Способ измерения эффективности стержней регулирования реакторной установки

Изобретение относится к физике ядерных реакторов и может быть использовано для измерения эффективности одного или групп стержней регулирования реакторных установок (РУ) в случаях, когда по условиям эксплуатации РУ необходимо обеспечить метрологическую аттестацию этих измерений в режимах доброса. Эффективность стержней регулирования определяется по изменениям реактивности РУ, которые происходят в результате их перемещения. Выводят РУ в стационарное, критическое состояние. Измеряют полное число нейтронов РУ n(t) как скорость счета детектора нейтронов во времени v(t) непрерывно, с интервалом дискретности Δt. Изменяют мощность РУ путем сброса исследуемых стержней регулирования. Вычисляют реактивность после сброса из уравнений баланса нейтронов по результатам измерений v(t), которые используют с поправкой посредством умножения значения скорости счета детектора v(t) на коэффициент δk. Этот коэффициент больше или меньше 1, k - номер группы сброшенных стержней. Технический результат - повышение точности определения эффективности стержней регулирования за счет минимизации характерных методических погрешностей определений реактивности. 4 з.п. ф-лы, 2 ил.

 

Изобретение относится к физике ядерных реакторов и может быть использовано для измерения эффективности одного или групп стержней регулирования реакторных установок (РУ): атомных станций, критсборок, исследовательских реакторов в случаях, когда по условиям эксплуатации РУ необходимо обеспечить метрологическую аттестацию этих измерений. На практике требуется, в ряде случаев, определять эффективность стержней регулирования после сброса и последующих добросов. Первый сброс проводят из одного исходного критического или околокритического состояния (см., например, «Руководящий документ. Методики расчета нейтронно-физических характеристик по данным физических экспериментов на энергоблоках атомных станций с реакторами ВВЭР-1000 (РД ЭО 0151-2004)». стр.51-52 рис.14, 16). Эффективность стержней регулирования определяется по изменениям реактивности РУ до и после каждого из последовательных сбросов стержней регулирования:

Δ ρ $ = ( ρ $ ) к 1 ( ρ $ ) к , ( 1 )

где Δρ$ - искомая эффективность стержней регулирования;

(ρ$)к-1, (ρ$)к - измеренные значения реактивности РУ до сброса и после сброса стержней регулирования, значения реактивности измеряются в долларах, где к - номер группы сброшенных стержней

Изменения реактивности происходит в результате перемещения стержней регулирования так, что, если положение стержней регулирования в РУ не меняется, то изменения реактивности не происходит. Реактивность есть параметр уравнений баланса нейтронов (см., например, Нечаев Ю.Л. Космические ядерные) энергоустановки «Ромашка» и «Енисей» стр.20, 21. Москва, Издат, 2011).

Известен способ определения вводимой реактивности, а, следовательно, эффективности стержней при однократном их сбросе, а также при любом числе последующих сбросов (см., например, Казанский Ю.Л. и др. Эксперементальные методы физики реакторов, Энергоатомиздат. 1984 г. стр.93.). - прототип), заключающийся в том, что выводят РУ в стационарное состояние, вводят в РУ исследуемые стержни регулирования, измеряют n(t) - полное число нейтронов в РУ до, во время и после ввода стержней, после чего из уравнений баланса нейтронов вычисляют реактивность по результатам измерений значений функции n(t). Интервал дискретности измерений значений функции n(t) во времени Δt≤5 секунд. Допускаются добросы стержней регулирования. При сбросах стержней регулирования промежуток времени от начала движения до их останова обычно не превышает 5 секунд.

Важно отметить, что допускается измерять значения функции n(t) в относительных единицах как скорость счета экспериментального детектора v(t), если коэффициент пропорциональности ε между n(t) и v(t) не изменяется во времени:

v ( t ) = ε n ( t ) ( 2 )

где ε - коэффициент пропорциональности

Значение ε не изменяется во времени, если не изменяется во времени в результате перемещения стержней регулирования пространственно-энергетическое распределение нейтронов по объему РУ. Принятие допущения о неизменности ε технически упрощает задачу вычислений эффективности стержней регулирования, т.е. вычисления вводимой реактивности, но приводит к характерным методическим погрешностям. Источник методической погрешности в том, что значения ε изменяется скачком после сброса стержней регулирования, так как изменяется состав РУ и пространственно-энергетическое распределение нейтронов по объему РУ. Вследствие этого результат вычислений ρ$ зависит от места расположения экспериментального детектора. Отличия в результатах вычислений ρ$ в зависимости от места расположения экспериментального детектора могут достигать ~20% от истинной величины уже при первом сбросе. Нет оснований считать, что эти отличия при добросах уменьшатся. Расчет поправок на изменения ε задача, по сложности сравнимая с вычислениями собственно реактивности, а это, соответственно, усложняет метрологическую аттестацию вычислений ρ$ по результатам измерений n(t), и ставится вопрос о целесообразности постановки подобных экспериментов вообще.

Техническим результатом, на которое направлено изобретение, является повышение точности определения эффективности стержней регулирования за счет минимизации характерных методических погрешностей после первого сброса и последующих добросов.

Достигается эта минимизация посредством ввода соответствующих поправок измеренных значений n(t). Для этого предложен способ определения эффективности стержней регулирования РУ, заключающийся в том, что включают экспериментальную установку для регистрации значений функции n(t) во времени, непрерывно с интервалом дискретности Δt, от начала до конца эксперимента. Эти значения n(t) измеряют как скорость счета v(t) экспериментального детектора во времени. Выводят РУ в стационарное, критическое состояние. Сбрасывают первую группу исследуемых стержней регулирования, рекомендуется через ~ 20 секунд сбрасывать следующую группу стержней регулирования и т.д.

Способ основан на том, что при расчете ρ$ из уравнений баланса нейтронов по результатам измерений v(t) наблюдается тренд (монотонное изменение) вычисленных значений ρ$ в сторону истинных значений. Этот тренд (следствие замены функции n(t) ее паллиативом v(t)) наблюдается в течение некоторого времени с выходом на асимптоту (см., например, «Экспериментальные методы физики реакторов» Ю.А. Казанский, Е.С. Матусевич. М.: Энергоатомиздат, 1984, стр.100). Причиной тренда является скачкообразное изменение пространственно-энергетического распределения нейтронов по объему РУ. Как следствие, изменение значения ε после каждого сброса стержней регулирования. Если после очередного сброса тренд не наблюдается, то результат расчета ρ$ по измерениям v(t) с помощью этого детектора нейтронов соответствует истинному значению с точностью до случайных экспериментальных погрешностей. В большинстве случаев происходит изменение значения ε в месте расположения детектора нейтронов и необходимо вводить поправку. Операция введения поправки сводится к умножению поправляемых величин v(t) на число δk большее или меньшее 1, где k - номер группы сброшенных стержней.

Для реализации предложенного способа определений ρ$ следует после сброса 1-й группы стержней регулирования умножить на δ1 значение v(0) - результат измерений значения n(t) до сброса 1-й группы стержней регулирования. Численное значение поправки δ1 определяется по отсутствию тренда вычисленных значений ρ$ из уравнений баланса нейтронов по результатам измерений значения v(0) и v(t) на временном отрезке [Т1-Т2], где Т1 - момент останова 1-й группы сброшенных стержней регулирования, Т2 - момент до начала сброса 2-й группы стержней регулирования. После сброса 2-й группы стержней регулирования следует умножить на число δ2 все измеренные значения v(t) на временном отрезке [Т3-Т4], где Т3 - момент останова 2-й группы сброшенных стержней регулирования, Т4 - момент до начала сброса 3-й группы стержней регулирования. Способ определений ρ$ после сброса 3-й группы и последующих групп стержней регулирования реализуется аналогично посредством умножения на число δk соответствующих измеренных значения v(t) на временном отрезке от времени останова сброшенных стержней регулирования до момента доброса следующей группы стержней регулирования. Численные значения поправок определяется по отсутствию тренда вычисленных значений ρ$ из уравнений баланса нейтронов.

В подтверждение возможности реализации измерений эффективности стержней регулирования заявленным способом без методических погрешностей проведено численное моделирование эксперимента для случая трех сбросов групп стержней регулирования в течение одной секунды каждый сброс, с интервалами между сбросами 20 секунд. Моделировались эффективности стержней регулирования: 1-я группа стержней регулирования эффективностью 0.5$, 2-я группа стержней регулирования эффективностью 1$, 3-я группа стержней регулирования эффективностью 2$. Моделировалось изменение следующих параметров: ε10=1.2 после первого сброса, ε21=0.9 после второго сброса и ε32=1.1 после третьего сброса, где ε0, ε1, ε2, ε3 - коэффициенты пропорциональности до, после первого, после второго и после третьего сбросов групп стержней регулирования.

На фигуре 1 в полулогарифмическом масштабе приведены кривые, отображающие результаты вычислений функции v(t) из уравнений баланса нейтронов после последовательных трех сбросов групп стержней регулирования из одного (до сброса стержней регулирования) критического состояния. Кривая 1 отображает результаты вычислений v(t) для частного случая, когда ε0123. В этом частном случае, редко реализуемом на практике, результаты вычислений эффективности групп стержней регулирования из уравнений баланса нейтронов по значениям функции v(t) будут получены без методических погрешностей. Кривая 2 отображает смоделированные результаты вычислений v(t), когда ε10=1.2 после первого сброса, ε21=0.9 после второго сбросай ε32=1.1 после третьего сброса. Кривая 3 отображает результаты вычислений v(t) с поправками значений функции v(t), приведенных на кривой 2 так, чтобы исключить тренд в результатах расчета ρ$ по поправленным значениям: величина v(0) умножена на 1.44, все значения v(t) на временном отрезке [Т1-Т2] умножены на 1.6, все значения v(t) на временном отрезке [Т3-Т4] умножены на 1.309.

На фигуре 2 приведены результаты вычислений ρ$ по значениям функций v(t), приведенным на фигуре 1, из уравнений баланса нейтронов. Результаты расчетов ρ$ демонстрируют на временных отрезках [1,20] секунд [21-40] секунд и [41-60] секунд изменения вычисленных значений по направлению к истинным значениям.

Данные, приведенные на фигурах 1 и 2, подтверждают возможность измерять эффективности групп стержней регулирования предложенным способом при их трех последовательных сбросов из критического состояния с точностью до случайных погрешностей. Ограничений по количеству сбросов стержней регулирования нет. Определения ρ$ предложенным способом могут быть проведены всегда. Однако тренд значений ρ$, рассчитанных из уравнений баланса нейтронов, по результатам измерений v(t) постепенно уменьшается но мере увеличения суммарной эффективности сброшенных стержней регулирования. С уменьшением тренда происходит закономерный рост случайных погрешностей определения ρ$, соответственно повышаются требования к качеству измерений v(t). В случаях, когда суммарная эффективность сброшенных стержней превышает 5$, случайная погрешность измерений эффективности сброшенных стержней может оказаться неприемлемой.

Таким образом, предложенным способом определяются искомые значения реактивности с точностью до случайных погрешностей из уравнений баланса нейтронов по результатам измерений значений скоростей счета детекторов нейтронов с учетом поправок. Численные значения поправок к каждому массиву измеренных значений скоростей счета после очередного сброса подбирается такими, чтобы исключить тренд в результатах расчета реактивности. Измерения реактивности без методических погрешностей, с точностью до случайных упростит метрологическую аттестацию результатов этих измерений и определения эффективности стержней регулирования.

1. Способ измерения эффективности стержней регулирования реакторной установки (РУ), заключающийся в том, что выводят РУ в стационарное критическое состояние, с интервалом дискретности Δt измеряют полное число нейтронов n(t) РУ во времени как скорость счета v(t) детектора нейтронов и v(0) начальную скорость счета детектора до сброса стержней регулирования, вычисляют из уравнений баланса нейтронов реактивность и эффективности стержней регулирования, отличающийся тем, что сбрасывают с определенным временным интервалом один или группу исследуемых стержней регулирования, измеряют v(t) непрерывно во времени с интервалом дискретности Δt в течение эксперимента, при этом для вычисления реактивности из уравнений баланса нейтронов используют значения v(t) с поправкой посредством умножения значений v(t) на число δk, где
δk - коэффициент больше или меньше 1, k - номер группы сброшенных стержней.

2. Способ по п.1, отличающийся тем, что каждый сброс стержней регулирования осуществляют за время не более 5 с.

3. Способ по п.1, отличающийся тем, что интервал между сбросами стержней регулирования составляет примерно 20 с.

4. Способ по п.1, отличающийся тем, что величина δk определяется по отсутствию тренда вычисленных значений реактивности из уравнений баланса нейтронов по результатам измерений v(t) на временном отрезке между сбросами стержней.

5. Способ по п.1, отличающийся тем, что суммарная эффективность сброшенных стержней не должна быть больше 5$.



 

Похожие патенты:

Изобретение относится к металлургии и может быть использовано при изготовлении крупногабаритных обечаек корпусов реакторов типа ВВЭР-1000. Изготавливают цельнокованую заготовку длиной не менее длины обечайки с учетом технологических припусков.

Изобретение относится к области хранения ядерного топлива и может быть использовано для расчетно-экспериментального определения и контроля эффективного коэффициента размножения бассейнов выдержки (БВ) хранилищ отработавшего ядерного топлива АЭС.

Изобретение относится к ядерной энергетике и может найти применение при изготовлении стержневых тепловыделяющих элементов (твэлов) с таблетированным керамическим ядерным топливом.

Изобретение относится к анализу и оценке безопасности технологических процессов и может быть использовано для имитационной калибровки измерительных каналов системы управления разгрузочно-загрузочной машины (РЗМ) ядерного реактора.

Изобретение относится к способам контроля и регулирования характеристик и параметров ядерной безопасности реакторных установок атомных электростанций. .

Изобретение относится к ядерной энергетике, в частности к исследованиям тепловых режимов активных зон ядерных реакторов, например, при эксплуатации ядерного реактора типа ВВЭР, систем внутриреакторного контроля, для обеспечения контроля за полем энерговыделения в реакторе типа ВВЭР, и может быть использовано в атомной энергетике при расчете мощности активной зоны, реактивности и в качестве дополнительного сигнала для срабатывания защиты активной зоны.

Изобретение относится к ядерной энергетике, в частности к исследованиям тепловых режимов активной зоны и осуществлению контроля за полем энерговыделения в реакторе типа ВВЭР.

Изобретение относится к технике эксплуатации атомных электростанций и может быть использовано для измерения расхода теплоносителя в первом контуре корпусных ядерных реакторов.

Изобретение относится к способам экспериментального определения физических характеристик нейтронных источников и ядерных реакторов и может быть использовано при оценке таких параметров подкритического ядерного реактора.

Изобретение относится к ядерной энергетике и позволяет осуществлять контроль кипения и плотности теплоносителя в разных состояниях реактора. .

Изобретение относится к способам диагностики активной зоны ядерного реактора. В способе тестирования подкритических физических свойств активной зоны используется ванадиевый самоприводной контрольно-измерительный прибор активной зоны в канальной сборке для измерения распределения мощности. Это позволяет убедиться в соответствии распределения расчетному. Сигналы, полученные от детекторных элементов активной зоны, суммируют, пока относительная погрешность не меньше заданного уровня. Затем измеренное распределение мощности сравнивается с расчетным распределением мощности для данного положения стержня или перепада температур. Если измеренное распределение мощности находится в пределах указанной погрешности к расчетному распределению мощности, то ожидается, что активная зона будет вести себя так, как предсказано. Технический результат - повышение безопасности процесса вывода реактора на рабочую мощность. 7 з.п. ф-лы, 4 ил.

Изобретение относится к технике эксплуатации уран-графитового ядерного реактора и может быть использовано при неразрушающем контроле состояния технологических каналов и графитовой кладки активной зоны реактора типа РБМК. В графитовой кладке создают электрический ток, регистрируют создаваемое им магнитное поле во внутренних полостях канальных труб технологического канала и по совокупности измерений судят о техническом состоянии графитовой кладки. Электрический ток в графитовой кладке создают с помощью источника, включенного в электрическую цепь, частью которой является графитовая кладка. Электрическая цепь содержит источник, соединенный через электроды с внутренней поверхностью труб технологических каналов, верхнюю и нижнюю плиты, а также включенные между ними трубы, электрически соединенные с блоками окружающей их графитовой кладки. При искривлении графитовых колонн они электрически замыкаются, а возникающие при этом токи утечки регистрируются по создаваемому ими магнитному полю. Техническим результатом изобретения является обеспечение возможности экспресс контроля для выявления искривленных графитовых колонн и обнаружения в них опасных трещин не только без извлечения из графитовой кладки технологического канала, но и при минимальном объеме выгрузки топлива из технологических каналов. 6 з.п. ф-лы, 15 ил.

Изобретение относится к ядерной технике, а более конкретно - к облучательным устройствам и тепловыделяющим сборкам для реакторных испытаний топливных образцов, а также модельных твэлов в исследовательском реакторе, и может быть использовано при разработке и обосновании конструкций твэла для энергетических реакторов. Устройство содержит газовый тракт и газозаполненную капсулу, включающую оболочку, герметично соединенную с торцевыми элементами. В капсуле с радиальным зазором размещен топливный образец в виде столба таблеток в негерметичной тонкостенной оболочке из высокопластичного жаростойкого материала, а также термометрические датчики и компенсационный объем. Один из датчиков размещен в торцевой топливной таблетке, а другой - с противоположной стороны топливного образца за пределами активной зоны. Зазор между тонкостенной оболочкой и топливным образцом составляет не более разности значений их радиальных термических расширений, а зазор между оболочками капсулы и топливного образца выбран в диапазоне возможных значений радиального зазора между оболочкой и топливным сердечником штатного твэла. Данная конструкция ампульного облучательного устройства позволяет исследовать скорость свободного распухания и кинетику выхода газообразных продуктов деления из топлива с возможностью определения его температуры и температурной зависимости исследуемых процессов при характерных для быстрого реактора высоких плотностях энерговыделения. 5 з.п. ф-лы, 1 ил.

Изобретение относится к области испытательной техники и может быть использовано для проведения радиационных испытаний материалов при заданной температуре в ядерных реакторах, преимущественно в реакторах на быстрых нейтронах с металлическим теплоносителем, например натриевым, свинцовым, свинцово-висмутовым. Устройство для испытания материалов в ядерном реакторе содержит корпус, в верхней внутренней части которого расположена кассета с образцами материалов, а в нижней - кассета с твэлами, причем кассета с твэлами закреплена в корпусе с возможностью продольного перемещения. Технический результат - возможность регулировать и поддерживать температуру образцов. 7 з.п. ф-лы, 3 ил.

Изобретение относится к области теплофизических исследований и может быть использовано при изучении поведения тепловыделяющих элементов (ТВЭЛ) ядерных реакторов экспериментальным моделированием тепловых и гидродинамических процессов при различных режимах работы реактора, в том числе аварийных. Имитатор твэла содержит оболочку, в которой размещен столб таблеток натурного топлива с центральным отверстием и расположенный с зазором в отверстиях таблеток электрический нагреватель, снабженный верхним и нижним токоподводами. Между таблетками установлены кольцевые центрирующие дистанционаторы из высокотемпературного электроизоляционного материала с тем же, что и у топливных таблеток внешним диаметром. Диаметр центрального отверстия дистанционаторов и расстояние между ними определяют из двух соотношений, учитывающих диаметры нагревателя, отверстий таблеток; коэффициенты линейного расширения материалов нагревателя, таблеток и дистанционаторов; температуру нагревателя; коэффициент, характеризующий способ заделки концов нагревателя. Предлагаемый имитатор позволяет обеспечить полноту моделирования процессов в тепловыделяющих элементах реакторов на имитаторах с теми же размерами, что и натурные твэлы, при использовании натурных топливных материалов и тех же, что и в реальных условиях испытаний твэлов, температур. 3 з.п. ф-лы, 1 ил.

Изобретение относится к методам испытаний конструкционных материалов при прогнозировании и оценке работоспособности облучаемых корпусов реакторов ВВЭР-1000. В способе прогнозирования ресурсоспособности сталей корпусов реакторов образцы из стали корпуса облучают потоком быстрых нейтронов с высокой плотностью до дозы облучения, соответствующей дозе облучения реального корпуса реактора за отдаленное время, превышающее проектный срок службы. Определяют сдвиг критической температуры хрупкости, обусловленный облучением, к которому для материалов корпусов реакторов ВВЭР-1000 с содержанием никеля ≥1,5% добавляют составляющую, обусловленную различиями в кинетике накопления радиационно-индуцированных преципитатов при облучении в условиях различной плотности потока быстрых нейтронов. Определяют уровень зернограничных сегрегаций в необлученных образцах и экстраполяцией - на отдаленный срок эксплуатации реактора. Определяют общий сдвиг критической температуры хрупкости, и по его величине судят о ресурсе корпуса. Технический результат - повышение точности прогнозирования сдвига критической температуры хрупкости материалов. 2 ил.

Изобретение относится к устройству контроля ядерных реакторов, которые осуществляют преобразование плотности потока тепловых нейтронов (ППТН) и потока гамма-квантов в выходные электрические сигналы на всех режимах работы реакторной установки. Заявленное устройство включает источник быстрых нейтронов (ИБН), контейнер безопасного хранения ИБН, канал для перемещения ИБН между контейнером и ионизационной камерой, съемный механизм перемещения ИБН. Контроль коэффициента преобразования осуществляется в период заглушения работы реактора, при этом ИБН установлен около ионизационной камеры, путем сравнения величины сигнала от ИБН с паспортными данными, полученными при изготовлении ПИК от такого же ИБН. В период работы ядерного реактора ИБН находится в контейнере безопасного хранения ПИК. Предусмотрен вариант устройства, в котором для контроля нескольких ПИК используется один ИБН и один механизм его перемещения. Техническим результатом является возможность контролировать стабильность коэффициента преобразования ППТН в электрические сигналы при длительной (более 30 лет) эксплуатации, а также возможность контроля целостности цепей и стабильности работы системы управления и защиты ядерного реактора, что существенно повышает надежность работы реактора. 2 з.п. ф-лы, 4 ил.

Изобретение относится к ядерным реакторам деления. Система вентилируемого тепловыделяющего модуля ядерного деления содержит тепловыделяющий элемент ядерного деления, соединенный с ним корпус клапана для помещения газообразных продуктов деления и клапан, предназначенный для управляемой вентиляции газообразных продуктов деления из объема корпуса. Технический результат - повышение надежности тепловыделяющего модуля, увеличение кампании реактора. 17 з.п. ф-лы, 204 ил.

Изобретение относится к ядерным реакторам на бегущей волне. Способ определения материалов активной зоны включает определение средней скорости изменения количества материала и потока в ячейке, определение обновленного количества материала в ячейке на основании средней скорости изменения и корректировку обновленного количества материала в ячейке не некое количество. Технический результат - возможность управления бегущей волной деления. 2 н. и 28 з.п. ф-лы, 22 ил.
Изобретение относится к области реакторных измерений и может быть использовано в системах контроля и управления ядерных реакторов. Способ включает размещение детектора, подключенного к счетному каналу реактиметра, в зоне радиоактивного излучения и определение и регулировку показаний проверяемого счетного канала. В качестве показаний счетного канала используют вычисляемую реактиметром реактивность, а в качестве детектора используют урановую камеру деления, контролирующую нейтронный поток в ядерном реакторе. Для калибровки выводят реактор на уровень мощности, соответствующий скорости счета 106÷107 имп./с, стабилизируют мощность и перемещают регулирующий мощность реактора орган управления из одного положения в другое в направлении, соответствующем снижению мощности, при этом контролируют значение вычисляемой реактиметром реактивности. В случае отклонения во времени этого значения изменяют второй и третий уровни дискриминации. Повторяют операции перемещения органа управления и соответствующую корректировку уровней дискриминации до тех пор, пока будет исключено отклонение реактивности во времени от значения, установившегося после перемещения органа управления. Технический результат - повышение точности калибровки, упрощение процесса калибровки и сокращение времени на ее проведение.
Наверх