Способ определения золотоносности горных пород

Использование: для определения золотоносности горных пород. Сущность: заключается в том, что осуществляют нейтронно-активационный анализ образца золотоносных сульфидов, формируют пробу в виде его зерна размером от 30-70 мкм, которую последовательно запаивают в полиэтиленовую пленку, упаковывают в фильтровальную бумагу и алюминиевую фольгу, подготовленную таким образом пробу подвергают облучению на реакторе в течение 15-17 час в потоке 1×1013 н/cм2×cек с последующим измерением в образце наведенной активности золота и его сателлитов на 7-12 день после облучения, параллельно с диапазоном измеряемой энергии 100-1800 кэВ и 50-160 кэВ по линии соответственно 1332 кэВ и 121.8 кэВ, после чего анализируют интенсивность ν - линии золота при 412 кэВ и путем сравнения с интенсивностью этой же линии в эталонных образцах рассчитывают количество золота в зернах. Технический результат: повышение достоверности оценки определения золотоносности горных пород. 1 з.п. ф-лы, 2 ил., 1 табл.

 

Изобретение относится к горнодобывающей промышленности, в частности к поискам, разведке рудных месторождений золота, определения и оценки среднего содержания золота геологических пород, и предназначено для использования на геологоразведочных работах для повышения достоверности оценки прогнозных ресурсов.

В многочисленных коренных месторождениях различного минерального состава золото находится в двух формах: в виде самородного золота и в рассеянной форме в тесной связи с сульфидами. Рассеянное в сульфидах золото одними исследователями считалось присутствующим в виде субмикроскопического или коллоидального размера частиц, другими входящим в кристаллическую структуру сульфидов. Таким образом, понятие «невидимое золото» включает тонкодисперсное золото, не выявляемое оптическими методами, коллоидальное, кластерное и химически связанное золото в сульфидах.

Основными носителями рассеянного золота являются арсенопирит и пирит. Присутствующее в них золото получило название невидимого.

Из уровня техники известен способ определения истинного содержания золота в разведочной пробе при эксплуатационной разведке россыпного месторождения золота, в котором отбирают исходную пробу, рассчитывают золото исходной пробы так, чтобы количество золотин в них увеличивалось с уменьшением размера фракции, со стороны крупных фракций усекают золото исходной пробы так, чтобы количество золотин отсеченной части было равно или больше десяти, рассчитывают достоверность нахождения содержания золота и необходимый объем разведочной пробы, отбирают разведочную пробу необходимого объема и определяют истинное содержание золота в разведочной пробе [пат. РФ №2068187, G01V 9/00, опубл. 20.10.1996].

Известен способ определения золота в рудах, в котором определение количества золота, содержащегося в минеральном образце, включает следующие шаги:

a) размол минерального образца, имеющего неизвестное золотое содержание к предопределенной частице;

b) обеспечение легкого газа-носителя, регулирование его расхода и введения ртутного пара в газ-носитель при первой концентрации;

c) представление известного веса образца минерала в контейнер, прохождение газа-носителя, имеющего первую ртутную концентрацию в контейнере, сбор газа-носителя;

d) определение второй ртутной концентрации в газе-носителе;

e) вычисление количества золота, содержащегося в минерале, типовое вычисление, основанное на различии между первой и второй ртутными концентрациями

(пат. СА 1279205, опубл. 22.01.1991).

Указанный способ достаточно сложен в исполнении

Из патента РФ №2245931, (опубл. 10.02.2005, С22В 11/02) известен способ определения содержания золота в золотосодержащем сырье, включающий взятие пробы исходного вещества, ее измельчение, перемешивание с глетом, плавку на веркблей, разваривание золотосеребряного королька, взвешивание золотой корточки, при этом взятие пробы ведут из исходного природного твердого органического вещества, а перед плавкой смесь заворачивают в свинцовую фольгу, закладывают в раскаленный шербер и присыпают сверху смесью буры и поваренной соли.

В соответствии с "Временным методическим руководством по обработке геологических проб золоторудных месторождений с предварительным извлечением металла" (М., 1975.. М.И. Савосин, В.А. Захваткин, В.А. Сашков.) способ определения содержания золота в рядовой пробе должен включать извлечением золота крупнее 0,22 мм методами гравитационного обогащения или грохочения перед проведением пробирных анализов концентратов, хвостов и промпродуктов обогащения При этом масса отдельных рядовых проб зачастую бывает не представительной, а весь комплекс работ для каждой из многочисленных рядовых проб требуют значительных затрат.

Перечисленные известные способы определения содержания золота в пробах, характеризующих рудные тела, обладают низкой достоверностью и требуют повторения в других лабораториях, кроме того разработанные методики не позволяют проводить определения невидимого(рассеянного) золота в золотоносных геологических породах.

Известны аналитические методы определения золота в золотосодержащих рудах и концентратах, основанные на измерении коэффициент диффузного отражения при 540 нм приготовленного раствора золота (Ш), предварительно переведенного в комплексное соединение сорбентом, химически модифицированным дипропилдисульфидными группами. Методика разработана для снижения предела обнаружения определяемого элемента, при этом, как и все аналитические методы анализ требует разложения образца и перевода всего вещества в раствор.

[пат. РФ №2279060, G01N 21/78, опубл. 27.06.2006 г.].

Указанные методики не решают вопроса определения невидимого (рассеянного) золота в золотоносных геологических породах.

Одним из инструментальных методов определения золота является способ, взятый за прототип, - рентгеноспектральный анализ руд после их кислотного разложения и экстракции определяемых элементов. Определяют золото в экстрагенте после экстракционного концентрирования с использованием раствора сравнения. Экстракт высушивают на подложке из целлюлозного фильтра, на подложку предварительно наносят инертный по отношению к экстракту элемент, не содержащийся в экстракте и имеющий линии рентгеновского спектра, возбуждаемые одновременно с аналитическими линиями золота и не совпадающие с ними, в количестве не более 10 мкг/см2.

Содержание золота определяют по формуле:

C x = C x s t I x I x s t ,

где Сх и Сxst - содержания элемента в анализируемой пробе и растворе сравнения; Ix и Ixst - интенсивности аналитической линии определяемого элемента, измеренные от пробы и раствора сравнения. По отношению измеренных от раствора сравнения и анализируемой пробы интенсивностей аналитической линии нанесенного элемента определяют параметр Р для уменьшения влияния погрешности измерений и окончательный результат находят по формуле CiхР, где Ci - содержание определяемого элемента [пат РФ №2139525, G01N21?78, опубл. 27.06.2006]

Указанный способ позволяет получать достоверные данные о содержании золота в рудах и горных породах, однако пробоподготовка достаточна сложна и длительна, анализ требует разложения образца и перевода всего вещества в раствор.

Более того, он не позволяет проводить определение невидимого (рассеянного) золота в золотоносных геологических породах.

Задачей изобретения является обеспечение возможности определения невидимого (рассеянного) золота в золотоносных геологических породах и повышение достоверности оценки прогнозных ресурсов на золото.

Поставленная задача решается способом определения золотоносности рудных минералов по выявлению в них содержания золота с использованием инструментальных методов, при этом осуществляют нейтронно-активационный анализ образца золотоносных сульфидов, формируют пробу их в виде зерна размером от 30-70 мкм которую последовательно запаивают в полиэтиленовую пленку, упаковывают в фильтровальную бумагу и алюминиевую фольгу, подготовленную таким образом пробу подвергают облучению на реакторе в течение 15-17 час в потоке 1×1013 н/см2×сек с последующим измерением в образце наведенной активности золота и его сателлитов на 7-12 день после облучения, параллельно с диапазоном измеряемой энергии 100-1800 кэВ и 50-160 кэВ по линии соответственно 1332 кэВ и 121.8 кэВ, после чего анализируют интенсивность ν - линии золота при 412 кэВ и путем сравнения с интенсивностью этой же линии в эталонных образцах рассчитывают количество золота в зернах.

В качестве золотоносных сульфидов используют сульфидную группу пирита.

Исследуемые и приведенные в примере сульфиды - арсенопирит и пирит относятся к группе пирита, в которую входят так же кроме них еще несколько (4) минералов. Сульфиды (сульфидные минералы) - природные сернистые соединения металлов и некоторых неметаллов. В химическом отношении рассматриваются как соли сероводородной кислоты.

Игольчато-призматический арсенопирит является главным рудным минералом раннего продуктивного этапа минерализации и характеризуется высокой золотоносностью (1400-5360 г/т), нестехиометричным составом S/As=1.2 и несколько обеднен железом. Отсутствие корреляции основных компонентов арсенопирита с золотом, крайне неравномерное распределение этого элемента в зернах игольчато-призматического арсенопирита и в пределах одного зерна указывают на вхождение невидимого золота в виде элементарных частиц, соосаждающихся совместно с арсенопиритом.

Пирит и арсенопирит - самые распространенные рудные минералы различных золоторудных и золотосодержащих месторождений. Во многих случаях они представляют собой промышленный интерес, так как нередко содержат достаточно высокие концентрации золота, представляя собой основные концентрации этого металла в золоторудных телах и околорудных метасоматитах. Широкий интервал параметров систем минералогенеза, в которых эти минералы сохраняют устойчивость определяет их распространенность как в различных по условиям образования и по возрасту месторождениях и минеральных парагенетических ассоциациях. Свойства этих минералов: химический состав, морфология кристаллов, зависит от условий их образования и устойчивость этих минералов к последующим преобразованиям позволяет использовать их для реконструкции процессов образования рудных месторождений.

Арсенопирит распространен в меньшей степени, чем сфалерит, галенит и пирит, но в отдельных участках рудных тел может быть одним из основных минералов. Он также образует тригенерации. Арсенопирит I встречается в виде идиоморфных, часто раздробленных и деформированных выделений, которые обычно встречаются в срастаниях с пиритом I.

Ромбовидные кристаллы арсенопирита II, как правило, находятся среди сфалерита, халькопирита, галенита, кварца и кальцита, обособления арсенопирита III нарастают на фрагменты агрегатов этих минералов, образуя кокардовые текстуры. По некоторым данным арсенопирит содержит до 64 г/т Au, являясь, например, основным концентратором золота в рудах месторождения Джимидон, в связи с чем разработка методов анализа рассеянного золота имеет большое значение и перспективу.

Наиболее высокое содержание невидимого золота установлено в игольчатом арсенопирите, мелкокристаллическом арсенопирите и тонкозернистом пирите.

На фиг.1 представлено распределение Au, Sb, As и Fe в зерне золотоносного арсенопирита из месторождения Виллеранж.

На фиг.2 (а, б, в, г, д, е) представлены различные типы распределения золота в арсенопирите из месторождений Ле Шатале и Виллеранж, Франция.

Предлагаемая методика определения рассеянного золота основана на анализе минерального зерна в золотоносных рудах месторождения, поскольку минеральное зерно - форма нахождения минерального индивида, более общее название, чем кристалл.

Предлагаемый способ осуществляется следующим образом.

Пример

Анализ методом нейтронной активации (INAA).

Подготовка пробы зерна арсенопирита проводилась следующим образом. Выбранные отдельные зерна сульфидов размером до 30-70 мкм запаиваются в полиэтиленовую пленку (полиэтилен марки ВД) и для активации упаковываются в фильтровальную бумагу и алюминиевую фольгу.

Таким же образом поступают с пробами стандартов.

Для исключения возможных загрязнений от упаковки и учета вклада продуктов деления урана в партию проб и эталонов добавляются пустая полиэтиленовая упаковка и чистая соль урана. Облучение проб и эталонов производится на реакторе ИРТ (МИФИ). Пробы активировались в течение 15-17 ч в потоке 1×1013 н/см2×сек.

После облучения пробы и эталоны освобождаются от фильтровальной бумаги и алюминиевой фольги и переупаковываются в неактивный материал.

Измерение наведенной активности производится одновременно на двух γ-спектрометрах: 1) анализатор 919+GEM45190 ORTEC (HPGe коаксиальный детектор, диапазон измеряемых энергий 100-1800 кэВ, разрешение 1.8 кэВ по линии 1332 кэВ); и 2) анализатор 919+GLP25300 ORTEC (HPGe планарный детектор, диапазон энергий 50-160 кэВ, разрешение 520 эВ по линии 121.8 кэВ).

Используемая для анализов гамма линия и время охлаждения после активации составили для 197Au соответственно 412 (кэВ) и от 8 до 10 дней.

Обработка измерений проводится с помощью программного пакета «ASPRO-NUC» (ГЕОХИ РАН).

В таблице представлены результаты, отражающие концентрацию рассеянного золота в арсенопирите месторождений Наталка и Майское, определенные методом нейтронной активации на основе анализа минерального зерна.

Месторождение Проба Au, г/т
Наталка H1 18.75
Н2 94.65
Н3 482.6
Майское 1 300
2 482.6
3 794.5
4 1685
5 1975

Анализ нескольких индивидуальных зерен из одной и той же навески позволяет получить представление о вариации содержания золота в отдельных зернах.

Для проверки данной методики из зерен проб изготавливали полировки, в которых при исследовании под микроскопом можно убедиться в отсутствии выделений самородного золота, что и доказывает рассеянную форму нахождения золота в изученных образцах.

Используемое в настоящем способе анализа в качестве анализируемой пробы минеральное зерно - это образовавшееся в природе обособление однородного химического вещества, физически отделенное от других естественными поверхностями, - позволяет, в сочетании с достоинствами активационного анализа, с высокой чувствительностью, и высокой избирательность проводить оценку невидимого золота в сульфидных рудах Разработанный способ впервые позволяет проводить оценку концентраций «невидимого» (рассеянного) золота в арсенопирите и других сульфидах, что чрезвычайно важно при разработке технологии обогащения и переработки золотых руд для повышения степени извлечения золота из руд и обеспечение достоверности оценки прогнозных ресурсов на золото.

1. Способ определения золотоносности рудных минералов по выявлению в них содержания золота с использованием инструментальных методов, отличающийся тем, что осуществляют нейтронно-активационный анализ образца золотоносных сульфидов, формируют пробу в виде его зерна размером от 30-70 мкм, которую последовательно запаивают в полиэтиленовую пленку, упаковывают в фильтровальную бумагу и алюминиевую фольгу, подготовленную таким образом пробу подвергают облучению на реакторе в течение 15-17 ч в потоке 1×1013 н/см2×с с последующим измерением в образце наведенной активности золота и его сателлитов на 7-12 день после облучения, параллельно с диапазоном измеряемой энергии 100-1800 кэВ и 50-160 кэВ по линии соответственно 1332 кэВ и 121.8 кэВ, после чего анализируют интенсивность ν - линии золота при 412 кэВ и путем сравнения с интенсивностью этой же линии в эталонных образцах рассчитывают количество золота в зернах.

2. Способ по п.1, отличающийся тем, что в качестве золотоносных сульфидов используют сульфидную группу пирита.



 

Похожие патенты:

Использование: для обнаружения и идентификации скрытых опасных веществ под водой. Сущность: заключается в том, что устройство для обнаружения и идентификации скрытых опасных веществ под водой содержит источник меченых монохроматических нейтронов и сопутствующих им монохроматических α-частиц, детектор α-частиц, детектор γ-излучения с защитой от потока меченых монохроматических нейтронов, при этом рабочий модуль размещен в герметичном полимерном контейнере для подводных работ, выполненном с возможностью вакуумирования, снабженном соответствующими водонепроницаемыми разъемами для подвода кабелей Ethernet и питания, к стенке герметичного корпуса контейнера по направлению потока меченых монохроматических нейтронов крепится с помощью фланца водонепроницаемый патрубок, ось которого совпадает с направлением центрального пучка меченых монохроматических нейтронов; при этом патрубок выполнен в виде сильфона с возможностью продольных деформаций, а размер его поперечного сечения выбран исходя из условия пропускания всего потока меченых монохроматических нейтронов; контейнер для подводных работ снабжен опорами, а также системой его затопления.

Использование: для обнаружения и идентификации скрытых опасных веществ под водой. Сущность заключается в том, что устройство для обнаружения и идентификации скрытых опасных веществ под водой содержит герметичный корпус, в котором размещены источник меченых монохроматических нейтронов и сопутствующих им монохроматических α-частиц, детектор α-частиц, детектор γ-излучения с защитой от потока меченых монохроматических нейтронов, при этом герметичный корпус контейнера снабжен соединенным с ним водонепроницаемьм вакуумированным или газонаполненным патрубком, ось которого совпадает с направлением центрального пучка меченых монохроматических нейтронов; при этом патрубок выполнен в виде сильфона с возможностью продольных деформаций, а размер его поперечного сечения выбран исходя из условия пропускания всего потока меченых монохроматических нейтронов.

Изобретение относится к области элементного анализа - качественного обнаружения и количественного определения содержания элементов и элементного состава веществ, материалов и различных объектов.

Изобретение относится к области исследования или анализа материалов радиационными методами с измерением вторичной эмиссии гамма-квантов с использованием нейтронов, в частности, для идентификации в полевых и стационарных условиях взрывчатых, наркотических или сильнодействующих ядовитых веществ, скрытых в различного типа легковых автомобилях.

Изобретение относится к области исследования или анализа материалов радиационными методами с измерением вторичной эмиссии с использованием нейтронов, в частности для неразрушающего дистанционного контроля различных скрытых веществ.

Изобретение относится к области экологии, а именно к оценке загрязнения атмосферного воздуха населенных территорий тяжелыми металлами и другими химическими элементами по степени их накопления в эпифитном мхе Pylaisia polyantha (Hedw.) B.S.G.

Изобретение относится к области исследования или анализа материалов радиационными методами с измерением вторичной эмиссии гамма-квантов с использованием нейтронов, в частности, для идентификации в полевых и стационарных условиях взрывчатых, наркотических или сильнодействующих ядовитых веществ, скрытых в различного типа объектах малого и среднего размеров (сумки, портфели, чемоданы, сейфы).

Изобретение относится к области обнаружения скрытых взрывчатых веществ (ВВ) и наркотических средств (НС) методом фотоядерного детектирования и может быть использовано в стационарных и подвижных установках, например, при досмотре багажа авиапассажиров, таможенном досмотре или разминировании территорий в рамках гуманитарных акций.

Изобретение относится к области обнаружения скрытых взрывчатых веществ (ВВ) и наркотических средств (НС) методом фотоядерного детектирования и может быть использовано в стационарных и подвижных установках при, например, досмотре багажа авиапассажиров, таможенном досмотре или разминировании территорий в рамках гуманитарных акций.

Изобретение относится к области исследования или анализа материалов радиационными методами с измерением вторичной эмиссии гамма-квантов с использованием нейтронов, в частности для неразрушающего дистанционного контроля различных скрытых веществ.

Использование: для обнаружения присутствия химического элемента в объекте путем нейтронного облучения объекта. Сущность: заключается в том, что выполняют нейтронное облучение объекта, используя непрерывное испускание нейтронов из нейтронного генератора (G1) связанных частиц и испускание нейтронных импульсов, которые накладываются на указанное непрерывное испускание нейтронов, при этом нейтронные импульсы получают посредством импульсного генератора (G2) нейтронов, который генерирует нейтронные импульсы с длительностью импульса T2, при этом два последовательных нейтронных импульса разделены интервалом T4, при этом непрерывное и импульсное нейтронное облучение объекта вызывает захватное гамма-излучение и гамма-излучение неупругого взаимодействия. Технический результат: обеспечение возможности обнаружить с максимальной чувствительностью одновременно захватное излучение и излучение неупругого взаимодействия и, как следствие, удовлетворительно идентифицировать все выявляемые элементы. 7 з.п. ф-лы, 6 ил.

Изобретение относится к области исследования или анализа материалов радиационными методами с измерением вторичной эмиссии характерного ядерного гамма-излучения, возникающего под действием быстрых нейтронов, в частности, для обнаружения алмазов в породе - кимберлите. Устройство для обнаружения алмазов в кимберлите содержит транспортер подачи кимберлита в область облучения его потоком быстрых нейтронов, под которым расположен ускоритель дейтронов в качестве источника быстрых нейтронов, детекторы излучения, расположенные над транспортером, систему питания, систему приема и анализа данных с детекторов излучения, систему управления устройством, при этом в качестве источника быстрых нейтронов используется портативный нейтронный генератор, в котором протекает бинарная реакция d+t→α(3,5 МэВ)+n(14,1 МэВ), при этом портативный нейтронный генератор снабжен встроенным многоэлементным кремниевым альфа-детектором, устройство снабжено системой детекторов гамма-излучения, расположенной над транспортером, альфа-детектор и система детекторов гамма-излучения соединены с электроникой приема и анализа данных, которая с помощью линий связи соединена с системой управления устройством; устройство снабжено защитой детекторов гамма-излучения от прямого попадания в них нейтронного излучения от портативного нейтронного генератора. В изобретении используется принципиально другой физический способ обнаружения алмазов, основанный на регистрации характеристического гамма-излучения, возникающего при неупругом рассеянии нейтронов на ядрах исследуемого вещества. Технический результат - обнаружение крупных алмазов (более 5 каратов) в кимберлите до стадии дробления кусков породы, предотвращение разрушения крупных алмазов, повышение производительности добычи крупных алмазов. 2 н.п. ф-лы, 3 ил.

Использование: для обнаружения опасных скрытых веществ. Сущность изобретения заключается в том, что контейнер досмотрового модуля выполнен герметичным, снабжен устройством нагрева внутреннего объема, при этом канал передачи данных между досмотровым модулем и модулем управления обнаружителем опасных веществ выполнен беспроводным, модуль досмотра снабжен аккумулятором для питания нейтронного генератора, альфа и гамма-детекторов, регистрирующей электроники с использованием соответствующих блоков преобразования напряжения, регистрирующая электроника в корпусе досмотрового модуля снабжена защитой от прямого потока монохроматических нейтронов, испускаемых нейтронным генератором; досмотровый модуль снабжен световым индикатором, включенное состояние которого свидетельствует о наличии нейтронного излучения, создаваемого нейтронным генератором. Технический результат: обеспечение возможности работы устройства при наличии осадков, а также расширение диапазона его рабочих температур, обеспечение автономности работы устройства, повышение надежности работы всех его систем, а также обеспечение радиационной безопасности работы с установкой. 2 н. и 4 з.п. ф-лы, 2 ил.

Использование: для обнаружения опасных скрытых веществ. Сущность изобретения заключается в том, что устройство для обнаружения опасных скрытых веществ выполнено в виде двух модулей - досмотрового и модуля управления, соединенных кабелями Ethernet-соединения и питания, при этом досмотровый модуль содержит несколько источников меченых монохроматических нейтронов и сопутствующих им монохроматических α-частиц с детекторами α-частиц и несколько детекторов γ-излучения, и выполнен в виде пункта для досмотра автомобилей, включающего площадку для размещения автомобиля и расположенную под ней досмотровую яму, где размещены источники меченых монохроматических нейтронов и сопутствующих им монохроматических α-частиц с детекторами α-частиц, заключенные в вакуумные камеры и выполненные с возможностью облучения определенной области автомобиля по всей его ширине за одно измерение, а также защита детекторов γ-излучения от потока монохроматических нейтронов; детекторы γ-излучения расположены с обеих сторон площадки с возможностью их перемещения как по вертикали относительно автомобиля, так и в горизонтальном направлении, приближая или удаляя их от автомобиля; досмотровый модуль снабжен устройством поддержания определенных диапазонов температур и влажности воздуха в досмотровой яме. Технический результат: сокращение времени досмотра автомобилей, повышение надежности выявления опасных скрытых веществ, исключение использования ручной работы оператора при досмотре автомобиля, а также исключение участия водителя для перемещения автомобиля относительно источников монохроматических нейтронов, повышение радиационной безопасности при проведении досмотра и дополнительно обеспечение возможности использования установки в широких диапазонах рабочих температур и влажности. 4 н.п. ф-лы, 5 ил.

Использование: для радиационных методов анализа материалов. Сущность изобретения заключается в том, что выполняют облучение исследуемого объекта потоком нейтронов, измерение энергетического спектра индуцированного гамма-излучения, одновременную регистрацию, как минимум, двух гамма-квантов одного ядерного каскада, используют, как минимум, два гамма-детектора, сигналы с которых снимаются при условии совпадения по времени, и осуществляют автоматизированный анализ полученного спектра с помощью ЭВМ, при этом сканируемый объект облучают направленным пучком нейтронов с энергией 14.1 МэВ, испускаемых генератором на основе T(d,n)4He реакции со встроенным детектором альфа-частиц, фиксируют момент времени и направление испускания нейтрона, регистрируют гамма-кванты от неупругих ядерных реакций в процессе прохождения быстрых нейтронов через исследуемый объект, анализируют пары гамма-квантов, совпадающие по времени с сигналом альфа-детектора с учетом времени пролета нейтрона, по измеренным энергиям пар гамма-квантов строят двумерный корреляционный спектр и на основе значений в области характеристических пиков интересующих химических элементов определяют их концентрацию в сканируемом объекте. Технический результат: экспресс-определение концентраций целевых элементов (С, N, О - для выявления взрывчатых веществ; С и О - для определения нефтенасыщенности горных пород; Са, Al, Si - для контроля сырья на цементных заводах) в исследуемом объекте, улучшение пространственного разрешения, снижение минимально детектируемой массы интересующего вещества (особенно в сложном материальном окружении), снижение уровня ложных тревог (ошибочных сигналов об обнаружении опасного вещества), а также сокращение времени обработки зарегистрированного спектра. 4 ил.

Изобретение относится к области исследования или анализа материалов с помощью нейтронно-активационного анализа мхов-биомониторов. Способ заключается в том, что в заданном направлении от промышленного предприятия на разных расстояниях от 1 до 5 км отбирают не менее 5 образцов эпифитного мха Pylaisia polyantha (Hedw.) B.S.G. с коры берез, осин и тополей на высоте 1,5-2 м. Кроме того, один образец мха отбирают на фоновой территории с природно-климатическими условиями, одинаковыми с исследуемой территорией, и удаленной на расстояние более 100 км от промышленных центров в направлении, противоположном преимущественной розе ветров. Очищают образцы мха от инородных примесей, промывают дистиллированной водой, сушат при температуре от 80 до 100°C и гомогенизируют. Изготавливают от 5 до 10 параллельных представительных проб, подвергают их облучению потоком тепловых нейтронов в течение не более 5 часов. После спада активностей Na24 до безопасного уровня определяют удельную активность каждой пробы путем сравнения интенсивности гамма-линий радионуклидов химических элементов в пробе с интенсивностью гамма-линий эталонов. Значения концентраций химических элементов в образцах мхов, определенные с помощью нейтронно-активационного метода, методом наименьших квадратов аппроксимируют заданной зависимостью, определяя при этом численные значения включенных в нее коэффициентов, а затем рассчитывают скорость гравитационного оседания частиц летучей золы выбросов промышленного предприятия в приземном слое атмосферы из заданного соотношения. Достигается повышение достоверности и надежности определения. 4 табл., 4 ил.

Изобретение относится к области исследования или анализа материалов, а именно к определению коэффициента вертикальной диффузии выбросов промышленных предприятий в приземном слое атмосферы с помощью нейтронно-активационного анализа. Способ заключается в том, что в заданном направлении от промышленного предприятия на разных расстояниях от 1 до 5 км отбирают не менее 5 образцов эпифитного мха Pylaisia polyantha (Hedw.) B.S.G. с коры берез, осин и тополей на высоте от 1,5 до 2 м. Кроме того, один образец отбирают на фоновой территории с природно-климатическими условиями, одинаковыми с исследуемой территорией, и удаленной на расстояние более 100 км от промышленных центров в направлении, противоположном преимущественной розе ветров. Очищают образцы мха от инородных примесей, промывают дистиллированной водой, сушат при температуре от 80 до 100°С, гомогенизируют и изготавливают от 5 до 10 параллельных представительных проб. При использовании нейтронно-активационного анализа пробы подвергают облучению потоком тепловых нейтронов в течение 5 часов. После спада активностей Na24 до безопасного уровня определяют удельную активность каждой пробы путем сравнения интенсивности гамма-линий радионуклидов химических элементов в пробе с интенсивностью гамма-линий эталонов. Значения концентраций химических элементов в образцах мхов, определенные с помощью нейтронно-активационного метода, методом наименьших квадратов аппроксимируют зависимостью вида: где qф - фоновая (природная) концентрация химического элемента в пробе, отобранной на территории, удаленной от промышленных предприятий на расстоянии не менее 100 км; х - расстояние от точек пробоотбора мхов до промышленного предприятия, определяя при этом численные значения коэффициентов А, С и θ, затем рассчитывают коэффициент пропорциональности вертикальной диффузии k1: где n - безразмерный параметр для интерполяции вертикального профиля скорости ветра: u(z)=u1zn, где u1 - среднегодовая скорость ветра на высоте 1 м; Н - высота трубы промышленного предприятия, и используют его для определения коэффициента вертикальной диффузии выбросов промышленных предприятий в приземном слое атмосферы по формуле: kz=k1z, где k1 - коэффициент пропорциональности вертикальной диффузии; z - высота от поверхности земли. Достигается возможность использования для любой местности независимо от ее рельефа и с учетом реализованных за время экспозиции состояний атмосферы. 4 ил., 4 табл.

Изобретение относится к области определения состава скрытых опасных веществ, в том числе находящихся под водой. Устройство для обнаружения скрытых опасных веществ под водой содержит досмотровый модуль, в котором размещены источник меченых монохроматических нейтронов и сопутствующих им монохроматических α-частиц, детектор α-частиц, заключенные в вакуумную камеру, детектор γ-излучения и регистрирующую электронику, при этом устройство выполнено в виде автономного модуля с нулевой плавучестью, с возможностью его перемещения оператором; содержит снабженный дугообразной ручкой торпедообразный блок, выполняющий функции герметичного контейнера для подводных работ, в котором размещены источник меченых монохроматических нейтронов, расположенный таким образом, что ось центрального меченого пучка нейтронов совпадает с продольной осью торпедообразного блока, источник питания, регистрирующая электроника; к торпедообразному блоку в передней его части прикреплены два γ-детектора, расположенные симметрично относительно центральной оси меченого пучка нейтронов и на расстоянии от корпуса торпедообразного блока, достаточном для обеспечения защиты слоем воды сцинтилляционных кристаллов γ-детекторов от прямого потока нейтронов, испущенных нейтронным генератором в телесный угол 4π; монитор интерфейса оператора и пульт управления расположены снаружи торпедообразного блока, как правило, на самой ручке; на торпедообразном блоке снаружи установлена световая индикация наличия-отсутствия нейтронного излучения, генерируемого нейтронным генератором. Технический результат - повышение достоверности обнаружения опасных веществ (ОВ) и радиоактивных веществ (РВ). 2 ил.

Изобретение относится к области нейтронно-радиационного анализа материалов с использованием их облучения тепловыми нейтронами и преимущественно может быть использовано для обнаружения азотосодержащих взрывчатых веществ в контролируемых предметах без их вскрытия. Способ предусматривает облучение тепловыми нейтронами камеры, оснащенной радиационной защитой и по меньшей мере одним детектором гамма-излучения, определение энергетического спектра зарегистрированного гамма-излучения камеры в диапазоне энергии гамма-квантов 5-11 МэВ, подсчет количества зарегистрированных при облучении камеры фоновых гамма-квантов с энергиями от 9,9 до 11,0 МэВ, размещение в камере эталонного железосодержащего материала с известным массовым содержанием железа, облучение его тепловыми нейтронами, определение энергетического спектра зарегистрированного гамма-излучения эталонного железосодержащего материала в диапазоне энергии гамма-квантов 5-11 МэВ, размещение в камере эталонного хромсодержащего материала с известным массовым содержанием хрома, облучение его тепловыми нейтронами, определение энергетического спектра зарегистрированного гамма-излучения эталонного хромсодержащего материала в диапазоне энергии гамма-квантов 5-11 МэВ, размещение в камере контролируемого предмета, облучение его тепловыми нейтронами, определение энергетического спектра зарегистрированного гамма-излучения камеры с контролируемым предметом в диапазоне энергии гамма-квантов 5-11 МэВ, подсчет количества зарегистрированных при облучении находящегося в камере контролируемого предмета гамма-квантов с энергиями от 9,9 до 11,0 МэВ, определение предполагаемого количества фоновых гамма-квантов путем суммирования с количеством зарегистрированных при облучении камеры фоновых гамма-квантов поправки, полученной на основании анализа энергетических спектров контролируемого предмета и эталонных железосодержащего и хромсодержащего материалов, и принятие решения о наличии взрывчатого вещества в контролируемом предмете при превышении количеством зарегистрированных при облучении находящегося в камере контролируемого предмета гамма-квантов с энергиями от 9,9 до 11,0 МэВ предполагаемого количества фоновых гамма-квантов. Технический результат - снижение вероятности ложной тревоги в случае наличия в контролируемом предмете материалов, содержащих железо или хром. 5 з.п. ф-лы, 4 ил.

Изобретение относится к области измерительной техники. Способ определения массы силикатных отложений на единицу длины канала включает в себя этапы, на которых осуществляют облучение силикатных отложений нейтронами, регистрацию гамма-квантов, при этом облучение проводят быстрыми нейтронами, регистрацию гамма-квантов проводят после облучения, анализируют спектр гамма-квантов на наличие энергетического пика 1,78±0,18 МэВ от кремния, определяют массу силикатного отложения на единицу длины канала по количеству гамма-квантов указанной энергии в соответствии с градуировочной зависимостью. Технический результат - расширение области применения технического решения для определения массы силикатов. 1 ил.
Наверх