Устройство для эжекции низконапорного газа в поток жидкости

Изобретение относится к нефтеперерабатывающей промышленности, в частности к установкам для эжекции газа в поток жидкости в нефтесборных трубопроводах и системах поддержания пластового давления. Устройство для эжекции низконапорного газа в поток жидкости, находящейся под давлением, выполнено в виде конфузорно-диффузорного перехода, имеющего профиль Вентури со щелью эжекции в области сужения, и содержит конфузор, диффузор, входной патрубок для подачи газа, расположенный в области сужения и сообщающийся со щелью эжекции с созданием зоны смешения в потоке жидкости, а щель эжекции образована внешней конусной поверхностью сопла конфузора и внутренней криволинейной поверхностью входного отверстия диффузора, причем минимальный диаметр входного отверстия диффузора составляет (1,0-1,15) от диаметра сопла конфузора. Педложенное изобретение позволяет по сравнению с известными аналогами увеличить коэффициент восстановления давления при максимальном уровне расхода газа. 2 ил.

 

Изобретение относится к нефтеперерабатывающей промышленности, в частности к установкам для эжекции газа в поток жидкости в нефтесборных трубопроводах и системах поддержания пластового давления.

Известны эжекторы, предназначенные для смешения двух сред, например, вода и газ, в которых одна среда, находясь под давлением, воздействует на другую и, увлекая за собой, выталкивает ее в необходимом направлении и образует смешанный поток. На этом принципе построен эжектор, содержащий сопло, коническую приемную камеру, цилиндрическую камеру смешения, диффузор [Струйные аппараты. - 3-е изд. Переработанное. - М.: Энергоатоиздат, 1989. - с.36]. Это устройство обладает высоким коэффициентом эжекции и способно создавать разрежение. Недостатком данного устройства является высокий уровень потерь напора при выходе из эжектора.

Известен эжектор для дозирования газообразного хлора [патент РФ №2367508, МПК B01F 3/04, опубл. 20.09.2009 г.], содержащий узел для подвода исходной воды, находящейся под давлением, сопло, рабочую камеру, камеру смешения, диффузор, узел подвода эжектируемого газообразного хлора, узел для отвода смешанного потока обработанной хлором воды, причем эжектор выполнен с конфигурацией внутреннего продольного сечения, геометрические параметры которого: диаметр выходного сопла D, длина рабочей камеры L, диаметр камеры смешения D1, длина камеры смешения L1, длина диффузора L2, выходной диаметр диффузора D2 взаимосвязаны числовым соотношением размеров, а именно: D1=1,25D, D2=2,5D, L=1,75D, L1=1,75D, L2=7,75D.

Недостатком данной конструкции также является сравнительно невысокий коэффициент восстановления давления.

Для эжекции попутного нефтяного газа (ПНГ), выделяющегося при сепарации нефти, не требуется создания разрежения, в газовой линии поток движется под давлением от 0,1 до 0,5 МПа, однако необходим высокий коэффициент восстановления давления, что обусловлено целесообразностью использования имеющегося парка насосного оборудования.

Техническим результатом изобретения является увеличение коэффициента восстановления давления при максимальном уровне расхода газа.

Указанный результат достигается устройством для эжекции низконапорного газа в поток жидкости, находящейся под давлением, выполненным в виде конфузорно-диффузорного перехода, имеющего профиль Вентури со щелью эжекции в области сужения, и содержащим конфузор, диффузор, входной патрубок для подачи газа, расположенный в области сужения и сообщающийся с щелью эжекции с созданием зоны смешения в потоке жидкости, а щель эжекции образована внешней конусной поверхностью сопла конфузора и внутренней криволинейной поверхностью входного отверстия диффузора, причем минимальный диаметр входного отверстия диффузора составляет (1,0-1,15) от диаметра сопла конфузора.

Технический результат изобретения достигается благодаря расчетно-экспериментальной оптимизации геометрии зоны эжекции, образованной вокруг щели эжекции, при сохранении гидравлически оптимального профиля Вентури. В предложенном техническом решении использование конфузорно-диффузорного перехода для эжекции газа без промежуточных элементов, таких как рабочая камера, камера смешения, позволяет по сравнению с аналогами уменьшить гидравлические потери и, следовательно, достичь максимального коэффициента восстановления давления.

Сущность изобретения поясняется чертежами, где на фиг.1 представлена принципиальная схема устройства эжекции, на фиг.2 - зона эжекции в увеличенном масштабе.

Устройство (фиг.1) содержит конфузор 1 с соплом 2, диффузор 3, входной патрубок 4 для подачи газа, расположенный в области сужения и сообщающийся со щелью эжекции 5 с созданием зоны смешения в потоке жидкости. Щель эжекции 5 образована внешней конусной поверхностью 6 сопла конфузора и внутренней криволинейной поверхностью 7 входного отверстия диффузора (фиг.2).

Устройство работает следующим образом:

В конфузор 1 подается жидкость под высоким давлением Р. В месте сужения, в сопле 2 скорость движения потока достигает более 100 м/с. В месте сужения происходит снижение эффективного статического давления в потоке жидкости ниже давления газа, поступающего через патрубок 4. Таким образом, при превышении давления газа над эффективным статическим давлением жидкости в зоне сужения происходит инжекция газа с последующем перемешиванием и увлечением в потоке жидкости с общим суммарным эффектом в виде эжекции. Газ подается из газопровода через входной патрубок 4 и через щель эжекции 5. В диффузоре 3 происходит восстановление статического давления. При этом характерный уровень потерь давления в предложенном устройстве для эжекции газа составляет 10-20% от входного давления жидкости. Средне-статистический баланс гидравлических потерь давления на уровне 15% подтвержден многомесячными испытаниями.

Площадь щели эжекции 5, через которую подается газ в поток жидкости, рассчитывается в зависимости от расхода газа таким образом, чтобы его скорость была сопоставима со скоростью жидкости в области щели эжекции. Геометрия щели эжекции выбирается из условия оптимального газодинамического профиля ввода газа в поток с острой кромкой со стороны конфузора.

Диаметр D1 (фиг.2) рассчитывается по известной формуле Бернулли, исходя из условия создания статистического давления в зоне смешения ниже давления в газопроводе. Диаметр D2 определяется соотношением D2=(1,1.15)D1, т.е. минимальный диаметр входного отверстия диффузора D2 равен или превышает не более чем на 15% диаметр сопла D1 конфузора.

Предлагаемая геометрия зоны эжекции обеспечивает нормальный объемный коэффициент эжекции от 1 до 5 нм3/м3 в области избыточных давлений в газовой линии от 1 до 5 атм. Достигаемый при этом коэффициент полезного действия по сжатию газа, посчитанный по циклу изотермического компрессора составляет более 75%.

Таким образом, предложенное изобретение позволяет по сравнению с известными аналогами увеличить коэффициент восстановления давления при максимальном уровне расхода газа.

Устройство для эжекции низконапорного газа в поток жидкости, находящейся под давлением, выполненное в виде конфузорно-диффузорного перехода, имеющего профиль Вентури со щелью эжекции в области сужения, и содержащее конфузор, диффузор, входной патрубок для подачи газа, расположенный в области сужения и сообщающийся со щелью эжекции с созданием зоны смешения в потоке жидкости, а щель эжекции образована внешней конусной поверхностью сопла конфузора и внутренней криволинейной поверхностью входного отверстия диффузора, причем минимальный диаметр входного отверстия диффузора составляет (1,0-1,15) от диаметра сопла конфузора.



 

Похожие патенты:

Изобретение относится к средствам распыливания жидкостей, растворов. .

Изобретение относится к противопожарной технике, а именно к конструкциям пеногенераторов, и может найти применение в системах подслойного тушения пожаров в резервуарах с легковоспламеняющимися жидкостями (ЛВЖ).

Изобретение относится к струйной технике. .

Изобретение относится к струйной технике, преимущественно к водоструйным насосам для создания разрежения. .

Изобретение относится к средствам распыливания жидкостей, растворов. .

Изобретение относится к противопожарной технике, а именно к конструкциям пеногенераторов, и может найти применение в системах подслойного тушения пожаров в резервуарах с легковоспламеняющимися жидкостями (ЛВЖ).

Установка предназначена для выработки электроэнергии за счет энергии гидравлического потока реки, покрытой льдом. Подвод перекачиваемой среды, воздуха, выполнен в виде коленообразной трубы, вертикальная часть которой жестко зафиксирована во льду и сообщена с атмосферой, а горизонтальная часть с диффузором размещена подо льдом по направлению потока воды. При этом к свободному концу вертикальной части коленообразной трубы герметично присоединен воздухозаборник, в полости которого размещен вентилятор с генераторной установкой. Технический результат - создание простой гидроэнергетической установки с возможностью ее использования для выработки электроэнергии за счет энергии гидравлического потока реки, покрытой льдом. 1 з.п. ф-лы, 1 ил.

Изобретение относится к струйной технике, преимущественно к жидкостно-газовым эжекторам, используемым для компрессии газа жидкостью. Рабочая камера первой ступени эжектора выполнена кольцевой, а в ее внутренней полости расположена цилиндрическая рабочая камера второй ступени. Канал подвода активной среды ко второй ступени расположен снаружи относительно первой и второй ступеней. На выходе рабочей камеры первой ступени размещен диффузор, в выходном сечении которого расположено сопло питания второй ступени на расстоянии от плоскости среза его отверстий до плоскости входного сечения цилиндрической рабочей камеры второй ступени не менее двух диаметров ее поперечного сечения. При этом сопло питания второй ступени имеет профильный экран с поверхностью в виде тела вращения, образованного вращением полукруга вокруг оси сопла питания второй ступени, центр которого расположен на расстоянии от оси сопла питания второй ступени, а плоскость вращения совпадает с плоскостью среза отверстий сопла питания второй ступени. Изобретение позволяет повысить КПД и надежность работы жидкостно-газового эжектора с одновременным уменьшением его осевых габаритов. 5 ил.

Изобретение относится к нефтедобывающей промышленности. Устройство выполнено в виде конфузорно-диффузорного перехода, имеющего профиль Вентури со щелью эжекции в области сужения, и содержит конфузор, диффузор, входной патрубок для подачи газа, расположенный в области сужения и сообщающийся со щелью эжекции с созданием зоны смешения в потоке жидкости. Устройство содержит механизм стабилизации технологического режима впрыска газа в поток жидкости, включающее узел дренирования жидкости в области щели эжекции для снижения давления до атмосферного, выходной сепаратор газожидкостной смеси с клапаном регулирования для частичного отбора газа высокого давления, соединенный контуром рециркуляции со щелью инжекции для подвода газа в область промежуточного давления в сечении конфузора, расположенной на его образующей, причем входной патрубок оборудован задвижкой. Использование устройства для эжекции низконапорного газа позволяет повысить производительность и надежность работы эжектора при максимальном коэффициенте восстановления давления. 1 ил.

Изобретение относится к области струйной техники, преимущественно к струйным аппаратам для создания вакуума. В эжекторе, содержащем распределительную камеру с соплами, приемную камеру, камеры смешения и сбросную камеру. Каждая камера смешения установлена соосно относительно своего сопла. Сопло состоит из внешней цилиндрической обечайки, в которую вмонтирована втулка из антифрикционного композиционного материала, при этом отверстие втулки имеет переменное поперечное сечение, сужающееся по ходу движения потока, а на внутренней поверхности отверстия втулки выполнены кольцевые канавки, расположенные по винтовой траектории. Кроме того, камера смешения состоит из внешней цилиндрической обечайки, в которую вмонтирована втулка из антифрикционного композиционного материала, при этом отверстие втулки имеет постоянное поперечное сечение. Технический результат - повышение коэффициента полезного действия эжектора при одновременном снижении массоемкости аппарата и упрощение технологии изготовления. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области струйной техники, преимущественно к струйным аппаратам для создания вакуума. Аппарат содержит распределительную камеру с соплами, приемную камеру, камеры смешения и сбросную камеру, причем каждая камера смешения установлена соосно относительно своего сопла. Сопло состоит из внешней цилиндрической обечайки, в которую вмонтирована втулка из антифрикционного полимерного материала, при этом втулка имеет возможность вращательного движения относительно обечайки за счет зазора между внутренней стенкой обечайки и внешней поверхности втулки, а на внутренней поверхности втулки закреплены лопасти. Технический результат - повышение коэффициента полезного действия эжектора при одновременном снижении массоемкости аппарата и упрощение технологии изготовления. 3 ил.

Эжектор предназначен для эжекции газа в поток жидкости в системах поддержания пластового давления. Эжектор содержит входной конфузор 1, диффузор 2 с расположенной между ними щелью эжекции 3, патрубок 4 для подачи газа, сообщающийся со щелью эжекции 3 на входе конфузора 2, в месте соединения его с трубопроводом подачи воды установлена регулировочная муфта 5 с конусной иглой 6, которая может перемещаться вдоль центральной оси конфузора 2. Конусная игла 6 расположена вдоль этой оси и входит в конфузорно-диффузорный переход, изменяя при перемещении площадь его проходного сечения. Регулировочная муфта 5 включает корпус 7 с закрепленными на нем снаружи четырьмя взаимно-перпендикулярными рычагами 8. Внутри корпуса 7 расположена втулка 9, на которой закреплены четыре взаимно-перпендикулярные лопасти 10, в центре пересечения которых выполнено гнездо 11 для установки конусной иглы 6. Корпус 7 имеет внутреннюю резьбу для крепления его на наружной резьбе конфузора 1. Технический результат заключается в обеспечении стабильности работы эжектора в условиях изменяющихся технологических параметров его работы. 1 з.п. ф-лы, 3 ил.
Наверх