Способ определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях и тест-система

Группа изобретений относится к области биотехнологии и может быть использована для повышения эффективности и достоверности определения уровня токсикантов в различных средах путем проведения твердофазного иммуноферментного анализа. Способ, осуществляемый путем проводимого в колонке тест-системы иммуноферментного анализа, включает размещение в колонке носителя в виде слоя иммуноаффинного геля с привитыми антивидовыми антителами, зафиксированного между двумя пористыми мембранами, обработку носителя - слоя иммуноаффинного геля блокирующим раствором для закрытия на носителе оставшихся свободными мест неспецифического связывания, иммобилизацию на носителе специфических антител, внесение тестируемых образцов, обработку носителя конъюгатсодержащим раствором и анализ обработанного носителя, при этом в качестве конъюгатсодержащего раствора используют раствор конъюгата антигена - токсиканта, химически связанного с люминесцентными квантовыми точками или с липосомами, содержащими люминесцентные квантовые точки, а уровень токсикантов определяют по интенсивности люминесценции, возбужденной в квантовых точках при освещении обработанного носителя возбуждающим излучением. Также представлена тест-система для осуществления указанного способа. Достигается повышение эффективности и достоверности анализа. 2 н. и 1 з.п. ф-лы, 3 прим., 1 ил.

 

Изобретение относится к области биотехнологии и может быть использовано для повышения эффективности и достоверности определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях путем проведения твердофазного иммуноферментного анализа.

Из уровня техники известен способ проведения иммуноферментного анализа, включающий адсорбцию антигенов на твердой фазе физической сорбции, инкубацию тестируемых биологических образцов, инкубацию конъюгатсодержащего раствора, спектрофотометрический анализ реакции по экстинции раствора хромагента (RU 2014610 С1, G01N 33/53, 1994).

Также известен способ определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях путем проводимого в колонке тест-системы иммуноферментного анализа, включающий размещение в колонке носителя в виде слоя иммуноаффинного геля с привитыми антивидовыми антителами, зафиксированного между двумя пористыми мембранами, обработку носителя блокирующим раствором для закрытия на носителе оставшихся свободными мест неспецифического связывания, иммобилизацию на носителе специфических антител, внесение тестируемых образцов, обработку носителя конъюгатсодержащим раствором и анализ обработанного носителя на изменение окраски (RU 2374649 С1, G01N 33/53, 2009). Несмотря на достаточную простоту точность визуального определения уровня токсикантов в данном способе недостаточно высокая.

Кроме того, известна тест-система для иммуноферментного определения токсикантов, включающая колонку, в которой установлен носитель в виде слоя иммуноаффинного геля с привитыми специфическими антителами, размещенного между двумя пористыми мембранами (RU 2374649 C1, G01N 33/53, 2009). Недостатком данного устройства является отсутствие средств, обеспечивающих измерение уровня токсикантов.

Технический результат, на получение которого направлено изобретение, заключается в повышении эффективности и достоверности иммуноферментного определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях, проводимого в колонке тест-системы.

Решение поставленной задачи с достижением заявленного технического результата обеспечивается тем, что в способе определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях путем проводимого в колонке тест-системы твердофазного иммуноферментного анализа, включающем размещение в колонке носителя в виде слоя иммуноаффинного геля с привитыми антивидовыми антителами, зафиксированного между двумя пористыми мембранами, обработку носителя - слоя иммуноаффинного геля блокирующим раствором для закрытия на носителе оставшихся свободными мест неспецифического связывания, иммобилизацию на носителе специфических антител, внесение тестируемых образцов, обработку носителя конъюгатсодержащим раствором и анализ обработанного носителя, согласно изобретению, в качестве конъюгатсодержащего раствора используют раствор конъюгата антигена - токсиканта, химически связанного с люминесцентными квантовыми точками или с липосомами, содержащими люминесцентные квантовые точки, а уровень токсикантов определяют по интенсивности люминесценции, возбужденной в квантовых точках при освещении обработанного носителя возбуждающим излучением.

При этом иммуноаффинный гель приготовляют, например, в емкости с пористым дном путем обработки циан бром активированной сефарозы соляной кислотой и введения после набухания в полученный гель раствора антивидовых антител - кроличьих антимышиных антител в карбонатном буфере.

Решение поставленной задачи обеспечивается также тем, что в тест-системе для способа определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях, включающей колонку, в которой установлен носитель в виде слоя иммуноаффинного геля с привитыми специфическими антителами, размещенного между двумя пористыми мембранами, согласно изобретению, колонка снабжена устройством для измерения уровня люминесценции, включающим источник возбуждающего излучения и фотоприемник, причем перед фотоприемником дополнительно установлена фокусирующая оптическая система, а выход фотоприемника электрически подключен через усилитель сигнала и аналого-цифровой преобразователь к блоку управления - контроллеру, к выходу которого подключены блок индикации и через блок стабилизации источник возбуждающего излучения, при этом боковые стенки колонки выполнены из прозрачного для возбуждающего и люминесцентного излучения материала.

Кроме того, между фотоприемником и фокусирующей оптической системой может быть размещен светофильтр.

Благодаря наличию в растворе конъюгата люминесцентных квантовых точек (или липосом, содержащих люминесцентные квантовые точки), химически связанных с молекулами антигена - токсиканта, которые обладают способностью связываться с сорбированными на носителе - слое иммуноаффинного геля специфическими антителами, оставшимися свободными после связывания с находящимися в анализируемой среде молекулами токсиканта, и при освещении возбуждающим излучением люминесцируют, в заявленном изобретении, реализующем прямой конкурентный твердофазный иммуноферментный анализ, обеспечивается увеличение интенсивности полезного сигнала люминесценции, обратно пропорционального концентрации токсинов, что повышает чувствительность способа определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях. Кроме того, наличие в заявленной тест-системе устройства для измерения уровня люминесценции, включающего источник возбуждающего излучения и фотоприемник, которые подключены к блоку управления - контроллеру, позволяет в автоматическом режиме просто и достоверно определять уровень токсикантов по степени интенсивности люминесценции, возбужденной в квантовых точках.

На чертеже схематично подставлен общий вид тест-системы.

Заявленная тест-система для определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях включает колонку 1 с боковыми стенками, выполненными из прозрачного для возбуждающего и люминесцентного излучения материала, в которой установлен носитель в виде слоя 2 иммуноаффинного геля с привитыми специфическими антителами, размещенного между двумя пористыми мембранами 3, и устройство для измерения уровня люминесценции, включающее источник 4 возбуждающего излучения, выполненный, например, в виде набора светодиодов с максимумами длин волн излучения в диапазоне 395÷500 нм, и фотоприемник 5 (фотодиод), спектральный диапазон чувствительности которого лежит в диапазоне 420÷675 нм, причем перед фотоприемником 5 дополнительно установлена фокусирующая оптическая система 6 (например, собирающая линза F=5÷30 мм) и светофильтр 7, спектр пропускания которого соответствуют спектру люминесценции. Выход фотоприемника 5 электрически подключен через усилитель 8 сигнала и аналого-цифровой преобразователь 9 к блоку 10 управления - контроллеру, к выходу которого подключены блок 11 индикации и через блок 12 стабилизации источник 4 возбуждающего излучения.

Заявленный способ определения уровня токсикантов реализуют следующим образом.

Для приготовления иммуноаффинного геля, например, 0,5 г циан бром активированной сефарозы 4 В помещают в емкость с пористым дном и промывают в 100 мл 0,001 М соляной кислоты. После набухания геля раствор соляной кислоты сливают и добавляют 150 мкл раствора антивидовых антител (кроличьих антимышиных антител) с концентрацией 2,5 г/л и 450 мкл карбонатного буфера (рН=8,3), содержащего 0,1 М гидрокарбоната натрия и 0,1 М хлорида натрия, после чего смесь продолжительно встряхивают (в течение 2-х часов) при комнатной температуре. Остаток не связавшихся антивидовых антител удаляют с помощью промывания геля 5 мл карбонатного буфера (рН=8,3), содержащего 0,1 М гидрокарбоната натрия и 0,1 М хлорида натрия. Для закрытия оставшихся свободными мест неспецифического связывания (активных групп сефарозы) в полученный гель с привитыми антивидовыми антителами вносят блокирующий рас твор, в качестве которого используют 0,2 М раствор глицина в карбонатном буфере (рН=8,3), содержащем 0,1 М гидрокарбоната натрия и 0,1 М хлорида натрия, и перемешивают в течение 2 часов при комнатной температуре. После процедуры блокирования гель трижды промывают последовательно пятикратным объемом ацетатного буфера (0,1 М ацетата натрия, 0,5 моль хлорида натрия, рН=4,0) и пятикратным объемом фосфатного буфера (рН=7.4÷7.6). Полученный иммуноафинный гель с привитыми антивидовыми антителами разводят в фосфатном буфере (рН=7.4÷7.6) в соотношении 1:3 и хранят при температуре 4°С.

Пример 1.

Для определения уровня токсиканта, например, концентрации зераленона, в анализируемой среде (природной воде) предварительно приготовляют - синтезируют раствор конъюгата зераленона, связанного с люминесцентными квантовыми точками - полупроводниковые наночастицы CdSe/ZnS, следующим образом.

В 1 мл диметилформамида растворяют 92 мг н-гидроксисукцинимида и 124 мг 1-этил-3-(3-диметиламинопропил)карбодиимида. Образовавшийся раствор разводят в 1000 раз в диметилформамиде (необходимая концентрация 0.8 µмоль). Затем 20 µл полученного раствора сливают с 800 µл раствора квантовых точек CdSe/ZnS (разведение 1/10 в карбонатном буфере (0,1 М гидрокарбоната натрия, 0,1 М хлорида натрия, рН=8,3), количество квантовых точек CdSe/ZnS равно 3.2×10-4 µmol), и перемешивают в течение 45 минут, после чего капельно добавляют 176 µл раствора зераленона (0,4 мг/мл), химически связанного с яичным альбумином, в фосфатном буфере (рН=7.4-7.6)). Реакционую смесь постоянно перемешивают в течение 12 часов при температуре 4°С. Избыток низкомолекулярных веществ удаляют с помощью диализа в течение 2 дней при температуре 4°С. Полученные конъюгаты хранят при температуре 4°С.

Затем 200 мкл ранее приготовленного иммуноаффинного геля с привитыми антивидовыми антителами помещают в виде слоя 2 носителя на пористую полиэтиленовую мембрану 3 (фритт), установленную в пустую колонку 1 типа Bond Elut (V=1 мл), предварительно промытую фосфатным буфером (рН=7.4÷7.6) и хранившуюся при температуре 4°С. Вносят в слой 2 иммуноаффинного геля с привитыми антивидовыми антителами 5 мкл раствора специфичных к зераленону (токсиканту) моноклональных мышиных антител, тщательно перемешивают и промывают фосфатным буфером (рН=7.4÷7.6). Затем сверху на слой 2 иммуноаффинного геля с привитыми специфическими антителами помещают вторую пористую полиэтиленовую мембрану 3 (фритт).

Через подготовленную таким образом колонку 1 пропускают 1 мл анализируемой среды и промывают колонку 1 фосфатным буфером (рН=7.4÷7.6), содержащим 0,05% Tween 20.

Затем в колонку 1 вводят 100 мкл предварительно приготовленного раствора конъюгата токсиканта - зераленона, связанного с люминесцентными квантовыми точками - полупроводниковые наночастицы CdSe/ZnS (разведение 1/30 в фосфатном буфере (рН=7.4÷7.6), содержащем 0,05% Tween 20 и 0,2% бычьего сывороточного альбумина), и инкубируют в течение 6 минут. Избыток конъюгата удаляют путем промывания колонки 1 фосфатным буфером (рН=7.4÷7.6) и осуществляют освещение носителя - слоя 2, содержащего люминесцентные квантовые точки - полупроводниковые наночастицы, световым потоком, поступающим от источника 4 возбуждающего излучения устройства для измерения уровня люминесценции.

При этом, если в анализируемой среде концентрация токсиканта - зераленона превышает концентрацию сорбированных на носителе - слое 2 иммуноаффинного геля специфических антител, которая соответствует, например, предельно допустимой концентрации токсиканта, то происходит связывание всех специфических антител с молекулами токсиканта - зераленона, а при пропускании через носитель - слой 2 раствора конъюгата токсиканта - зераленона с флуоресцентными метками - люминесцентными квантовыми точками из-за отсутствия свободных специфических антител содержащиеся в конъюгате молекулы токсиканта - зераленона остаются несвязанными (свободными) и удаляются после промывки из колонки 1 вместе с люминесцентными квантовыми точками - полупроводниковые наночастицы CdSe/ZnS. В результате при облучении носителя - слоя 2 источником 4 возбуждающего излучения люминесценция не возникает.

В том случае, если в анализируемой среде концентрация токсиканта - зераленона не превышает концентрацию сорбированных на носителе - слое 2 иммуноаффинного геля специфических антител, которая соответствует, например, предельно допустимой концентрации токсиканта, или токсикант - зераленон в анализируемой среде отсутствует, то только происходит связывание только части специфических антител с молекулами токсиканта - зераленона, и при пропускании через носитель - слой 2 раствора конъюгата токсиканта - зераленона с флуоресцентными метками - люминесцентными квантовыми точками происходит связывания оставшихся свободными специфических антител с содержащиеся в конъюгате молекулами токсиканта - зераленона, содержащими люминесцентные квантовые точки - полупроводниковые наночастицы CdSe/ZnS. В результате при облучении носителя - слоя 2 источником 4 возбуждающего излучения возникает люминесценция, уровень которой обратно пропорционален концентрации токсиканта - зераленона в анализируемой среде.

При этом поступающий из носителя - слоя 2 суммарный световой фронт, состоящий из полезного сигнала люминесценции и паразитного сигнала возбуждающего излучения, проходит через светофильтр 6, который ослабляет паразитный сигнал, и отфильтрованный суммарный световой фронт с выделенным полезным сигналом фокусируется оптической системой 7 на фотоприемник 5 (фотодиод). Выработанный на выходе фотоприемника 5 электрический сигнал (значение напряжения которого соответствует уровню люминесценции) усиливается усилителем сигнала 8, оцифровывается с помощью аналого-цифрового преобразователя 9, и в цифровом представлении передаются для регистрации на вход блока 10 управления -контроллера для регистрации уровня люминесценции, где обрабатывается, путем сопоставления с предварительно занесенными в память калибровочными постоянными, и количественное значение уровня люминесценции, обратно пропорциональное концентрации токсиканта - зераленона, и/или соответствующее значение уровня (концентрации) токсиканта заносится в память блока 10 управления -контроллера и отображается в блоке 11 индикации.

Кроме того, блок 10 управления - контроллер в соответствии с заложенным программным алгоритмом в автоматическом режиме осуществляет программируемое управление работой светодиодов источника 4 возбуждающего излучения, нормируя посредством блока 12 стабилизации напряжение источника 1 возбуждающего излучения, и обеспечивает сохранение в памяти параметров калибровочных постоянных (калибровочной кривой), значения которых определяются в процессе предварительных тарировочных измерений с использованием стандартных источников возбуждающего излучения и предварительной калибровки колонки 1 с использованием образцов анализируемой среды, содержащей токсиканты, например, зераленон, известной концентрации.

Пример 2.

Для определения уровня токсиканта, например, концентрации зераленона, в анализируемой среде (природной воде) предварительно приготовляют поэтапно раствор конъюгата зераленона с липосомами, содержащими водорастворимые люминесцентными квантовые точки - полупроводниковые наночастицы CdSe/ZnS, следующим образом.

На первом этапе методом гидратирования тонких пленок готовят липосомы, содержащие водорастворимые люминесцентными квантовые точки - полупроводниковые наночастицы CdSe/ZnS. Для этого 70 мг (94 µмоль) фосфолипидов (Lipoid S75) растворяют в 1 мл хлороформа в круглодонной колбе (V=10 мл). Затем хлороформ выпаривают с помощью роторного испарителя до образования пленки фосфолипидов на стенках колбы. Образовавшуюся пленку фосфолипидов обрабатывают 6 мл воды, содержащей 5 µмоль квантовых точек CdSe/ZnS, и перемешивают в течение 30 минут при температуре 45°С. Затем раствор обрабатывают ультразвуком в течение 5 минут для достижения приемлемого размера частиц липосом (порядка 100 нм). Полученный раствор, содержащий липосомы с водорастворимыми квантовыми точками CdSe/ZnS, хранят при температуре 45°С.

На втором этапе осуществляют синтез конъюгата зераленона с липосомами, содержащими квантовые точки.

Для этого к 0,4 мл раствора, содержащего липосомы с инкорпорированными квантовыми точками - полупроводниковыми наночастицами CdSe/ZnS, капельно при постоянном перемешивании добавляют 0,5 мл 2,5% раствора глутарового альдегида в воде, после чего образовавшийся раствор перемешивают в течение 3 часов при комнатной температуре. Избыток глутарового альдегида удаляют с помощью диализа в течение 2 дней при температуре 4°С. Затем капельно при постоянном перемешивании в течение 2 часов при комнатной температуре добавляют 98 µг раствора зераленона (0,4 мг/мл), химически связанного с яичным альбумином, в фосфатном буфере (рН=7.4÷7.6). Затем добавляют 60 µл 3 М глицина в растворе гидроксида натрия (рН=7,2) для блокирования оставшихся свободными альдегидных групп глутарового альдегида на поверхности липосом. Полученную смесь выдерживают при температуре 4°С при постоянном перемешивании. Избыток не прореагировавших компонентов удаляют с помощью диализа в течение 3 часов. Полученные конъюгаты хранят при температуре 4°С.

Затем через подготовленную, аналогично примеру 1, колонку 1, содержащую слой 2 иммуноаффинного геля с привитыми специфичными к зераленону антителами, пропускают 1 мл анализируемой среды и промывают колонку 1 фосфатным буфером (рН=7.4÷7.6), содержащим 0,05% Tween 20.

Потом в колонку 1 вводят 100 мкл предварительно приготовленного раствора конъюгата зераленона с липосомами, содержащими водорастворимые люминесцентные квантовые точки - полупроводниковые наночастицы CdSe/ZnS (разведение 1/20 в фосфатном буфере (рН=7.4÷7.6)), и инкубируют в течение 6 минут. Избыток конъюгата удаляют путем промывания колонки 1 фосфатным буфером (рН=7.4÷7.6), и осуществляют освещение обработанного носителя - слоя 2, содержащего люминесцентные квантовые точки - полупроводниковые наночастицы, световым потоком, поступающим от источника 4 возбуждающего излучения. При этом происходит рптическое возбуждение люминесценции, уровень которой, обратно пропорциональный концентрации токсиканта, регистрируют устройством для измерения уровня люминесценции описанным выше образом.

Пример 3.

Для определения уровня токсиканта, например, концентрации зераленона, в анализируемой среде (природной воде) предварительно приготовляют поэтапно раствор конъюгата зераленона с липосомами, содержащими гидрофобные люминесцентными квантовые точки - полупроводниковые наночастицы CdSe/ZnS, следующим образом.

На первом этапе 70 мг (94 µмоль) фосфолипидов (Lipoid S75) и 30 пмоль гидрофобных квантовых точек (lem=577 nm) в толуоле (52 µл) of wisQDs растворяют в 1 мл хлороформа в круглодонной колбе (V=10 мл) при воздействии ультразвуком при температуре 45°С.

Затем в образовавшийся раствор добавляют 3 мл воды и хлороформ выпаривают с помощью роторного испарителя. После этого добавляют еще 3 мл воды и в течение 60 минут перемешивают раствор с образовавшимися липосомами при температуре 45°С.

Затем раствор обрабатывают ультразвуком в течение 5 минут для достижения приемлемого размера частиц липосом (порядка 100 нм). Полученный раствор, содержащий липосомы с гидрофобными квантовыми точками CdSe/ZnS, хранят при температуре 45°С.

На втором этапе осуществляют синтез конъюгата зераленона с липосомами, содержащими квантовые точки.

Для этого к 0,4 мл раствора, содержащего липосомы с инкорпорированными квантовыми точками - полупроводниковыми наночастицами CdSe/ZnS, капельно при постоянном перемешивании добавляют 0,5 мл 2,5% раствора глутарового альдегида в воде, после чего образовавшийся раствор перемешивают в течение 3 часов при комнатной температуре. Избыток глутарового альдегида удаляют с помощью диализа в течение 2 дней при температуре 4°С. Затем капельно при постоянном перемешивании в течение 2 часов при комнатной температуре добавляют 98 µг раствора зераленона (0,4 мг/мл), химически связанного с яичным альбумином, в фосфатном буфере (рН=7.4-7.6). Затем добавляют 60 µл 3 М глицина в растворе гидроксида натрия (рН=7,2) для блокирования оставшихся свободными альдегидных групп глутарового альдегида на поверхности липосом. Полученную смесь выдерживают при температуре 4°С при постоянном перемешивании. Избыток не прореагировавших компонентов удаляют с помощью диализа в течение 3 часов. Полученные конъюгаты хранят при температуре 4°С.

Затем через подготовленную, аналогично примеру 1, колонку 1, содержащую слой 2 иммуноаффинного геля с привитыми специфичными к зераленону антителами, пропускают 1 мл анализируемой среды и промывают колонку 1 фосфатным буфером (рН=7.4÷7.6), содержащим 0,05% Tween 20.

Потом в колонку 1 вводят 100 мкл предварительно подготовленного раствора конъюгата зераленона с липосомами, содержащими гидрофобные люминесцентные квантовые точки - полупроводниковые наночастицы CdSe/ZnS, (разведение 1/45 в фосфатном буфере (рН=7.4-7.6)), и инкубируют в течение 6 минут. Избыток конъюгата удаляют с помощью промывания колонки 1 фосфатным буфером (рН=7.4÷7.6).

После промывания колонки 1 осуществляют освещение обработанного носителя - слоя 2, содержащего люминесцентные квантовые точки - полупроводниковые наночастицы, световым потоком, поступающим от источника 4 возбуждающего излучения, при этом происходит оптическое возбуждение люминесценции, обратно пропорциональное концентрации токсиканта, которое регистрируется устройством для измерения уровня люминесценции описанным выше образом.

Заявленное изобретение обеспечивает возможность определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях путем проводимого в колонке тест-системы прямого конкурентного иммуноферментного анализа уровня токсиканта с пределом обнаружения (чувствительностью) 1÷3 нг/мл.

1. Способ определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях путем проводимого в колонке тест-системы иммуноферментного анализа, включающий размещение в колонке носителя в виде слоя иммуноаффинного геля с привитыми антивидовыми антителами, зафиксированного между двумя пористыми мембранами, обработку носителя - слоя иммуноаффинного геля блокирующим раствором для закрытия на носителе оставшихся свободными мест неспецифического связывания, иммобилизацию на носителе специфических антител, внесение тестируемых образцов, обработку носителя конъюгатсодержащим раствором и анализ обработанного носителя, отличающийся тем, что в качестве носителя используют слой иммуноаффинного геля с привитыми антивидовыми антителами, а в качестве конъюгатсодержащего раствора используют раствор конъюгата антигена - токсиканта, химически связанного с люминесцентными квантовыми точками или с липосомами, содержащими люминесцентные квантовые точки, а уровень токсикантов определяют по интенсивности люминесценции, возбужденной в квантовых точках при освещении обработанного носителя возбуждающим излучением.

2. Способ по п.1, отличающийся тем, что иммуноаффинный гель приготовляют в емкости с пористым дном путем обработки циан бром активированной сефарозы соляной кислотой и введения после набухания в полученный гель раствора антивидовых антител - кроличьих антимышиных антител в карбонатном буфере.

3. Тест-система для способа определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях по п.1, включающая колонку, в которой установлен носитель в виде слоя иммуноаффинного геля с привитыми специфическими антителами, размещенного между двумя пористыми мембранами, отличающаяся тем, что колонка снабжена устройством для измерения уровня люминесценции, включающим источник возбуждающего излучения и фотоприемник, причем перед фотоприемником дополнительно установлена фокусирующая оптическая система, а выход фотоприемника электрически подключен через усилитель сигнала и аналого-цифровой преобразователь к блоку управления - контроллеру, к выходу которого подключены блок индикации и через блок стабилизации источник возбуждающего излучения, при этом боковые стенки колонки выполнены из прозрачного для возбуждающего и люминесцентного излучения материала.



 

Похожие патенты:

Изобретение относится к области лабораторной диагностики, а именно иммуногенетическим исследованиям в онкологии, и может быть использовано для прогнозирования развития нефробластомы у детей и подростков.

Изобретение относится к животноводству, а именно к скотоводству, и может быть использовано для оценки адаптации организма. Способ оценки уровня адаптационных способностей крупного рогатого скота заключается в определении показателя оценки в группе здоровых животных путем вычисления отношения содержания моноцитов к лимфоцитам в лейкограмме периферической крови по формуле: П о А = М Л ф * 100 , где ПоА - показатель оценки адаптации, М - моноциты, %, Лф - лимфоциты, %, 100 - корректирующий коэффициент. При этом выделяют три типа по уровню напряженности: высокий - 6,0-7,5, низкий - 5,0-6,0 и перенапряжения - 7,5-8,5.

Настоящее изобретение относится к прогностическому анализу, а также к способу его применения для определения вероятности продуцирования терапевтического ответа в пораженных клетках или тканях на лечение заболевания, имеющего этиологию, связанную с избыточной пролиферацией клеток, с использованием сердечного гликозида.

Предложенная группа изобретений относится к области медицины. Предложены способ и набор для определения функциональной активности компонента C3 комплемента человека.
Изобретение относится к медицине, а именно к гинекологии, и может быть использовано для прогнозирования эффективности использования однократного курса ультразвукового кавитационного орошения полости матки у женщин с хроническим эндометритом.

Изобретение относится к области микробиологии и молекулярной генетики и касается рекомбинантного полипептида А2, ДНК, его колирующей, штамма продуцирующего полипептид А2 и способов использования такого рекомбинантного полипептида.

Настоящее изобретение относится к способам диагностики фиброза печени у субъекта, включающим определение уровней экспрессии плазминогена урокиназного типа, матричной металлопротеиназы 9 и β-2-микроглобулина, вычисление на их основании балльной оценки и постановку диагноза.
Изобретение относится к области медицины, конкретно к онкологии, и касается прогноза исходов химиолучевой терапии плоскоклеточных карцином головы и шеи. Сущность способа: проводят иммуноферментное исследование уровня ТИМП-1 и ТИМП-2 в сыворотке крови, дополнительно определяют размер первичной опухоли согласно международной классификации TNM, степень дифференцировки опухоли, возраст больного и рассчитывают дискриминантные функции по уравнениям: Y1=-138,748+Х1*15,963+Х2*(-4,803)+Х3*0,018+Х4*2,319+Х5*1,188 Y2=-159,545+Х1*17,918+Х2*(-4,266)+Х3*0,028+Х4*2,427+Х5*1,242, где X1 - размер первичной опухоли согласно международной классификации TNM; Х2 - степень дифференцировки опухоли; Х3 - сывороточный уровень ТИМП-1, нг/мл; Х4 - возраст больного, лет; Х5 - сывороточный уровень ТИМП-2, нг/мл.

Изобретение относится к области медицине, а именно онкологии, и может быть использовано для оценки радиочувствительности рака верхних дыхательных путей. Для этого определяют частоту гемопоэтических стволовых клеток с иммунофенотипом CD34+CD45low среди лимфоцитов периферической крови на стадиях рака Т3 или Т4 до лечения и сравнивают с ее дискриминационным уровнем 6,0×10-4.

Группа изобретений относится к области аналитической химии и может быть использована для детектирования целевых компонентов в жидком образце. Картридж (100) для детектирования целевых компонентов в жидком образце содержит: камеру (SC) для образцов; по меньшей мере, два резервуара (131 и 132), заполненные магнитными частицами (MP, MP'), которые специфичны по отношению к разным целевым компонентам; по меньшей мере, две чувствительные зоны (121 и 122) для детектирования магнитных частиц и/или целевых компонентов, причем магнитные частицы (MP, MP') разных резервуаров преимущественно достигают разных чувствительных зон, мигрируя в образце, заполняющем камеру для образцов, под влиянием магнитного (В) поля активации.
Изобретение относится к медицине, а именно к способу прогнозирования риска развития нагноительной формы заболевания и его затяжного течения у больных в возрасте 10-15 лет с инфильтративной формой зооантропонозной трихофитии. Сущность способа состоит в том, что предварительно у пациентов проводят двукратное определение в сыворотке крови С-реактивного белка (СРБ) при поступлении больного в стационар и на пятые сутки лечения, после чего на пятые сутки лечения при отсутствии снижения в 2 и более раз повышенного исходного уровня показателя СРБ, увеличении его, либо при повышении изначально нормального уровня показателя свыше 5 мг/л определяют содержание в сыворотке крови специфических антител. При содержании антител в титрах 1:4 и выше прогнозируют высокий риск затяжного течения заболевания. Использование заявленного способа позволяет повысить точность проводимого обследования и повысить качество лечения больных зооантропонозной трихофитией. 1 табл., 5 пр.
Изобретение относится к области медицины, а именно к биохимии, и может быть использовано для определения протеолитической модификации клеточных рецепторов на модели выделенных лимфоцитов периферической крови. Для этого проводят инкубацию выделенных лимфоцитов в присутствии фермента в инкубационной среде с последующей отмывкой клеток от фермента. Окрашивают моноклональными антителами, содержащими флуоресцентную метку, к соответствующим поверхностным детерминантам клеточных рецепторов и сравнивают с контролем, где клетки инкубируются в среде без содержания ферментов или в присутствии ингибиторов протеолитических ферментов. Экспрессию рецепторов на лимфоцитах определяют методом проточной цитометрии. Использование данного способа позволяет определять чувствительные к протеолизу рецепторы и количественно оценить активность ферментов и их ингибиторов. 3 пр., 1 табл.

Изобретение относится к устройствам для проведения иммуноанализа и может использоваться для лабораторной диагностики вирусных инфекций. Микрофлюидная система включает канал для анализируемой жидкости и еще четыре канала, расположенных перпендикулярно к каналу для анализируемой жидкости и одним концом соединяющихся с ним, при этом один из этих каналов является измерительным и в него помещены рецепторы в жидкой среде, другой канал является опорным и содержит только жидкую среду, а в два остальных канала помещены флуоресцентные метки с иммобилизованным на них субстратом в жидкой среде. Достигается повышение надежности и упрощение эксплуатации. 6 з.п. ф-лы, 1 пр., 3 ил.

Изобретение относится к области биохимии, в частности к полипептиду, несущему эпитоп BNP(1-32) человека, для получения лигандов, направленных против BNP(1-32) человека или proBNP(1-108) человека, где указанный полипептид имеет формулу a 1 − R 1 − X 1 − F G R K M D R − X 2 − R 2 − a 2 . Раскрыто применение указанного полипептида для получения лигандов, направленных против BNP(1-32) человека или proBNP(1-108) человека и для получения гибридомы, которая секретирует моноклональное антитело, направленное против BNP(1-32) человека или proBNP(1-108) человека. Раскрыт способ получения гибридомы, которая секретирует моноклональное антитело, направленное против BNP(1-32) человека или proBNP(1-108) человека, а также полученная гибридома. Раскрыт лиганд, специфичный к эпитопу с последовательностью FGRKMDR, а также его применение для детектирования в биологическом образце BNP(1-32) человека или proBNP(1-108) человека. Раскрыт способы детектирования в биологическом образце BNP(1-32) человека или производного proBNP(1-108) человека, способ in vitro диагностики, прогноза, стратификации риска или последующего наблюдения отдаленных результатов сердечной и/или сосудистой патологии у индивидуума, а также способ in vitro диагностики инсульта у индивидуума с использованием указанного лиганда. Раскрыт мультиэпитопный калибратор, предназначенный для получения калибровочных кривых для анализов BNP(1-32), proBNP(1-108), а также набор для детектирования BNP(1-32) человека или proBNP(1-108) человека. Изобретение позволяет эффективно детектировать сердечные и/или сосудистые патологии у индивидуума. 12 н. и 3 з.п. ф-лы, 17 ил., 12 табл., 18 пр.

Изобретение относится к области биотехнологии и касается способа количественного определения фиксированного вируса бешенства штамма «Москва 3253». Способ предусматривает обеззараживание и выделение РНК из вируссодержащего материала, постановку реакции обратной транскрипции и полимеразной цепной реакции с гибридизационно-флуоресцентным учетом результатов в режиме «реального времени» с использованием специфичных праймеров RV5-5'-GTTGGGCACTGAAACTGCTA-3', RV6-5'-GAATCTCCGGGTTCAAGAGT-3' и зонда RV7-5'-ROX-AATCCTCCTTGAACTCCATGCGACAGA-BHQ2. Количественную оценку вируса определяют на основании регистрации сигнала флуоресценции исследуемого образца и сравнения его с сигналом флуоресценции ПЦР-стандартов, содержащих различные количества ДНК-мишеней. Предложенный способ позволяет определить количественное содержание вируса в рабическом антигене органо-тканевого и культурального происхождения. Использование изобретения способствует стандартизации этапа приготовления рабического антигена в производстве гетерологичного антирабического иммуноглобулина. 2 табл., 3 ил., 2 пр.
Изобретение относится к области медицины, а именно к способу диагностики нарушений микроциркуляции при остеоартрозе у женщин, работающих в условиях физического перенапряжения. Сущность способа состоит в том, что у больной в крови определяют концентрацию васкулоэндотелиального фактора роста, и при ее величине более 80 пг/мл определяют нарушение микроциркуляции при остеоартрозе. Использование заявленного способа позволяет повысить точность диагностики нарушений микроциркуляции при остеоартрозе у женщин, работающих в условиях физического перенапряжения. 4 пр.
Изобретение относится к области медицины, а именно к акушерству и гинекологии, и может быть использовано врачами других специальностей. Сущность способа: у беременных по данным проведенного ультразвукового исследования выявляют наличие новообразований придатков, выявляют наличие синдрома задержки развития плода I и II степени (СЗРП). По наличию симптомов определяют: наличие преэклампсии, количество тромбоцитов (Tr) и лейкоцитов (WBC) в общем анализе крови, уровень общего белка плазмы крови путем биохимического анализа. При анализе коагулограммы определяют активированное частичное тромбопластиновое время (АПТВ) и уровень тромбоцитов (Tr). После забора отделяемого из влагалища проводят полимеразно-цепную реакцию и определяют наличие цитомегаловируса (ЦМВ). Затем вычисляют прогностический индекс R по формуле R=-1,59К1-0,96К2+1,33К3-0,6К4-1К5-0,009К6+0,003К7-0,03К8-0,007К9-0,04К10+4,78, где К1 - новообразования придатков - наличие - 1, отсутствие - 0; К2 - цитомегаловирус - наличие - 1, отсутствие - 0; К3 - преэклампсия - наличие - 1, отсутствие - 0; К4 - синдром задержки роста плода I ст. - наличие - 1, отсутствие - 0; К5 - синдром задержки роста плода II ст. - наличие - 1, отсутствие - 0; К6 - WBC - количество лейкоцитов в общем анализе крови (*103/мм3); К7 - Tr - количество тромбоцитов в общем анализе крови (*103/мм3); К8 - общий белок - количество общего белка в биохимическом анализе крови (г/л); К9 - Tr - количество тромбоцитов в коагулограмме (*103/мм3); К10 - АПТВ - активированное частичное тромбопластиновое время (сек) в коагулограмме; 4,78 - константа. При R меньше 0 прогнозируют риск формирования перинатальной патологии. При R больше 0 судят об отсутствии риска формирования перинатальной патологии. 2 пр.

Изобретение относится к медицине, а именно к клинической иммунологии, и может быть использовано для оценки напряженности адаптации у пациентов с ургентной хирургической патологией органов брюшной полости. Способ оценки напряженности адаптации у пациентов с ургентной хирургической патологией органов брюшной полости, характеризующийся тем, что определяют количество лейкоцитов; абсолютные количества CD3+, CD4+, CD8+, CD16+, CD20+, CD25+, CD38+, CD95+ лимфоцитов; абсолютное количество CD16+ нейтрофилов; содержание иммуноглобулинов IgG, IgA, IgM; количество фагоцитирующих нейтрофилов и циркулирующих иммунных комплексов в крови пациента; затем по формулам множественной регрессии рассчитывают значения пятнадцати главных компонент, определяющих показатели иммунного статуса; затем рассчитывают индивидуальный показатель напряженности адаптации - SГК как среднее квадратическое отклонение попарно между главными компонентами, составляющими между собой 105 пар, по формуле: S Г К = 1 105 ∑ i = 1, x = 1 15 ( Г К i − Г К х ) 2 где ГКi, ГКx - главные компоненты: ГК-1-ГК-15; и при значениях SГК<1,0 оценивают напряженность адаптации как критическую, приводящую к срыву механизмов адаптации. 1 ил.,8 табл.

Изобретение относится к области медицины, а именно к иммунологии, и может быть использовано для количественного определения клеток-предшественников в кроветворной ткани. Для этого проводят окраску клеточного субстрата одновременно моноклональными антителами к антигену CD34 и нуклеотропным (ядерным) красителем Syto16, при этом подсчет клеток-предшественников (CD34+) осуществляют в пределах Syto16+ клеток. Использование данного способа позволяет количественно учесть всю популяцию CD34+CD45 клеток в пределах ядросодержащих Syto16+ без предварительного ограничения области анализа на основании экспрессии антигена CD45 и избежать занижения процента CD34+ клеток-предшественников. 1 пр., 2 ил.
Изобретение относится к микробиологии и может быть использовано для серологической оценки токсичности анатоксина Bordetella pertussis. Сущность способа заключается в том, что в лунки 96-луночных полистироловых планшетов с иммобилизированной гамма-глобулиновой фракцией кроличьих антисывороток к коклюшному токсину вносят исследуемые образцы полуфабриката бесклеточной коклюшной вакцины, прибавляют к ним пероксидазный конъюгат гамма-глобулиновой фракциии кроличьих антисывороток к коклюшному токсину, добавляют к ним субстратную смесь и регистрируют оптическую плотность смеси и на основе оптической плотности выявляют титр присоединившегося к иммуносорбенту коклюшного токсина. При этом в качестве субстратной смеси используют тетраметилбензидин с перекисью водорода. Значения оптической плотности выше 0,2 еД в разведении 1:2 и более считаются соответствующими токсичным препаратам. Использование данного способа позволяет получать более быструю и достоверную оценку токсичности коклюшного токсина в процессе получения бесклеточной коклюшной вакцины в сравнении с трудоемкими методами на животных. 1 табл., 1 пр.
Наверх