Способ изготовления микроэлектромеханического ключа для защиты информационно-телекоммуникационной аппаратуры космических аппаратов при электромагнитном старте

Изобретение относится к области космического приборостроения и микроэлектроники и может быть использовано для систем защиты информационно-телекоммуникационной аппаратуры ИТА беспилотных малых космических аппаратов от высоких стартовых перегрузок на заданных пороговых значениях. Изобретение обеспечивает повышение технологичности, снижение трудоемкости способа получения групп микроэлектромеханических ключей, повышение надежности срабатывания при достижении пороговых величин ускорений при электромагнитоэлектрическом старте беспилотных малых космических аппаратов. В способе получения микроэлектромеханического ключа, являющегося основой системы защиты информационно-телекоммуникационной аппаратуры космических аппаратов при электромагнитном старте с перегрузками от нескольких тысяч до десятков тысяч единиц ускорений свободного падения тела, формируют чувствительный блок, состоящий из балки и опор, примыкающий при воздействии ускорения к подложке с помощью контактных элементов, формируя при этом сигнал, указывающий на порог величины ускорения, по которому судят о перегрузке аппаратуры, формируют травлением через маску на плоской полупроводниковой подложке проводящие дорожки и контактные площадки из системы металлов ванадий-алюминий, а чувствительный блок получают с помощью двухслойной системы металлов железо-никель, которые осаждают друг на друга в едином технологическом цикле термического испарения в вакууме, которые затем травят через маску в водном растворе соляной кислоты до получения заданной формы чувствительного блока в одном технологическом цикле. 4 з.п. ф-лы, 3 ил., 2 табл.

 

Изобретение относится к области космического приборостроения и микроэлектроники и может быть использовано для изготовления систем защиты информационно-телекоммуникационной аппаратуры космических аппаратов (ИТА КА), в частности беспилотных малогабаритных космических аппаратов.

Впервые способ получения ключа (шок сенсора) был описан в патенте США №3101069, опубл. 20.08.1963 года, НКЛ 116-114. Массогабариты ключа намного превышали сегодняшний уровень. Совершенствование ключа проводилось в направлении мнкроминиатюризации. Недостатком данного метода является то, что для изготовления ключа используются методы механической обработки, а само изделие является механическим изделием с очень низкой надежностью.

Наиболее близким к заявляемому изобретению является патент США №6619123 В2. МКЛ G01P 15/10, НКЛ 73-514.29, опубл. 16.09.2003 г., в котором изложен способ изготовления ключа с помощью ряда элементов, чувствительных к ускорению. Инерционная масса закреплена на неподвижной части с помощью изгибающегося мостика - кантилевера. При достаточно высоком ускорении инерционная масса замыкается с электродом и детектирующее устройство регистрирует отклонение. Имеется тестовый электрод, который создает электрическое поле, заставляющее инерционную массу отклониться и замкнуться на электрод. Зная напряжение, поданное на тестовый электрод, и силу, созданную этим напряжением, возможно определить минимальное ускорение, которое зарегистрирует детектирующее устройство. Каждый элемент образован рельефным элементом, к которому присоединен кантилевер, при воздействии на который ускорения чувствительная масса, сформированная на кантилевере, опускает кантилевер вниз к контактной площадке, при этом формируется детектируемый электрический сигнал. Технологической базой изготовления этого ключа являются объемная или поверхностная микромеханика. Сигнал формируется при касании к контактной площадке кантилевера с чувствительной к разному ускорению массой при воздействии перегрузки. Изготовление и надежность проводящих и контактных площадок связаны со сложностями образованного рельефа, нанесением металлизации на рельеф. Необходимо сделать 7 фотолитографий и соответствующих технологически сложных операций, использующих дорогостоящее оборудование и реактивы для создания одного интегрированного сенсорного чувствительного элемента. Ключ испытывает большие перегрузки и возникающие напряжения снижают надежность работы ключа в системе защиты ИТА КА. Для контроля детектируемых величин ускорений специально выделены группы элементов, формирующие эталонный сигнал.

При этом топологические и геометрические размеры ключа уменьшаются при увеличении воздействующих ускорений. Возникает проблема изготовления балок и опор с меньшими размерами, более высокими требованиями по адгезии между материалами, с повышенными требованиями к совмещению.

Проблема изготовления с такими требованиями обычно решается с использованием еще более дорогостоящего оборудования, обеспечивающего высокую степень совмещения последовательно изготавливаемых технологических слоев микроэлектромеханического ключа на стадиях формирования скрытого изображения в слое фоторезиста, изготовления элементов ключа сухим реактивным травлением с высоким аспектным отношением, нанесением металлических слоев для проводящих дорожек и контактных площадок по сложному развитому рельефу, где возникает проблема обрыва металлизации на краях элементов, изготовленных с высокими аспектными соотношениями.

Недостатком способа является низкая технологичность, неопределенность выбора пороговых величин ускорения, необходимость использования дорогостоящих оборудования и химических реагентов.

Задачей изобретения является повышение технологичности, снижение трудоемкости способа получения групп микроэлектромеханических ключей, повышение надежности срабатывания при достижении пороговых величин ускорений при электромагиитоэлектрическом старте беспилотных малых космических аппаратов.

Для реализации поставленной задачи в способе получения микроэлектромеханического ключа, для защиты информационно-телекоммуникационной аппаратуры космических аппаратов при электромагнитном старте, включающий формирование чувствительного блока, состоящего из балки и опор, примыкающего при воздействии ускорения к подложке с помощью контактных элементов, формируя сигнал, указывающий на порог величины ускорения, по которому судят о перегрузке аппаратуры, формируют травлением через маску на плоской полупроводниковой подложке проводящие дорожки и контактные площадки из системы металлов ванадий-алюминий, а чувствительный элемент получают с помощью двухслойной системы металлов железо-никель, которые осаждают друг на друга в едином технологическом цикле термического испарения в вакууме, которые затем травят через маску в водном растворе соляной кислоты до получения заданной формы чувствительного блока - балки из никеля и опор из железа в одном технологическом цикле.

При этом подложка может быть выполнена из любой полупроводниковой или диэлектрической подложки.

Для обеспечения адгезии железа к подложке используется напыление тонкого слоя соответствующего металлического материала, которые наносят, например, путем магнетронного распыления.

Для уменьшения наводороживания железа в водный раствор соляной кислоты добавляют ингибиторы.

В результате описываемых технологических действий топологические и геометрические размеры ключа уменьшаются при увеличении воздействующих ускорений. Возникает проблема изготовления балок и опор с меньшими размерами, более высокими требованиями по адгезии между материалами, с повышенными требованиями к совмещению.

Изобретение поясняется чертежами, где на фиг 1 изображена структурная схема микроэлектромеханического ключа, на фиг.2 - фотография изготовленного экспериментального образца кристалла с микроэлектромеханическими ключами для модуля защиты ИТА КА; а на фиг.3 - фотография модуля защиты ИТА КА в сборе.

На чертеже изображены: подложка 1 из кремния, чувствительный элемент, состоящий из опор 2 и балки 3, с инерционной массой.

Способ осуществляют следующим образом.

Для получения микроэлектромеханических ключей для их дальнейшего использования в качестве элементов системы защиты ИТА КА предлагается использовать широко распространенный и в связи с этим недорогой метод химического раздельного интенсивного травления металлов. На подложку 1 из кремния в едином цикле термического нанесения в вакууме из разных мишеней в одной вакуумной камере наносят слои железа и никеля. При этом достигается высокая адгезия между слоями. Одной фотолитографией формируют самосовмещенные топологии балки 3 (с инерционной массой, находящейся на упругой части балки) и опор 2 с соответствующими технологическими допусками. Последующее травление с разными скоростями железа и никеля формирует микроэлектромеханический ключ. Для травления материалов балки и опор выбран жидкостной метод травления в водном растворе 20% соляной кислоты при температуре 40°С в течение 35 минут.

Для формирования системы защиты ИТА КА к группе микроэлектромеханических ключей на плоской кремниевой подложке формируются металлизация (токопроводящие дорожки) и контактные площадки из системы ванадий-алюминий. Для этого используется одна фотолитография. Причем формирование металлизации и контактных площадок может быть выполнено до и после формирования микроэлектромеханических ключей.

В рамках экспериментальной работы была получена серия образцов микроэлектромеханических ключей, данные о которых представлены в таблицах 1, 2.

Таблица 1
- Геометрические размеры ключа первого типа
Геометрический размер Значение, мкм
Длина ключа 600,0
Длина упругой части (балки) ключа 400,0
Длина и ширина опоры и инерционной массы 100,0
Ширина упругой части (балки) ключа 36,0
Высота инерционной массы 16,2
Высота опор 1,5
Высота упругой части (балки) ключа 2,0
Таблица 2
- Геометрические размеры ключа второго типа
Геометрический размер Значение, мкм
Длина ключа 700,0
Длина упругой части (балки) ключа 500,0
Длина и ширина опоры и инерционной массы 100,0
Ширина упругой части (балки) ключа 100,0
Высота инерционной массы 18,5
Высота опор 1,5
Высота упругой части (балки) ключа 2,0

Преимуществом изобретения по сравнению с прототипом и другими известными методами являются повышение технологичности за счет исключения пяти фотолитографических и сопутствующих им технологических процессов, формирование самосовмещенных балок и опор в одном технологическом цикле, увеличение адгезионной силы между слоями микроэлектромеханического ключа при формировании слоев ключа в едином цикле вакуумного напыления, повышение надежности системы защиты ИТА КА за счет формирования слоев металлизации и контактных площадок на плоской, безрельефной подложке, без риска обрыва металлизации на рельефных элементах с высоким аспектным отношением.

1. Способ изготовления микроэлектромеханического ключа для защиты информационно-телекоммуникационной аппаратуры космических аппаратов при электромагнитном старте, включающий формирование чувствительного блока, состоящего из балки и опор, примыкающего при воздействии ускорения к подложке с помощью контактных элементов, формируя сигнал, указывающий на порог величины ускорения, по которому судят о перегрузке аппаратуры, отличающийся тем, что формируют травлением через маску на плоской полупроводниковой подложке проводящие дорожки и контактные площадки из системы металлов ванадий-алюминий, а чувствительный блок получают с помощью двухслойной системы металлов железо-никель, которые осаждают друг на друга в едином технологическом цикле термического испарения в вакууме, которые затем травят через маску в водном растворе соляной кислоты до получения заданной формы чувствительного блока - балки из никеля и опор из железа в одном технологическом цикле.

2. Способ изготовления микроэлектромеханического ключа для защиты информационно-телекоммуникационной аппаратуры космических аппаратов при электромагнитном старте по п.1, отличающийся тем, что в качестве подложки используется любая полупроводниковая или диэлектрическая подложка.

3. Способ изготовления микроэлектромеханического ключа для защиты информационно-телекоммуникационной аппаратуры космических аппаратов при электромагнитном старте по п.1, отличающийся тем, что для обеспечения адгезии железа к подложке используется напыление тонкого слоя соответствующего металлического материала.

4. Способ изготовления микроэлектромеханического ключа для защиты информационно-телекоммуникационной аппаратуры космических аппаратов при электромагнитном старте по п.1, отличающийся тем, что в водный раствор соляной кислоты добавляют ингибиторы для уменьшения наводороживания железа.

5. Способ изготовления микроэлектромеханического ключа для защиты информационно-телекоммуникационной аппаратуры космических аппаратов при электромагнитном старте по п.1, отличающийся тем, что металлические слои наносят путем магнетронного распыления.



 

Похожие патенты:

Изобретение относится к области часовой промышленности, а именно к системе шестерен, которая включает в себя крепежное устройство, предотвращающее возникновение напряжения сдвига, что обеспечивается за счет того, что система шестерен включает в себя шестерню и зубчатое колесо, соосно установленные относительно поворотной оси, и крепежное устройство между вышеуказанной шестерней и вышеуказанным колесом для предотвращения относительного перемещения одного из них относительно другого.

Изобретение относится к способу получения оптических планарных волноводов в ниобате лития для интегральной и нелинейной оптики. .

Изобретение относится к области измерительной техники, в частности к средствам измерения линейных ускорений, угловых скоростей и тепловых полей малой интенсивности в инфракрасной и терагерцовой области.

Изобретение относится к вакуумной технике и представляет собой способ получения газопоглощающей структуры для поддержания вакуума в различных приборах, в том числе микроэлектромеханических системах.

Изобретение относится к способу изготовления составного микромеханического компонента, сочетающему процессы глубокого реактивного ионного травления и литографии, гальванопластики и формования.

Изобретение относится к области микросистемной техники и может быть использовано при создании и изготовлении микромеханических устройств, содержащих упругие гибкие деформируемые исполнительные элементы, обеспечивающие преобразование «электрический сигнал - перемещение» и/или «изменение температуры - перемещение» для микроробототехнических систем.

Изобретение относится к области измерительной техники и может быть использовано, например, в микрогирометрах, микроакселерометрах, микродатчиках давления. .

Изобретение относится к электронной технике, в частности к технологии изготовления тонкопленочных тензорезисторных датчиков давления. .

Изобретение относится к микросистемной технике и может быть использовано при изготовлении микроэлектромеханических реле. Способ изготовления микроэлектромеханических реле включает последовательное формирование на подложке контактной металлизации, состоящей из управляющего электрода, двух нижних коммутируемых контактов, расположенных с двух сторон от управляющего электрода на определенном расстоянии, «жертвенного» слоя, верхнего подвижного контакта, расположенного над управляющим электродом и нижними коммутируемыми контактами, опор для подвеса подвижного верхнего контакта. «Жертвенный» слой формируют из не менее трех «жертвенных» подслоев в несколько стадий с использованием двух позитивных фоторезистов с различной величиной вязкости, формируют отверстия для нижних коммутируемых контактов и опор для подвеса подвижного верхнего контакта методом фотолитографии, на конечной стадии проводится термообработка «жертвенного» слоя. Техническим результатом заявленного изобретения является получение высокого уровня планарности «жертвенного» слоя, что повышает воспроизводимость технологического процесса изготовления микроэлектромеханических реле. 4 з.п. ф-лы, 9 ил.

Изобретение относится к приборостроению и может быть использовано при изготовлении полупроводниковых микроэлектромеханических устройств, а именно малогабаритных датчиков физических величин. Изобретение обеспечивает увеличение количества годных микроэлектромеханических структур за счет совершенствования способа электростатической анодной посадки. В способе изготовления микроэлектромеханических структур путем анодного соединения (анодной сварки) двухслойной структуры из пластины кремния с предварительно очищенной стеклянной подложкой при нагревании их в вакууме и приложении напряжения, предварительно пластину из кремния разделяют на кристаллы, формируют пары структур кремний - стекло, размещают их в кассету вертикально, прижимая друг к другу, кассету помещают в графитовый нагреватель и нагревают их при температуре от 370°С до 400°С, после чего подают анодное напряжение на стекло в интервале от 200 до 500 вольт для формирования слоя объемного заряда в стекле, прилегающем к поверхности кремния. В устройстве для изготовления микроэлектромеханических структур графитовый столик выполняют с боковыми стенками, в которых, как и в основании графитового столика, установлено не менее двух нагревательных элементов в каждом, на торцах двух противоположных стенок установлены токовводы для подачи анодного напряжения, на основании столика расположена кассета, в которой размещены пары структур кремний - стекло. 2 н. и 1 з.п. ф-лы, 4 ил.

Использование: для соединения герметичных корпусов устройств на базе микроэлектромеханических систем (МЭМС). Сущность изобретения заключается в том, что формирование на поверхности как первой пластины, так и второй пластины стопы из первого металла, подверженного окислению на воздухе; формирование на верхней поверхности каждой стопы из первого металла слоя второго металла, температура плавления у которого ниже, чем у первого металла (причем толщину слоя второго металла выбирают достаточной для предотвращения окисления верхней поверхности первого металла); приведение слоя второго металла на первой пластине в контакт со слоем второго металла на второй пластине, чтобы образовать зону соединения, и приложение к первой и второй пластинам давления соединения при температуре зоны соединения, которая ниже температуры плавления второго металла, чтобы инициировать соединение, причем давление соединения выбирают достаточным для деформирования слоев второго металла в зоне соединения. Технический результат: обеспечение возможности создания герметичного корпуса. 12 з.п. Ф-лы, 5 ил.

Изобретение относится к области радиоэлектроники и касается способа формирования канала для передачи оптического сигнала между электронными модулями на одной печатной плате. Способ заключается в том, что берут заготовку, в состав которой входит прозрачный полимер, над соответствующим местом заготовки располагают фоторезист и воздействуют на него штампом. Через прозрачную маску штампа осуществляют экспозицию УФ-излучением и покрывают внешнюю поверхность оптического тракта из отвердевшего фоторезиста светоотражающим металлическим слоем путем напыления. Технический результат заключается в упрощении способа формировании канала и улучшении эксплуатационных характеристик изделий. 5 ил.

Изобретение относится к области инерциальных микроэлектромеханических систем, используемых в качестве датчиков перегрузок, таких как, например, акселерометры или гироскопы. Способ устранения залипания электродов в инерциальном микроэлектромеханическом устройстве, содержащем: подвижную массу (150), подвешенную на каркасе с помощью пружинного устройства (115) и содержащую по меньшей мере один подвижный электрод; неподвижный электрод, жестко прикрепленный к каркасу, причем неподвижный электрод взаимодействует с подвижным электродом, в результате чего формируется пара электродов. Причем способ включает обнаружение пары залипших электродов, для которых слипание характеризуется силой прилипания (Fs), и стадию разделения, включающую подачу в течение заданного интервала времени заданного напряжения между электродами пары электродов для создания электростатической силы, которая обеспечивает смещение подвижной массы в направлении действия силы прилипания. 3 н. и 2 з.п. ф-лы, 4 ил.

Изобретение относится к измерительной технике. С его помощью представляется возможным расширить температурный диапазон работы датчика на основе тонкопленочной нано- и микроэлектромеханической системы, повысить воспроизводимость таких параметров тензорезисторов, как электрическое сопротивление и температурный коэффициент сопротивления, снизить температурную чувствительность датчиков. В способе изготовления термоустойчивой нано- и микроэлектромеханической системы высокотемпературного датчика механических величин на планарной стороне упругого элемента методами вакуумного распыления образуют гетерогенную структуру из нано- и микроразмерных пленок материалов, содержащую тонкопленочные диэлектрические, тензорезистивные и контактные слои. Формируют тензоэлементы - тензорезисторы, контактные проводники и контактные площадки к ним. Тензорезистивный слой формируют методом магнетронного распыления в вакуумной камере с одновременным использованием двух мишеней из никеля и титана. Упругий элемент со сформированным на нем диэлектрическим слоем устанавливают на карусель, нагревают, создают давление аргона, а затем вращают карусель с упругим элементом при определенном соотношении плотности токов в зонах распыления первой и второй мишеней. После этого упругий элемент с нанесенным на него тензорезистивным слоем выдерживают в вакууме при повышенной температуре. 6 ил., 1 табл.

Изобретение относится к изготовлению герметичных конструкций, образующих микроэлектромеханические системы. Способ создания герметичного уплотнения внутри первой композитной пластины типа кремний-изолятор, используемой для изготовления герметичной конструкции, включает следующие операции: структурирование первой кремниевой пластины для формирования одного или более углублений, проходящих по меньшей мере на часть толщины первой кремниевой пластины, заполнение единственного или каждого углубления материалом-изолятором, пригодным для прикрепления к кремнию посредством анодного соединения с формированием первой композитной пластины, имеющей множество интерфейсов кремний-изолятор и первую контактную поверхность, состоящую из материала-изолятора, и применение к первой и второй контактным поверхностям технологии анодного соединения для создания герметичного уплотнения в интерфейсах кремний-изолятор первой композитной пластины, причем вторая контактная поверхность состоит из кремния. Изобретение позволяет упростить создание герметичного уплотнения. 3 н. и 17 з.п. ф-лы, 11 ил.

Использование: для изготовления микроэлектромеханических структур. Сущность изобретения заключается в том, что способ защиты углов трехмерных микромеханических структур на кремниевой пластине с кристаллографической ориентацией (100) при глубинном анизотропном травлении в водном растворе гидрооксида калия КОН включает формирование масочного рисунка с элементами защиты углов, элементы защиты углов, имеющие диагональную форму на топологической маске, располагают под углом 45° к контурам жесткого центра, причем размеры изготовляемых трехмерных микромеханических структур определяются из определенных условий. Технический результат: обеспечение возможности повышения качества и увеличения процента выхода годных трехмерных микромеханических структур. 6 ил., 2 табл.
Группа изобретений относится к способу получения формованных изделий с покрытием с полностью или частично структурированными поверхностями, установке для осуществления этого способа и формованному изделию, изготовленному этим способом. Способ включает впрыск формовочной массы при температуре 220-330°С, в пресс-форме образуется промежуточное пространство. Образованное пространство заполняют реакционной смесью посредством жидкостного впрыскивания. Пресс-форму герметизируют и нагревают в заданных режимах, а затем охлаждают пресс-форму и извлекают отформованное изделие. Кроме того, в настоящем изобретении описывается установка для осуществления этого способа, содержащая пресс-форму. Посредством способа и установки по изобретениям получают формованное изделие с заданным покрытием. Технический результат, достигаемый при использовании способа и установки по изобретениям, заключается в получении формованных изделий с превосходными механическими свойствами, а именно обеспечении высокой устойчивости к царапанию и высокой жесткости. 3 н. и 11 з.п. ф-лы.

Изобретение относится к области электронной техники и может быть использовано при изготовлении приборов микроэлектромеханических систем, в частности интегральных микромеханических реле и устройств на их основе. Технический результат: повышение надежности и временной стабильности интегрального микромеханического реле. Сущность: способ изготовления интегрального микромеханического реле с подвижным электродом в виде структуры с пьезоэлектрическим слоем (7), осуществляется на поверхности кремниевых пластин в едином технологическом цикле при технологии изготовления, совместимой с технологией производства интегральных схем. Для этого формируют на поверхности кремниевой подложки (1) диэлектрический слой (2) из пленки SiO2 методом термического окисления; напыляют токопроводящий слой TiN (3) и формируют неподвижный электрод методом ионно-лучевого напыления и травления с использованием проекционной лазерной фотолитографии. Осаждают слой Si3N4 методом CVD с подготовкой его в качестве жертвенного слоя с последующим плазменным травлением. Напыляют первый токопроводящий слой TiN (4), осаждают диэлектрический слой SiC (5) с высокими упругими свойствами методом магнетронного напыления Напыляют второй токопроводящий слой TiN (6). Осаждают пьезоэлектрический слой ЦТС (7). Напыляют третий токопроводящий слой TiN (8). Затем проводят плазмохимическое травление слоев: третьего токопроводящего слоя TiN (8), пьезоэлектрического слоя ЦТС (7), второго токопроводящего слоя TiN (6), диэлектрического слоя SiC (5) с высокими упругими свойствами, первого токопроводящего слоя TiN (4) с формированием подвижного многослойного электрода и вскрытием жертвенного слоя Si3N4. Травление жертвенного слоя Si3N4 проводят с образованием воздушного зазора между неподвижным и подвижным электродами. 1 ил.

Изобретение относится к области космического приборостроения и микроэлектроники и может быть использовано для систем защиты информационно-телекоммуникационной аппаратуры ИТА беспилотных малых космических аппаратов от высоких стартовых перегрузок на заданных пороговых значениях. Изобретение обеспечивает повышение технологичности, снижение трудоемкости способа получения групп микроэлектромеханических ключей, повышение надежности срабатывания при достижении пороговых величин ускорений при электромагнитоэлектрическом старте беспилотных малых космических аппаратов. В способе получения микроэлектромеханического ключа, являющегося основой системы защиты информационно-телекоммуникационной аппаратуры космических аппаратов при электромагнитном старте с перегрузками от нескольких тысяч до десятков тысяч единиц ускорений свободного падения тела, формируют чувствительный блок, состоящий из балки и опор, примыкающий при воздействии ускорения к подложке с помощью контактных элементов, формируя при этом сигнал, указывающий на порог величины ускорения, по которому судят о перегрузке аппаратуры, формируют травлением через маску на плоской полупроводниковой подложке проводящие дорожки и контактные площадки из системы металлов ванадий-алюминий, а чувствительный блок получают с помощью двухслойной системы металлов железо-никель, которые осаждают друг на друга в едином технологическом цикле термического испарения в вакууме, которые затем травят через маску в водном растворе соляной кислоты до получения заданной формы чувствительного блока в одном технологическом цикле. 4 з.п. ф-лы, 3 ил., 2 табл.

Наверх