона температур Δt+ и Δt- соответственно, вычисляют нелинейность ТКЧ тензорезисторов Δαд+д-д, определяют величину входного сопротивления Rвх, ТКС входного сопротивления α+вх, α-вх для диапазона температур Δt+ и Δt- соответственно, выявляют нахождение α+д и Δαд в области, заданной таблицей

Нелинейность ТКЧ тензорезистора Δαд·10-6, 1/°С ТКС входного сопротивления α в х + 1 0 4 , 1 / С Минимальное значение ТКЧ тензорезистора αдмин·10-4, 1/°С
0 0,000…10,000 -300,175·αвх2+1,354·αвх-4,033·10-4
1 0,000…10,000 -453,191·αвх2+1,668·αвх-6,079·10-4
2 0,000…10,000 -554,642·αвх2+1,911·αвх-7,945·10-4
3 0,000…10,000 -661,533·αвх2+2,169·αвх-9,892·10-4
4 0,000…10,000 -774,878·αвх2+2,442·αвх-11,932·10-4
5 0,000…10,000 -895,654·αвх2+2,734·αвх-14,091·10-4
6 0,000…10,000 -1011,958·αвх2+3,026·αвх-16,299·10-4
7 0,000…10,000 -1138·αвх2+3,340·αвх-18,648·10-4
8 0,000…10,000 -1261,565·αвх2+3,658·αвх-21,067·10-4
9 0,000…10,000 -1213,603·αвх2+3,669·αвх-22,140·10-4
10 0,000…10,000 -1292,238·αвх2+3,910·αвх-24,263·10-4

если α+д и Δαд удовлетворяют условиям, приведенным в таблице, принимают номинал резистора Ri равным 100 Ом, а сопротивление шунта, образованного последовательным включением резисторов Rαвх и Rдвх, равным входному сопротивлению мостовой цепи датчика (Rαвх+Rдвх=Rвх), определяют величину номинала термозависимого резистора Rαвх, решая относительно номинала Rαвх следующее уравнение:
0 , 5 R в х α д + ( 1 + α в х ш + Δ t + ) + R i ( α в х ш + + α д + + α в х ш + α д + Δ t + ) 0 , 5 R в х ( 1 + α в х ш + Δ t + ) + R i 0 , 5 R в х α д ( 1 + α в х ш Δ t ) + R i ( α в х ш + α д + α в х ш α д Δ t ) 0 , 5 R в х ( 1 + α в х ш Δ t ) + R i = 2 1 0 6 ,
где α в х ш = R в х [ α ш ( 1 + α в х Δ t ) + α в х ( 1 + α ш Δ t ) ] R в х ( 2 + α в х Δ t + α ш Δ t ) - ТКС входного сопротивления мостовой цепи, зашунтированной резисторами Rαвх и Rдвх;
α ш = R α в х α к R α в х + R д в х - ТКС шунта, образованного последовательным включением резисторов Rαвх и Rдвх;
вычисляют номинал термонезависимого резистора Rдвх по формуле:
R д в х = R в х R α в х ,
включают термонезависимый резистор Ri в диагональ питания мостовой цепи датчика, резисторами Rαвх и Rдвх, соединенными друг с другом последовательно, шунтируют входное сопротивление мостовой цепи, определяют ТКЧ мостовой цепи датчика и его нелинейность после включения резисторов Rαвх, Rдвх и Ri.



 

Похожие патенты:

Изобретение относится к измерительной технике. Способ заключается в том, что определяют температурный коэффициент чувствительности (ТКЧ) мостовой цепи α+ до и α- до при температуре t+ и t-, соответствующей верхнему и нижнему пределу рабочего диапазона температур, нелинейность ТКЧ мостовой цепи (Δαдо=α+ до-α- до).

Изобретение относится к измерительной технике. Способ заключается в том, что определяют ТКЧ мостовой цепи α+ до и α- до при температуре t+ и t-, соответствующей верхнему и нижнему пределу рабочего диапазона температур, нелинейность ТКЧ мостовой цепи (Δαдо=α+ до-α- до).

Изобретение относится к области контроля технического состояния обсадных колонн, насосно-компрессорных труб и других колонн нефтяных и газовых скважин. Техническим результатом является повышение точности и достоверности выявления наличия и местоположения поперечных и продольных дефектов конструкции скважины и подземного оборудования как в магнитных, так и в немагнитных первом, втором и последующих металлических барьерах.

Изобретение относится к измерительной технике. Способ заключается в том, что при сопротивлении нагрузки Rн>500 кОм определяют температурный коэффициент чувствительности (ТКЧ) мостовой цепи и при температуре t+, и t-, соответствующей верхнему и нижнему пределу рабочего диапазона температур, и нелинейность ТКЧ мостовой цепи .

Изобретение относится к измерительной технике и может быть использовано в прочностных испытаниях для определения напряженного состояния конструкций и в качестве чувствительного элемента в датчиках механических величин (силы, давления, веса, перемещения и т.д.).

Изобретение относится к измерительной технике, в частности к тензометрии. Технический результат заключается в расширении области практического применения стенда и тензоэлемента, обеспечении мобильности стенда.

Изобретение относится к горному делу, в частности к приборам измерения проявления горного давления, а именно к датчикам для измерения натяжения анкера. .

Тензометр // 2483277
Изобретение относится к измерительной технике и может быть использовано для продолжительных измерений напряженно-деформированного состояния морских ледостойких сооружений.

Изобретение относится к области неразрушающего контроля, а именно к диагностике и мониторингу состояния конструкции зданий или других инженерно-строительных сооружений в процессе строительства и эксплуатации.

Изобретение относится к области измерительной техники и может быть использовано в приборостроении и машиностроении для измерения физических величин (температуры, давления, деформации).

Изобретение относится к измерительной технике, а именно к способам измерения деформаций и напряжений на поверхности деталей машин, подвергающихся циклическому нагружению. Целью изобретения является повышение чувствительности датчиков, изготавливаемых из фольги и применяемых для контроля циклических деформаций. Для достижения указанной цели используют липкую фольгу из пластичного металла, например алюминиевый скотч. Фольгу разрезают на фрагменты, растягивают в пределах упругих деформаций и в таком состоянии с помощью клеящего слоя фольги наклеивают на контролируемые поверхности деталей. Хвостовые участки фрагментов жестко фиксируют на поверхности детали механическим или иным известным способом. После чего в поперечной плоскости посередине длины фрагмента фольги выполняют сквозные прорези и отверстия. Техническим результатом изобретения является расширение арсенала технических средств для контроля циклических деформаций деталей машин, возникающих в процессе их эксплуатации. Возрастает оперативность контроля за счет повышения чувствительности датчиков к малым величинам циклических деформаций. 3 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения деформаций немагнитных материалов. Способ измерения деформаций из немагнитных материалов характеризуется тем, что на поверхности или внутри объекта размещают постоянные дипольные источники магнитного поля, например на основе магнитов из сплава неодим-железо-бор, при этом для вычисления параметров линейной (вдоль прямой линии) деформации используют как минимум два магнита не лежащие в одной точке, для вычисления параметров плоской деформации - минимум три магнита, не лежащие на одной прямой, для вычисления параметров объемной деформации - минимум четыре магнита, не лежащие в одной плоскости. Возле поверхности исследуемого объекта напротив каждого источника устанавливают систему датчиков, позволяющих измерить по 1, 2, 3 компоненты вектора индукции магнитного поля в нескольких точках, сосредоточенных в малой по сравнению с расстоянием до источников поля области пространства, или в качестве системы датчиков используют одно-, двух- или трехосевой датчик с системой 3D-позиционирования, сигналы с датчиков усиливают и преобразуют в цифровой вид, численные данные измерений: координаты точек измерения и значения компонент векторов индукции магнитного поля в них в лабораторной системе координат обрабатывают компьютерной программой, по полученным данным решают обратную задачу для системы слабо взаимодействующих магнитов и определяют их местоположение в лабораторной системе координат и векторы магнитных моментов в лабораторной системе координат до и после деформирования объекта, и, сравнивая эти решения, вычисляют параметры деформации. Описана установка для предлагаемого способа. Технический результат - возможность измерения линейной (вдоль прямой линии), плоской (в плоскости) и объемной (в пространстве) деформации объектов из немагнитных материалов. 2 н. и 3 з.п. ф-лы, 1 ил., 3 табл.

Изобретение относится к измерительной технике и может быть использовано при настройке тензорезисторных датчиков с мостовой измерительной цепью по мультипликативной температурной погрешности. Сущность: при сопротивлении нагрузки Rн≥500 кОм определяют температурный коэффициент чувствительности (ТКЧ) мостовой цепи α д о + и α д о − при температурах t+ и t-, соответствующих верхнему и нижнему пределу рабочего диапазону температур, и нелинейность ТКЧ мостовой цепи ( Δ α д о = α д о + − α д о − ) . Если полученное значение ∆αдо является положительным, то преобразуют положительную нелинейность ТКЧ мостовой цепи в отрицательную. Для этого определяют входное сопротивление и его температурный коэффициент сопротивления (ТКС), а также ТКЧ тензорезисторов α д + и α д − при температурах t+ и t- и вычисляют нелинейность ТКЧ тензорезисторов ( Δ α д = α д + − α д − ) . Вычисляют номинал термозависимого резистора Rαвх, и термонезависимых резисторов Rдвх, и Ri. Устанавливают резистор Ri в диагональ питания мостовой цепи, входное сопротивление которой шунтируют последовательно соединенными резисторами Rαвх и Rдвх. Определяют ТКЧ мостовой цепи при температурах t+ и t-, вычисляют нелинейность ТКЧ мостовой цепи ∆αдо. Если нелинейность ТКЧ принимает отрицательное значение, удовлетворяющее неравенству ∆αдо≤-2·10-6 1/°C, то производят компенсацию мультипликативной температурной погрешности путем вычисления и включения термозависимого резистора Rαвых, зашунтированного термонезависимым резистором Rдвых, в выходную диагональ мостовой цепи последовательно с нагрузкой. Технический результат: повышение точности настройки при положительной нелинейности ТКЧ мостовой цепи. 1 табл., 2 ил.

Изобретение относится к способу измерения прогиба металлических, деревянных и других по материалу балок при поперечном изгибе от эксплуатационной нагрузки и других причин в процессе эксплуатации балки. Способ неразрушающего измерения прогиба балок заключается в том, что на поверхностях верхнего и нижнего поясов балки в месте наибольшего прогиба Δ0 наклеивают тензорезисторы с одинаковыми характеристиками непосредственно на подготовленную поверхность верхнего и нижнего поясов балки. Рабочие и компенсационные тензорезисторы наклеивают в количестве от 3 до 5 штук в каждом поясе на участке длиной от 15 до 25 см с наибольшим прогибом Δ0. Рабочие тензорезисторы крепят вдоль главных напряжений σ вдоль балки, а компенсационные - между рабочими тензорезисторами поперек балки, защищают их от различных воздействий эпоксидной смолой, монтируют мостовые схемы для каждой пары тензорезисторов (рабочих и компенсационных) и соединяют провода от них с тензостанцией; измеряют начальное сопротивление R0 рабочих тензорезисторов, при этом прогиб балки Δ(t) в любой момент времени t определяют по формуле: Δ(t)=Δ0+r·(|ΔR1(t)|+|ΔR2(t)|), где Δ0 - начальный наибольший прогиб балки в момент времени t=0, измеренный с помощью высокоточной геодезической рейки и нивелира до наклейки тензорезисторов; r - постоянный коэффициент, зависящий от расчетных схем и размеров балки. Техническим результатом изобретения является повышение точности измерений. 4 ил., 1 табл.

Изобретение относится к измерительной технике. Устройство для измерения динамических деформаций содержит измерительные тензорезисторы, опорные резисторы, усилитель, электронно-вычислительную машину с программным обеспечением, источник постоянного напряжения, эталонный резистор, коммутатор, блок управления, аналоговую программируемую многофункциональную плату с программным обеспечением, подключенную к ЭВМ. Программируемая плата может быть подключена к ЭВМ интерфейсом USB или путем установки в слот расширения PCI или PCIExpress, а устройство может быть снабжено устройством сопряжения, при этом подключение источника питания к первому аналоговому входу платы, второго вывода усилителя к аналоговому выходу платы, входа блока управления к цифровому выходу платы, выхода усилителя к аналоговому входу платы производится через соответствующие входы и выходы устройства сопряжения, связанного интерфейсом с совместимым разъемом указанной платы. Технический результат - расширение диапазона измеряемых величин и линейности выходной характеристики, повышение надежности функционирования устройства. 2 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике и может быть использовано при настройке тензорезисторной датчиковой аппаратуры с мостовой измерительной цепью по мультипликативной температурной погрешности. В диагональ питания мостовой цепи устанавливают термозависимый технологический резистор Rαm, номинал которого больше возможных значений компенсационного термозависимого резистора Rα. Параллельно резистору Rαm устанавливают перемычку. Измеряют начальный разбаланс и выходной сигнал датчика при нормальной температуре t0, а также температуре t+, соответствующей верхнему пределу рабочего диапазона температур, и t-, соответствующей нижнему пределу рабочего диапазона температур. На основе проведенных измерений вычисляют ТКЧ тензорезисторов мостовой цепи α ∂  изм + и α ∂  изм − при температурах t+ и t- соответственно, а также нелинейность ТКЧ тензорезисторов мостовой цепи ( Δ α ∂  изм = α ∂  изм + − α ∂  изм − ) . Измеряют входное сопротивление мостовой цепи датчика. Включают термонезависимый резистор Ri=0,5·Rвх. Измеряют начальный разбаланс и выходной сигнал датчика при температурах t0, t+ и t-. На основе проведенных измерений вычисляют ТКС входного сопротивления при температурах t+ и t-. Отключают резистор Ri и снимают перемычку с резистора Rαm. Измеряют начальный разбаланс и выходной сигнал датчика при температурах t0, t+ и t-. На основе выполненных измерений вычисляют ТКС технологического термозависимого резистора Rαm при температурах t+ и t-. Если ТКЧ тензорезисторов мостовой цепи и его нелинейность принадлежат области применения способа, то вычисляют номинал термозависимого резистора Rα и термонезависимого резистора R∂ с использованием полученных значений ТКЧ тензорезисторов мостовой цепи, ТКС входного сопротивления и ТКС технологического термозависимого резистора. Технологический термозависимый резистор Rαm заменяют резистором Rα путем частичного задействования. Шунтируют резистор Rα термонезависимым резистором R∂. Технический результат заключается в повышении точности компенсации мультипликативной температурной погрешности с учетом отрицательной нелинейности температурной характеристики выходного сигнала датчика с использованием широко распространенной измерительной аппаратуры. 1 з.п. ф-лы

Изобретение относится к измерительной технике. Сущность: в выходную диагональ мостовой цепи устанавливают термозависимый технологический резистор Rαm, номинал которого больше возможных значений компенсационного термозависимого резистора Rα. Параллельно резистору Rαm устанавливают перемычку. Измеряют выходное сопротивление мостовой цепи Rвых. Датчик подключают к низкоомной нагрузке Rн=2·Rвых. Измеряют начальный разбаланс и выходной сигнал датчика при нормальной температуре t0, а также температуре t+, соответствующей верхнему пределу рабочего диапазона температур, и t-, соответствующей нижнему пределу рабочего диапазона температур. Повторяют измерения после подключения датчика к низкоомной нагрузке R н ' = R в ы х . На основе измеренных значений начального разбаланса и выходного сигнала датчика вычисляют ТКЧ мостовой цепи α д   и з м + , и α д   и з м − и ТКС выходного сопротивления при температурах t+ и t- соответственно, а также нелинейность ТКЧ мостовой цепи ( Δ α д   и з м = α д   и з м + − α д   и з м − ). Снимают перемычку с резистора Rαm. Измеряют начальный разбаланс и выходной сигнал датчика при температурах t0, t+ и t-. На основе измеренных значений начального разбаланса и выходного сигнала датчика вычисляют ТКС термозависимого резистора Rαm при температурах t+ и t-. Если ТКЧ мостовой цепи и его нелинейность принадлежат области применения способа, то вычисляют номинал термозависимого резистора Rα и термонезависимого резистора R∂. Технологический термозависимый резистор Rαm заменяют резистором Rα путем частичного задействования резистора Rαm. Шунтируют резистор Rα термонезависимым резистором R∂. Технический результат: повышение точности компенсации. 1 з.п. ф-лы.

Изобретение относится к измерительной технике и может быть использовано при настройке тензорезисторной датчиковой аппаратуры с мостовой измерительной цепью по мультипликативной температурной погрешности. В диагональ питания мостовой цепи устанавливают термозависимый технологический резистор Rαт, номинал которого больше возможных значений компенсационного термозависимого резистора Rα. Параллельно резистору Rαт устанавливают перемычку. Измеряют начальный разбаланс и выходной сигнал датчика при нормальной температуре t0, а также температуре t+, соответствующей верхнему пределу рабочего диапазона температур, и t-, соответствующей нижнему пределу рабочего диапазона температур. На основе проведенных измерений вычисляют ТКЧ тензорезисторов мостовой цепи α д   и з м + и α д   и з м − при температурах t+ и t- соответственно, а также нелинейность ТКЧ тензорезисторов мостовой цепи ( Δ α д   и з м = α д   и з м + − α д   и з м − ) . Измеряют входное сопротивление мостовой цепи датчика. Включают термонезависимый резистор Ri=0,5·Rвх. Измеряют начальный разбаланс и выходной сигнал датчика при температурах t0, t+ и t-. На основе проведенных измерений вычисляют ТКС входного сопротивления при температурах t+ и t-. Отключают резистор Ri и снимают перемычку с резистора Rαт. Измеряют начальный разбаланс и выходной сигнал датчика при температурах t0, t+ и t-. На основе выполненных измерений вычисляют ТКС технологического термозависимого резистора Rαт при температурах t+ и t-. Если ТКЧ тензорезисторов мостовой цепи и его нелинейность принадлежат области применения способа, то вычисляют номинал термозависимого резистора Rα и термонезависимого резистора Rш с использованием полученных значений ТКЧ тензорезисторов мостовой цепи, ТКС входного сопротивления и ТКС резистора Rαт. Резистор Rαт заменяют резистором Rα путем частичного задействования. Шунтируют входное сопротивление мостовой цепи термонезависимым резистором Rш. Технический результат заключается в повышении точности компенсации мультипликативной температурной характеристики выходного сигнала датчика. 1 з.п. ф-лы.

Изобретение относится к измерительной технике. Сущность: в выходную диагональ мостовой цепи устанавливают термозависимый технологический резистор Rαт, номинал которого больше возможных значений компенсационного термозависимого резистора Rα. Параллельно резистору Rαт устанавливают перемычку. Измеряют выходное сопротивление мостовой цепи Rвых. Датчик подключают к низкоомной нагрузке Rн=2·Rвых. Измеряют начальный разбаланс и выходной сигнал датчика при нормальной температуре t0, а также температуре t+, соответствующей верхнему пределу рабочего диапазона температур, и t-, соответствующей нижнему пределу рабочего диапазона температур. Повторяют измерения после подключения датчика к низкоомной нагрузке R н ' = R в ы х . На основе измеренных значений начального разбаланса и выходного сигнала датчика вычисляют ТКЧ мостовой цепи α д  изм + и α д  изм − и ТКС выходного сопротивления при температурах t+ и t- соответственно, а также нелинейность ТКЧ мостовой цепи ( Δ α д  изм = α д  изм + − α д  изм − ). Снимают перемычку с резистора Rαт. Измеряют начальный разбаланс и выходной сигнал датчика при температурах t0, t+ и t-. На основе измеренных значений начального разбаланса и выходного сигнала датчика вычисляют ТКС термозависимого резистора Rαт при температурах t+ и t-. Если ТКЧ мостовой цепи и его нелинейность принадлежат области применения способа, то вычисляют номинал термозависимого резистора Rα и термонезависимого резистора Rш. Технологический термозависимый резистор Rαт заменяют резистором Rα путем частичного задействования резистора Rαт. Шунтируют выходное сопротивление мостовой цепи термонезависимым резистором Rш. Технический результат: повышение точности компенсации. 1 з.п. ф-лы.

Изобретение относится к измерительной технике и может быть использовано для измерения деформаций в условиях однородных деформационных полей в процессе прочностных испытаний. Сущность: датчик включает в себя носитель 1 из тонкой металлической фольги. В носителе 1 посредством прямоугольных отверстий 2 образованы две тонкие нити 3 и площадка 4 между ними. На носитель 1 осаждена в вакууме тонкая разделительная диэлектрическая пленка 5, которая повторяет форму носителя 1. На диэлектрическую пленку 5 осаждены тензочувствительные элементы 6, 7 из моносульфида самария, которые соединены в мост Уитстона, и металлические контактные площадки 8, которые являются входными и выходными контактами датчика. В носителе 1 могут быть дополнительно выполнены две сквозные прорези, каждая из которых начинается от середины соответствующего крайнего прямоугольного отверстия 2 и перпендикулярна ему, образуя площадки, на которых выполнены металлические контактные площадки. Технический результат: увеличение выходного сигнала, температурная независимость. 1 з.п. ф-лы, 4 ил.
Наверх