Способ зоновой дуплексной связи с временным разнесением каналов приема и передачи

Изобретение относится к области радиосвязи и может быть использовано при построении дуплексных систем зоновой радиосвязи, в том числе средневолновых и коротковолновых. Технический результат состоит в обеспечении условий электромагнитной совместимости приемной и передающей аппаратуры базовой станции. Для этого способ основан на периодическом переключении с приема на передачу, причем на передаче от вызывающей абонентской радиостанции на базовую станцию вызывного сигнала посылают синхропосылку, номер вызываемого абонента и собственный номер отправителя, при передаче от базовой станции осуществляют синхронизацию циклов прием/передача вызываемой абонентской радиостанции и ретранслятора базовой станции, в случае успешного вхождения в связь каждая из абонентских радиостанций производит поочередную передачу на базовую станцию и прием от базовой станции информационных кадров, при завершении обмена установленная связь разрывается и абонентские радиостанции переходят в режим дежурного приема. 2 ил.

 

Изобретение относится к области радиосвязи и может быть использовано при построении дуплексных систем зоновой радиосвязи, в том числе средневолновых и коротковолновых.

Известен способ реализации дуплексной радиотелефонной связи с использованием частотного разнесения каналов приема и передачи, широко применяемый в конвенциональных, транкинговых и сотовых системах связи (SmarTrunk, МРТ1327, APCO-25, AMPS и др.) [1, 2].

Способ заключается в том, что частоты приема и передачи каждого абонентского канала разнесены на величину дуплексного разноса частот, при котором обеспечивается одновременная работа устройств приема и передачи как в абонентской радиостанции, так и ретрансляторов базовой станции. Данный способ требует применения на абонентской радиостанции, работающей на приемопередающую антенну, дуплексного фильтра. Для обеспечения многоканальной работы дуплексных ретрансляторов на базовой станции требуется применение технически сложной схемы фильтрации сигнала, поступающего с приемных антенн и подаваемого на передающие антенны. Недостатком данного способа дуплексной связи при построении УКВ систем является сложность технических решений его реализации и соответственно повышенная стоимость аппаратуры, реализующей способ. Для обеспечения дуплексной связи в коротковолновом и средневолновом диапазонах, при использовании данного способа, требуется помимо частотного разнесения каналов приема и передачи дополнительно применять пространственное разнесение приемников и передатчиков базовой станции (многоканального ретранслятора), что еще более усложняет и удорожает ее реализацию [3, 4].

Известен способ дуплексной радиосвязи, позволяющий обеспечить дуплексную связь на одной рабочей частоте с использованием симплексных радиостанций (трансиверов) за счет временного разнесения процессов приема и передачи, а также сжатия информации перед передачей и восстановления ее при приеме [5]. Указанный способ позволяет реализовать дуплексный режим работы радиостанции при работе приемника и передатчика на общую антенну без установки дуплексного фильтра и обеспечивает передачу как аналоговых телефонных сигналов, так и цифровой речи и данных. Однако, данное техническое решение реализует режим работы радиолинии, включающей две радиостанции и не применимо в зоновой системе связи (базовая станция отсутствует).

Известен способ реализации дуплексной связи с использованием смешанного частотно-временного разнесения каналов приема и передачи каждого абонентского канала, применяемый в цифровых транкинговых и сотовых системах множественного доступа с временным разделением (D-AMPS, GSM, TETRA и др.) [6]. В соответствие с этим способом на каждой рабочей частоте, размещаются нескольких абонентских каналов, при этом, обеспечивается дуплексный разнос частот приема и передачи и временной разнос режимов приема и передачи в каждом абонентском канале. Применение временного разноса приема и передачи в абонентских каналах обеспечивает возможность реализации дуплексной связи с использованием симплексных абонентских радиостанций, что упрощает их техническую реализацию. Дуплексный разнос частот приема и передачи необходим для реализации дуплексной базовой станции, т.к. при ее работе происходит временное наложение процессов передачи и приема разных абонентских каналов. Таким образом, проблема обеспечения электромагнитной совместимости на базовой станции остается, что является недостатком метода.

Известен способ реализации дуплексной связи с использованием временного разнесения каналов приема и передачи [7], применяемый в некоторых системах множественного доступа с кодовым разделением (CDMA 2000 и др.), а также в ряде систем бесшнурового телефона (СТ2, DECT и др.). В соответствие с этим способом весь частотный ресурс системы последовательно выделяется каждому абонентскому каналу на интервал времени ∆T, в котором выделяется интервал времени передачи ∆TT и интервал времени приема ∆TR., при этом интервалы приема и передачи разделяются защитными интервалами ∆t. Данный способ дуплексной связи позволяет обеспечить условия электромагнитной совместимости на базовой станции, за счет временного разнесения интервалов приема и передачи всех абонентских каналов.

Недостатком данного способа является ограничение его применимости, вызванное необходимостью использования широкой полосы частот для его реализации. Так, например, реализация по описанному способу двух канальной радиотелефонной системы, даже без учета длительности защитных интервалов, потребует для сохранения той же занимаемой полосы частот снижения скорости цифрового потока и соответственно сжатия передаваемой цифровой речи в 4 раза, по сравнению с симплексной одноканальной передачей. Соответственно, для трехканальной системы - в 6 раз, для 4-х канальной системы - в 8 раз и т.д. Для сохранения неизменной величины сжатия речи потребуется во столько же раз увеличить занимаемую полосу передаваемого сигнала.

Из известных наиболее близким по технической сущности к предлагаемому изобретению является способ временного дуплекса, представленный в работе [8]. Временная диаграмма сеанса связи, при работе через ретранслятор в режиме временного дуплекса, представлена в указанной работе на рис.3.

Связь двух абонентских радиостанций через зональный ретранслятор осуществляется следующим образом. В режиме временного дуплекса вызывающая абонентская радиостанция на частоте передачи F1 передает вызывной сигнал, содержащий синхропосылку с номером вызываемого абонента (СП) и свой адрес отправителя (AO), затем переходит в режим поочередной передачи и приема кадров в интервалах T1 и T2 соответственно. В первом кадре данных КД1 передается идентификатор признака дуплексной связи. Ретранслятор после обнаружения идентификатора признака дуплексной связи синхронизируется с временной диаграммой вызывающей радиостанции для организации обратного канала во временных интервалах Т2 и формирует передачу вызывного сигнала на частоте f1 таким образом, чтобы дальнейшая передача по кадрам в сторону вызываемой радиостанции проводилась во временных интервалах Т1. Вызываемая радиостанция, приняв СП со своим номером вызываемого абонента, АО и первый кадр данных на временном интервале T1 на частоте f1, отвечает своим кадром данных на частоте F1 на интервале T2. В режиме ведения связи ретранслятор базовой станции в интервал времени T1 на частоте F1 принимает кадр данных от вызывающей станции и одновременно передает другой кадр данных в сторону вызываемой радиостанции на частоте f1. В интервал времени T2 направление передачи меняется на обратное - ретранслятор принимает кадр данных от вызываемой радиостанции на частоте F1 и передает кадр данных вызывающей радиостанции на частоте f1.

Завершение обмена происходит при передаче одной из радиостанций, участвующих в обмене, команды «отбой», при появлении которой установленная связь разрывается и абонентские радиостанции переходят в режим дежурного приема.

Описанный способ позволяет обеспечивать дуплексную связь двух радиостанций через зональный ретранслятор. Очевидно, что аналогично могут быть реализованы N каналов ретранслятора, которым потребуются N частот f (f1÷fN) и N частот F (F1÷FN), при этом частоты f должны будут разнесены с частотами F на величину дуплексного разноса для обеспечения дуплексной работы многоканального ретранслятора.

Недостатком описанного прототипа является сложность обеспечения электромагнитной совместимости (ЭМС) приемной и передающей аппаратуры ретранслятора (базовой станции), при ее одновременной работе в режиме дуплекса. В базовых станциях УКВ диапазона ЭМС достигается (помимо обязательного дуплексного разноса частот приема и передачи) установкой в антенных цепях нетехнологичных и дорогостоящих дуплексных фильтров, комбайнеров, полосовых и режекторных фильтров. В зоновых системах и радиоузлах коротковолнового и средневолнового диапазонов для обеспечения ЭМС помимо частотного разнесения необходимо применять пространственное разнесение приемных и передающих устройств.

Задачей, на решение которой направлено предполагаемое изобретение, является улучшение условий электромагнитной совместимости приемной и передающей аппаратуры базовой станции, что позволяет снизить требования к цепям фильтрации принимаемых и передаваемых высокочастотных сигналов УКВ базовой станции, а для зоновых систем и радиоузлов коротковолнового и средневолнового диапазонов избежать необходимости пространственного разнесения приемных и передающих устройств базовой станции.

Решение задачи достигается тем, что в известном способе зоновой дуплексной связи с временным разделением каналов приема и передачи, при котором каждая из абонентских радиостанций в режиме ведения связи периодически переключается с приема на передачу с частотой f = 1 T и производит поочередные передачу на базовую станцию и прием от базовой станции информационных кадров, которая, в свою очередь, производит ретрансляцию информационных кадров от одной абонентской станции на другую, применяется режим работы базовой станции, при котором в процессе работы производится циклическое и синхронное переключение с приема на передачу каналов ретрансляции базовой станции с частотой f, так, чтобы в интервал ТТбс каналы ретрансляции одновременно находились в режиме передачи и в интервал ТRбс - в режиме приема. При этом, базовая станция по всем свободным каналам (или по выделенному каналу) периодически передает сигнал синхронизации. При вхождении в связь вызывающая абонентская радиостанция принимает синхросигнал базовой станции и подстраивает собственный цикл прием-передача под общий цикл прием-передача всех каналов ретрансляции базовой станции, затем передает вызывной сигнал в интервал ТRбс базовой станции. Вызываемая абонентская радиостанция, получив от базовой станции сигнал вызова, обеспечивает синхронизацию с базовой станцией по синхросигналу, передаваемому в составе вызывного сигнала, также путем подстройки собственного цикла прием-передача под цикл прием-передача канала ретрансляции базовой станции.

Сопоставительный анализ с прототипом показывает, что введение существенных отличительных признаков составляет новизну и позволяет, как будет показано ниже, решить поставленную задачу.

На чертежах фиг.1 приведены временные диаграммы работы двух абонентских станций и канала ретрансляции базовой станции, поясняющие суть способа. На диаграммах использованы следующие обозначения:

T - период цикла прием/передача (одинаков у абонентских станций и у каналов ретрансляции);

TTa - интервал времени нахождения в режиме передачи абонентской станции;

TRa - интервал времени нахождения в режиме приема абонентской станции;

TTбс - интервал времени нахождения в режиме передачи каналов ретрансляции базовой станции;

TRбс - интервал времени нахождения в режиме приема каналов ретрансляции базовой станции;

τкл - интервал времени, отведенный на переключение радиосредств с режима передача в режим приема или наоборот;

τр - интервал времени, необходимый радиосигналу для преодоления расстояния от абонентской радиостанции до базовой станции;

τп - интервал времени паузы, когда абонентская радиостанция не передает и не принимает;

τсинх - длительность синхропосылки, передаваемой как базовой, так и абонентской радиостанцией;

F1 - частота, на которой производится обмен первой абонентской радиостанции с каналом ретрансляции базовой станции;

F2 - частота, на которой производится обмен второй абонентской радиостанции с каналом ретрансляции базовой станции.

На фиг.1,а и 1,г (фиг.1) показаны временные диаграммы работы соответственно первой и второй абонентских радиостанций, ведущих сеанс связи друг с другом через базовую станцию. Из диаграммы видно, что длительность цикла Т можно записать в виде формулы

T=TRa+TTanкл

При этом для абонентской радиостанции TRa=TTa.

Длительность паузы τп целесообразно выбирать в соответствие с соотношением

τ n τ к л + 2 τ p max , ( 2 )

где τpmax определяет максимально возможное удаление абонентской радиостанции от базовой станции lmax [км], при котором сохраняется принципиальная возможность обмена.

l max = 300 τ p max [ м с ] . ( 3 )

Очевидно, что радиус зоны обслуживания R, который предполагается обеспечить в данной системе, должен быть меньше величины lmax.

На фиг.1,б и 1,в (фиг.1) показаны временные диаграммы работы канала ретрансляции на частотах F1 (взаимодействие с первой абонентской радиостанцией) и F2 (взаимодействие со второй абонентской радиостанцией). Обе диаграммы строго синхронны и также должны быть синхронными с диаграммами других каналов ретрансляции базовой станции.

Длительность интервала передачи каналов ретрансляции базовой станции ТТбс должна быть равна интервалам приема и передачи абонентских радиостанций

Т Т б с = T R a = T T a . ( 4 )

Длительность интервала приема каналов ретрансляции базовой станции ТRбс должна быть больше интервала передачи, чтобы обеспечить прием от абонентских радиостанций удаленных на различные расстояния в пределах зоны обслуживания, т.е.

T R б с = T T б с + 2 τ p max ( 5 )

Это требуется для того, чтобы базовая станция могла принимать информационные блоки от абонентских станций, не зависимо от удаленности абонентской станции в пределах зоны обслуживания.

Из диаграмм видно, что первая абонентская радиостанция (AP1) максимально удалена от базовой станции и при дальнейшем удалении ее задержанный сигнал на базовой станции будет частично теряться из-за его прихода после окончания интервала приема TRбс. Вторая абонентская радиостанция (AP2) находится вблизи базовой станции, т.к. τp2≈0.

В соответствии с фиг.1 канал ретрансляции БС циклично в интервал времени TTбс передает на частоте F1 информационный блок для AP1 и на частоте F2 информационный блок для AP2, а в интервал времени TRбс принимает на частоте F1 информационный блок от AP1 и на частоте F2 информационный блок от AP2. Это позволяет устранить влияние передающей аппаратуры на приемную в рамках одного канала ретрансляции. Однако, поскольку временные диаграммы работы других каналов ретрансляции совпадают с вышеописанным (переключение всех каналов базовой станции производится синхронно), то это справедливо также для всей базовой станции.

На фиг.2 представлена структура взаимодействия N каналов ретрансляции с 2N абонентских радиостанций и распределение по каналам ретрансляции частотно-временного ресурса. Каждый канал ретрансляции взаимодействует с парой абонентских радиостанций, при этом задействуются две частоты и два интервала времени каждого цикла работы. Стрелками показаны направления передачи сигнала. Условное обозначение частот Fxx, где первый индекс обозначает номер канала ретрансляции, второй индекс - номер AP в паре. Поскольку процессы приема и передачи разделены во времени, то дуплексного разноса частот не требуется. Значения частот должны отличаться друг от друга на величину не менее полосы частот, занимаемой сигналом. Конкретные значения частот по каналам ретрансляции могут быть распределены произвольным образом.

В интервал времени T1 все каналы ретрансляции находятся в состоянии приема информационных кадров от абонентских радиостанций. В интервал времени T2 все каналы ретрансляции находятся в состоянии передачи информационных кадров в сторону абонентских радиостанций.

Описанным выше способом могут передаваться: аналоговая речь, цифровая речь и данные. При передаче аналоговой речи для сжатия и последующего восстановления речевых посылок (фрагментов речи) может быть использован метод линейного сжатия аналогового сигнала, описанный в работе [5]. Аналоговый метод передачи позволяет одним каналом ретрансляции связывать более двух модемов, используя параллельное подключение дополнительных абонентских радиостанций к одной или второй радиостанции пары, подключенной к данному каналу ретрансляции.

Передача данных предлагаемым способом может осуществляться с использованием высокоскоростного модема, обеспечивающего формирование блоков данных, соответствующих длительности интервалов передачи TTa.

При передаче цифровой речи предварительно должно быть осуществлено вокодерное сжатие речевого сигнала для получения цифрового потока с минимальной скоростью, при сохранении удовлетворительного качества речевого сигнала. Далее полученный сигнал должен передаваться в канал с использованием высокоскоростного модема.

В заключении заметим, что использование предлагаемого способа обеспечивает существенное снижение влияния передающих трактов базовой станции на приемные тракты, что позволяет снизить требования к цепям фильтрации принимаемых и передаваемых высокочастотных сигналов УКВ базовой станции. Использование предлагаемого способа при реализации коротковолновых, средневолновых и более низкочастотных многоканальных ретрансляторов и радиоузлов позволяет обеспечить минимальное разнесение приемных и передающих антенн, а для каналов ретрансляции малой и средней мощности реализовать одновременный прием и передачу на одну приемопередающую антенну.

Таким образом, использование предлагаемого способа позволяет решить поставленную задачу.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Ипатов В.П., Орлов В.К., Самойлов И.М., Смирнов В.Н. Системы мобильной связи: Учебное пособие для вузов / Под. ред. Ипатова В.П. - М.: Горячая линия - Телеком, 2003. - 272 с.

2. Тамаркин В.М., Громов В.Б., Сергеев С.И. Системы и стандарты транкинговой радиосвязи. - М.: Информационно-Технический центр «Мобильные Коммуникации»., 1998 г.

3. Головин О.В. Декаметровая радиосвязь. - М.: Радио и связь, 1990 г.

4. Левченко В.И., Шадрин Б.Г., Петухов Е.В., Юрьев А.Н. Система коротковолновой радиосвязи. Патент РФ №46398, опубл. 27.06.2005 г. Бюл. №18.

5. Юрьев А.Н., Ярошевич Б.Н. Способ дуплексного радиообмена телефонными сигналами. Патент РФ на изобретение №2208910, опубл. 20.07.2003 г.

6. Карташевский В.Г., Семенов С.Н., Фирстова Т.В. Сети подвижной связи. - М.: Эко-Трендз, 2001 г.

7. Невдяев Л.М. Мобильная связь 3-го поколения. - М.: МЦНТИ, 2000.

8. A.M. Овчинников, А.В. Козлов, П.А. Минаев. Направления развития конвенциональных систем: временной дуплекс и одночастотная ретрансляция. "Технологии и средства связи" №1, 2007 г., с.87, рис.3 - прототип.

Способ зоновой дуплексной связи с временным разделением каналов приема и передачи, при котором каждую из абонентских радиостанций в режиме ведения связи периодически переключают с приема на передачу с частотой f = 1 T , находясь в течение интервала времени ТПРД в режиме передачи и в течение интервала времени ТПРМ - в режиме приема, при этом T=ТПРД+Δt1ПРМ+Δt2, где Δt1 и Δt2 - защитные интервалы, а длительность T выбирают исходя из возможностей применяемых приемопередающих средств, требований на задержку сигнала, основанный на передаче от вызывающей абонентской радиостанции на базовую станцию вызывного сигнала, содержащего синхропосылку, номер вызываемого абонента и собственный номер отправителя, синхронизации циклов прием/передача вызывающей абонентской радиостанции и ретранслятора базовой станцией, передаче от базовой станции вызывного сигнала на вызываемую абонентскую радиостанцию и синхронизации циклов прием/передача вызываемой абонентской радиостанции и ретранслятора базовой станции, при этом синхронизация как вызывающей, так и вызываемой абонентских радиостанций с ретранслятором базовой станции должна обеспечиваться таким образом, чтобы интервал времени передачи абонентской радиостанции соответствовал интервалу времени приема базовой станции и наоборот, чтобы интервал времени приема абонентской радиостанции соответствовал интервалу времени передачи базовой станции, переходе в случае успешного вхождения в связь к режиму ведения связи, в котором каждая из абонентских радиостанций производит поочередную передачу на базовую станцию и прием от базовой станции информационных кадров, завершении обмена при передаче одной из радиостанций, участвующих в обмене, команды «отбой», при появлении которой установленная связь разрывается и абонентские радиостанции переходят в режим дежурного приема, отличающийся тем, что в процессе работы производят циклическое и синхронное переключение с приема на передачу каналов ретрансляции базовой станции с частотой f так, чтобы в интервал ТПРД каналы ретрансляции одновременно находились в режиме передачи и в интервал ТПРМ - в режиме приема, базовая станция по всем свободным каналам периодически передает сигнал синхронизации, для вхождения в связь вызывающая абонентская радиостанция принимает синхросигнал базовой станции и подстраивает собственный цикл прием-передача под цикл прием-передача канала ретрансляции базовой станции, затем передает вызывной сигнал в интервал ТПРМ базовой станции, вызываемая абонентская радиостанция, получив от базовой станции сигнал вызова, обеспечивает синхронизацию с базовой станцией по синхросигналу, передаваемому базовой станции в составе вызывного сигнала, также путем подстройки собственного цикла прием-передача под цикл прием-передача канала ретрансляции базовой станции.



 

Похожие патенты:
Изобретение относится к способу радиосвязи с многостанционным доступом. Технический результат состоит в повышении степени защиты передаваемой информации.

Изобретение относится к технике связи. Технический результат состоит в повышении эффективности передачи ВЧ сигнала в режиме Simulcast во время переходного периода с аналогового на цифровое вещание.

Изобретение относится к радиосвязи и может быть использовано при испытаниях систем радиосвязи. Технический результат изобретения заключается в расширении функциональных возможностей за счет ввода сертифицированных приемных и передающих трактов, приема на них и передачи с них радиосигнала в ходе испытаний.

Изобретение относится к системам дуплексной радиосвязи и может быть использована для передачи сигналов управления и синхронизации с пункта контроля и управления большой группе территориально-распределенных объектов, а также для сбора информации с указанных объектов для централизованного управления технологическими процессами территориально-распределенных объектов (стационарных и подвижных).

Изобретение относится к технике связи и может быть использовано при управлении скоростью передачи по восходящей линии связи в системе мобильной связи. Способ измерения мощности Расширенного выделенного физического канала данных для мобильной станции заключается в том, что на базовой станции радиосвязи измеряют мощность приема выделенного физического канала управления, передаваемого с мобильной станции, выделяют размер передаваемого блока данных для пользовательских данных восходящей линии связи из Расширенного выделенного физического канала управления, передаваемого с мобильной станции, получают, основываясь на информации идентификации, полученной от контроллера радиосети, отношение мощности передачи Расширенного выделенного физического канала данных к Выделенному физическому каналу управления, которое соответствует извлеченному размеру передаваемого блока данных, на основании таблицы соответствия, в которой сопоставлены размер передаваемого блока данных и отношение мощности передачи Расширенного выделенного физического канала данных к выделенному физическому каналу управления, и вычисляют мощность приема Расширенного выделенного физического канала данных на основании измеренной мощности приема выделенного физического канала управления и полученного отношения мощности передачи.

Изобретение относится к системам беспроводной связи, использующим множество несущих для передачи данных, и предназначено для улучшения качества обслуживания для конечных пользователей.

Изобретение относится к области радиосвязи с помощью ионосферных радиотрасс. Техническим результатом является создание каналов KB- и УКВ-радиосвязи в обход зоны сильного поглощения радиосигнала.

Изобретение относится к радиотехнике и может быть применено в системах радиосвязи с повышенными требованиями к разведзащищенности и защите от преднамеренных помех.

Изобретение относится к технике связи и может использоваться преимущественно для определения пространственных координат стационарного или подвижного принимающего радиосигналы (р/с) радиотехнического объекта (РО), в том числе, в аэронавигации.

Изобретение относится к информационно-коммуникационным системам и может быть использовано для обеспечения радиосвязью должностных лиц межрегионального звена управления МЧС России, привязки по проводным линиям связи к стационарной сети связи МЧС России и телефонной сети связи общего пользования, а также проводной связи с элементами узла связи и пунктами управления оперативной группы, спасательного центра при развертывании пункта на местности.

Изобретение относится к системе беспроводной связи, такой как глобальная система мобильной связи, использующая множество несущих, и позволяет, по меньшей мере, двум модулям с множеством несущих совместно реализовывать их обработку. Изобретение раскрывает, в частности, способ обработки несущих, который включает в себя получение управляющей информации каждого модуля с множеством несущих, ассоциированной с несущими; согласно полученной управляющей информации, определение несущей, используемой посредством каждого модуля с множеством несущих; и выполнение обработки посредством каждого модуля с множеством несущих согласно определенной несущей. А также устройство связи, которое включает в себя блок обработки, сконфигурированный, чтобы получать управляющую информацию каждого модуля с множеством несущих, ассоциированную с несущими, и согласно полученной управляющей информации, определять несущую, используемую посредством каждого модуля с множеством несущих; и блок уведомления, сконфигурированный, чтобы инструктировать каждому модулю с множеством несущих выполнять обработку согласно определенной несущей. 2 н. и 11 з.п. ф-лы, 8 ил.

Изобретение относится к методикам выполнения регулирования мощности и передачи обслуживания. Технический результат состоит в уменьшении помех и достижении хорошей эффективности для всех терминалов. Для этого в одном аспекте регулирование мощности (PC) поддерживают в нескольких PC-режимах, таких как PC-режим "вверх-вниз" и PC-режим на основе стирания. Для использования может быть выбран один PC-режим. Служебные сигналы могут отправляться для указания выбранного PC-режима. Если выбран PC-режим "вверх-вниз", то базовая станция оценивает качество принимаемого сигнала для терминала и отправляет PC-команды, чтобы инструктировать терминалу отрегулировать свою мощность передачи. Если выбран PC-режим на основе стирания, то базовая станция отправляет индикаторы стирания, которые указывают, являются ли кодовые слова, принимаемые от терминала, стертыми или нестертыми. Для обоих PC-режимов терминал регулирует свою мощность передачи на основе обратной связи регулирования мощности (к примеру, PC-команд и/или индикаторов стирания), чтобы достичь целевого уровня эффективности (к примеру, целевой частоты стирания для кодовых слов). Индикаторы стирания также могут быть использованы для передачи обслуживания. 4 н. и 5 з.п. ф-лы, 11 ил.

Изобретение относится к области телекоммуникационных технологий, а более конкретно к конструкциям сканирующих высокочастотных антенн. Технический результат - расширение функциональных возможностей за счет обеспечения полного кругового сканирования. Для этого цилиндрическая сканирующая антенна бокового излучения содержит: цилиндрический волновод, образованный двумя (верхним и нижним) параллельными металлическими дисками; диэлектрический цилиндр, являющийся заполнением цилиндрического волновода и выполненный с возможностью функционирования как в качестве согласующего трансформатора между цилиндрическим волноводом и свободным пространством, так и в качестве диаграммообразующего элемента; прямоугольную решетку излучателей, ориентированных нормально плоскости самой решетки, помещенную осесимметрично в цилиндрический волновод, причем плоскость решетки расположена параллельно основанию цилиндрического волновода; два металлических цилиндра, расположенные соответственно над верхним и под нижним дисками и выполненные с возможностью функционирования в качестве вспомогательных цилиндрических излучателей, корректирующих диаграммы направленности в угломестной плоскости. 6 з.п.ф-лы, 10 ил.

Настоящее изобретение относится к области радиосвязи. Технический результат изобретения заключается в повышении маневренности при обмене информацией за счет введения каналов передачи данных, увеличении пропускной способности радиостанции. В радиостанцию дополнительно введен преобразователь каналов передачи данных, преобразователь каналов приема данных, преобразователь информации каналов передачи данных, при этом преобразователь каналов передачи данных содержит шесть канальных формирователей пакетов передачи данных. Преобразователь информации каналов передачи данных содержит шесть канальных формирователей информации каналов передачи данных. Использование устройства позволит обеспечить работу радиостанции в дуплексном режиме на одной частоте на одну антенну десятью телефонными каналами, и возможностью перевода шести каналов начиная с пятого по десятый каналы для работы в режиме передачи данных со скоростями в каждом канале: 100, 300, 500 и 1200 Бод для работы с оконечным оборудованием данных и со скоростью 1200 Бод для работы с ПЭВМ. 11 з.п. ф-лы, 15 ил.

Изобретение относится к технике космической связи и может быть использовано в наземных станциях, работающих с высокоэллиптическими и геостационарными космическими аппаратами для приема информации гелиогеофизического назначения, сформированной бортовым радиотехническим комплексом геостационарного или высокоэллиптического искусственного спутника Земли, для дальнейшей нормализации передачи выделенной достоверной информации различным организациям. Техническим результатом заявленного изобретения является повышение скорости приема данных, повышение достоверности принимаемого потока информации и повышение точности синхронизации системного времени. Автономный пункт приема гелиогеофизической информации содержит полосовой фильтр, малошумящий усилитель, имитатор бортового источника сигнала, первый и второй аналого-цифровые приемники, первый и второй вычислительные системные блоки, систему наведения и автосопровождения, переключатель консоли, коммутатор-маршрутизатор, рабочее место оператора, состоящее из принтера и консоли оператора в составе монитора, клавиатуры, манипулятора «мышь», первый и второй источники бесперебойного питания, первый и второй источники вторичного источника питания, антенный пост, делитель мощности. 1 з.п. ф-лы, 3 ил.

Изобретение относится к технике связи и может быть использовано в системах с множеством несущих. Технический результат - обеспечение гибкой настройки на любую требуемую часть полосы пропускания передачи и уменьшение содержания служебных данных. Устройство передачи содержит средство формирования кадра, при этом каждый кадр содержит, по меньшей мере, два шаблона сигнализации в направлении частоты и один или больше шаблонов данных, следующих за, по меньшей мере, двумя шаблонами сигнализации в направлении времени, при этом каждый шаблон данных сопровождается дополнительным шаблоном данных в направлении времени, все шаблоны данных, следующие в направлении времени, имеют одинаковую частотную структуру, а каждый из, по меньшей мере, двух шаблонов сигнализации и один или больше шаблонов данных содержат множество несущих частот, выполненное с возможностью размещать первые данные сигнализации в каждом из упомянутых, по меньшей мере, двух шаблонов сигнализации в кадре и выполненное с возможностью размещать данные в упомянутых одном или больше шаблонах данных в кадре таким образом, что данные упомянутых одного или больше шаблонов данных размещают в кадрах данных, при этом каждый кадр данных содержит вторые данные сигнализации и данные содержания, средство преобразования, преобразующее упомянутые, по меньшей мере, два шаблона сигнализации и упомянутые один или больше шаблоны данных из области частоты в область времени для генерирования сигнала передачи в области времени. 6 н. и 9 з.п. ф-лы, 23 ил., 1 табл.

Изобретение относится к области беспроводной связи, а именно к обеспечению установления беспроводного соединения между близко расположенными устройствами. Технический результат заключается в ускорении установления беспроводного соединения между устройствами беспроводной связи. Для этого устройство может передавать сообщения обнаружения для обнаружения других устройств. Для этого устройство может принимать одно или более сообщений в ответ на сообщение обнаружения и может определять, удовлетворяет ли какое-либо из принятых сообщений заранее заданным критериям ответа. Если устройство определяет, что любое из принятых сообщений удовлетворяет критериям ответа, то может обеспечиваться ускорение установления беспроводного соединения между упомянутым устройством и устройством-источником каждого из принятых сообщений, удовлетворяющих критериям ответа. В случае, когда может быть активирован режим установления связи при сближении устройств, в устройстве, принимающем сообщение по меньшей мере от одного другого устройства, упомянутое устройство может определять, отвечает ли это сообщение заранее заданным критериям. Если определено, что упомянутое сообщение удовлетворяет заданным критериям, устройство может обеспечивать ускорение установления беспроводного соединения с другим устройством. 3 н. и 12 з.п. ф-лы, 11 ил.

Изобретение относится к системам передачи и приема данных посредством цифровой связи. Технический результат - увеличение эффективности передачи и приема информации между двумя приемо-передающими сторонами. Одна из приемо-передающих сторон может быть передающей исходную информацию посредством подсистемы управления, другая - принимающей исходную информацию посредством подсистемы управления. Передающая сторона содержит блок представления исходной информации соответствующей ей упорядоченно последовательно пронумерованной совокупностью целых чисел, блоки преобразования этой совокупности чисел с элементами предложенного преобразования, известными только на передающей стороне, и блоки преобразования принятой совокупности чисел с элементами предложенного преобразования, известными только на этой стороне, и обеспечивающие ее передачу на принимающую сторону. Принимающая сторона содержит блоки преобразования принятой совокупности чисел с элементами предложенного преобразования, известными только на этой стороне, и обеспечивающие ее передачу на передающую сторону, блоки преобразования принятой совокупности чисел с элементами предложенного преобразования, известными только на этой стороне, и выполненные с возможностью восстановления представления исходной информации соответствующей ей совокупностью целых чисел и восстановления по этой совокупности чисел исходной информации. 1 ил.

Изобретение относится к технике связи и может использоваться для предварительного кодирования данных в системе беспроводной связи. Технический результат состоит в повышении помехоустойчивости. Для этого способ включает получение информации о состоянии первого канала между первым беспроводным устройством и первой базовой станцией в системе беспроводной связи, получение информации об усилении первого канала, получение параметра мощности первого сигнала от второй базовой станции, указывающей на мощность сигнала, создаваемого второй базовой станцией во втором беспроводном устройстве, и получение параметра мощности первой помехи от второй базовой станции, указывающего на мощность помехи, создаваемой второй базовой станцией в первом беспроводном устройстве. Кроме того, способ включает максимизацию параметра общего отношения сигнал-помеха для получения вектора прекодирования для предварительного кодирования данных, которые будут переданы на первое беспроводное устройство. Параметр общего отношения сигнал-помеха зависит от отношения сигнал-помеха в первом беспроводном устройстве и отношения сигнал-помеха во втором беспроводном устройстве и основан на информации о состоянии первого канала, информации об усилении первого канала, параметре мощности первого сигнала и параметре мощности первой помехи. 3 н. и 12 з.п. ф-лы, 15 ил.

Изобретение относится к области связи. В настоящем изобретении предлагается способ конфигурирования мощности передачи опорного сигнала демодуляции (DMRS), содержащий этап конфигурирования отношения между мощностью передачи DMRS на каждом уровне ресурсного элемента (RE) DMRS и мощностью передачи данных на соответствующем уровне ресурсного элемента (RE) данных как постоянной величины. Кроме того, в настоящем изобретении предлагается устройство для конфигурирования мощности передачи DMRS. Настоящее изобретение значительно улучшает скорость правильной декодировки кадра с данными и улучшает осуществление декодировки. Настоящее изобретение позволяет избежать необходимости уведомления оборудования пользователя (UE) со стороны сети о соответствующем соотношении между мощностью передачи DMRS на каждом уровне и мощностью передачи данных на соответствующем уровне, что уменьшает служебное сигнализирование управления на стороне сети. Так как соответствующие соотношения между мощностью передачи DMRS на каждом уровне и мощностью передачи данных на соответствующем уровне конфигурируются на оборудовании пользователя (UE), то оборудование пользователя может осуществлять оценку канала, не дожидаясь уведомления со стороны сети, что повышает эффективность оценки канала. 2 н. и 8 з.п. ф-лы, 4 ил., 2 табл.
Наверх