Способ перемещения самолета заправщика параллельно курсу дозаправляемого самолета и устройство для его реализации

Группа изобретений относится к радиолокационной технике, более конкретно к способу перемещения самолета-заправщика параллельно курсу дозаправляемого самолета и устройству для его осуществления. Для перемещения самолета-заправщика параллельно курсу дозаправляемого самолета формируют на РЛС определения момента выдачи команды на пуск защитного боеприпаса, установленной на борту самолета-заправщика с антенной РЛС, максимум узконаправленной диаграммы направленности которой направлен перпендикулярно продольной оси самолета-заправщика, короткие импульсы, в моменты возникновения и обнаружения на РЛС сигналов разностной частотой Fдо=2Vоfн/С и 3Fдо, где fн - средняя частота излучаемого РЛС непрерывного сигнала с частотной модуляцией по одностороннему пилообразному линейно возрастающему закону (НЛЧМ сигнал), выбираемая из условия До/Vo=fн/Fмfд, где fд и Fм - соответственно девиация частоты и частота модуляции НЛЧМ сигнала; Vo - минимально возможная радиальная скорость дозаправляемого самолета; До и С - соответственно выбираемое базовое расстояние и скорость света, причем при формировании на РЛС короткого импульса, в момент обнаружения на ней сигнала с разностной частотой Fдо=2Vоfн/С, самолет-заправщик поворачивают в сторону от дозаправляемого самолета, а при формировании на РЛС короткого импульса, в момент обнаружения на ней сигнала с разностной частотой 3Fдо=2Vоfн/С, самолет-заправщик поворачивают в сторону к дозаправляемому самолету, что позволяет удерживать борта самолетов на расстоянии от До до 3 До от антенны РЛС и перемещаться параллельными курсами. Технический результат заключается в расширении ассортимента устройств, позволяющих перемещаться транспортным средствам параллельными курсами. 2 н.п. ф-лы, 1 ил.

 

Способ перемещения самолета-заправщика параллельно курсу дозаправляемого самолета и устройство для его реализации

Изобретение относится к радиолокационной технике и может быть использовано для реализации устройств, позволяющих передвигаться транспортным средствам, в частности самолетам, параллельными курсами.

Известен способ и РЛС определения момента выдачи команды на пуск защитного боеприпаса по патенту RU, №2374597, F41H 11/02.

Известный способ заключается в определении момента выдачи команды на пуск защитного боеприпаса по началу возникновения и обнаружения на РЛС сигнала с частотой Fдо=2Vo fo/С, когда цель будет находиться на удалении от РЛС, равном Do+(Vi/Vo)Do, где

fo - средняя частота излучаемого непрерывного сигнала с частотной модуляцией по одностороннему пилообразному линейно возрастающему закону,

Vo, Vi, С - радиальные скорости: защитного боеприпаса, цели и скорость света,

Do - расстояние от РЛС до предполагаемой точки встречи объектов.

Известный способ реализован в виде РЛС определения момента выдачи команды на пуск защитного боеприпаса (далее РЛС), которая содержит приемо-передающую антенну, вход которой, работающий на передачу, подключен к высокомощному выходу передатчика непрерывного сигнала с частотной модуляцией по одностороннему пилообразному линейно возрастающему закону, а выход, работающий на приему, подключен к первому входу смесителя, второй вход которого подключен к маломощному выходу передатчика, а выход - к входу фильтра разностных частот, а также обнаружитель сигналов узкополосного спектра частот, выход которого подключен к выходной шине, а вход - к выходу фильтра разностных частот и который содержит последовательно соединенные генератор сигнала непрерывной частоты, второй смеситель, широкополосный фильтр, усилитель-ограничитель, узкополосный полосовой фильтр, амплитудный детектор, компаратор и формирователь импульса, при этом второй вход компаратора подключен к шине опорного напряжения, а второй вход второго смесителя - к входной шине.

Оказывается, что при определенных условиях известные изобретения можно использовать для создания устройств ориентации передвижения транспортных средств, в частности самолетов, параллельными курсами.

Целью изобретения является расширение ассортимента устройств, позволяющих перемещаться транспортным средствам параллельными курсами.

Поставленная цель достигается за счет создания устройств, позволяющих перемещаться транспортным средствам параллельными курсами, на базе РЛС определения момента выдачи команды на пуск защитного боеприпаса.

Для перемещения самолета-заправщика параллельно курсу дозаправляемого самолета формируют на РЛС определения момента выдачи команды на пуск защитного боеприпаса, установленной на борту самолета-заправщика с антенной РЛС, максимум узконаправленной диаграммы направленности которой направлен перпендикулярно продольной оси самолета-заправщика, в сторону дозаправляемого самолета, короткие импульсы, в моменты возникновения и обнаружения на РЛС сигналов разностной частотой Fдо=2Vofн/С и 3Fдо, где

fн - средняя частота излучаемого РЛС непрерывного сигнала с частотной модуляцией по одностороннему пилообразному линейно возрастающему закону (НЛЧМ сигнал), выбираемая из условия До/Vo=fн/Fм fд;

fд и Fм - соответственно девиация частоты и частота модуляции НЛЧМ сигнала;

Vo - минимально возможная радиальная скорость дозаправляемого самолета;

До и С - соответственно выбираемое базовое расстояние и скорость света,

причем при формировании на РЛС короткого импульса, в момент обнаружения на ней сигнала с разностной частотой Fдо=2Vоfн/С, самолет-заправщик поворачивают в сторону от дозаправляемого самолета, а при формировании на РЛС короткого импульса, в момент обнаружения на ней сигнала с разностной частотой 3Fдо=2Vofн/С, самолет-заправщик поворачивают в сторону к дозаправляемому самолету, что позволяет удерживать борта самолетов на расстоянии от До до 3 До от антенны РЛС и перемещаться параллельными курсами.

Устройство для перемещения самолета-заправщика параллельно курсу дозаправляемого самолета содержит приемо-передающую антенну 2, вход которой, работающий на передачу, подключен к высокомощному выходу передатчика 1 непрерывного сигнала с частотной модуляцией по одностороннему пилообразному линейно возрастающему закону (НЛЧМ сигнал), а выход, работающий на прием, подключен к первому входу смесителя 3, второй вход которого подключен к маломощному выходу передатчика 1 НЛЧМ сигнала, а выход через фильтр 4 разностных частот и обнаружитель 6 сигнала узкополосного спектра частот подключен к входам первого и второго элементов И 12 и 13, выходы которых подключены соответственно к первому и второму исполнительным блокам 14 и 15, выход фильтра 4 разностных частот через частотный детектор 5 подключен к входам первого и второго аналоговых компараторов 8 и 9, вторые входы которых подключены соответственно к выходам первого и второго блоков 7 и 10 опорных напряжений, а выходы - к вторым входам соответственно первого и второго элементов И 12 и 13 и выход второго аналогового компаратора 9 через элемент НЕ 11 подключен к третьему входу первого элемента И 12.

Известно (см. прототип), что при подлете снаряда со скоростью Vi к танку из мортиры последнего в момент, когда между антенной РЛС, установленной на танке, и снарядом будет расстояние (До/Уо)(Vi+Vо), в сторону снаряда по сформированной на РЛС команде выстреливают защитный боеприпас. Кроме того, при пролете снарядом точки пространства, отстоящей от РЛС на удалении (До/Vо)(Vi+3Vо), на ней формируется команда, которую можно использовать в качестве предупреждения того, что снаряд приближается к танку.

Очевидно, что если установить РЛС определения момента выдачи команды на пуск защитного боеприпаса на борту самолета-заправщика таким образом, что максимум узконаправленной диаграммы направленности антенны РЛС будет направлен перпендикулярно продольной оси самолета-заправщика в сторону дозаправляемого самолета, то на РЛС из-за малости величины частоты доплеровского сигнала при параллельном перемещении самолетов команды будут формироваться тогда, когда между самолетами будет расстояние До и 3До.

Тогда, для того чтобы самолет-заправщик перемещался параллельно дозаправляемому самолету, очевидно, необходимо при появлении на РЛС команды, в момент обнаружения на ней разностного сигнала частотой Fдо=2Vоfн/С и когда между самолетами будет расстояние До, довернуть самолет-заправщик в сторону от дозаправляемого самолета. При появлении же на РЛС команды, в момент обнаружения на ней разностного сигнала частотой 3Fдо=6Vоfн/С и когда между самолетами будет расстояние 3До, необходимо будет довернуть самолет-заправщик в сторону к дозаправляемому самолету. То есть, величину частоты обнаруживаемого разностного сигнала, в момент ее обнаружения на РЛС, можно использовать для многократного доворачивания самолета-заправщика относительно дозаправляемого самолета в ту или иную сторону и тем самым поддерживать перемещение самолетов параллельными курсами, например, устройством для перемещения самолета-заправщика параллельно курсу дозаправляемого самолета.

Рассмотрим работу устройства перемещения самолета-заправщика параллельно курсу дозаправляемого самолета, блок-схема которого приведена на фиг.1.

При появлении на РЛС самолета-заправщика отраженного от дозаправляемого самолета сигнала и выделения фильтром 4 разностного сигнала последний подают на частотный детектор 5, на выходе которого формируется сигнал постоянного напряжения с амплитудой, пропорциональной частоте разностного сигнала. Если амплитуда сигнала на выходе частотного детектора 5 меньше амплитуд сигналов на выходе блоков 7 и 10 опорных напряжений, то на выходах аналоговых компараторов 8 и 9 будет аналоговый ноль (0), который будет и на выходах элементов И 12 и 13 и на которые исполнительные блоки 14 и 15 не среагируют.

Если же амплитуда сигнала на выходе частотного детектора 5 будет больше амплитуды сигнала на выходе блока 7 опорных напряжений, но меньше амплитуды сигнала на выходе блока 10 опорных напряжений, то на выходе аналогового компаратора 8 будет аналоговая единица (1), которая будет и на выходе элемента И 12 и на которую среагируют исполнительный блок 14, заставив самолет-заправщик отвернуть от дозаправляемого самолета. При этом на выходе аналогового компаратора 9 будет логический 0.

Если же амплитуда сигнала на выходе частотного детектора 5 будет больше амплитуд сигналов на выходах блоков 7 и 10 опорных напряжений, то на выходе аналогового компаратора 9 будет логическая 1, которая будет и на выходе элемента И 13 и на которую среагируют исполнительный блок 15, заставив самолет-заправщик повернуть к дозаправляемому самолету. При этом на выходе элемента И 12 будет логический 0, как и на выходе элемента НЕ 11.

1. Способ перемещения самолета-заправщика параллельно курсу дозаправляемого самолета, заключающийся в формировании на радиолокационной станции определения момента выдачи команды на пуск защитного боеприпаса (РЛС), установленной на борту самолета-заправщика с антенной РЛС, максимум узконаправленной диаграммы направленности которой направлен перпендикулярно продольной оси самолета-заправщика, в сторону дозаправляемого самолета, коротких импульсов, в моменты возникновения и обнаружения на РЛС сигналов разностной частотой Fдо=2Vоfн/С и 3Fдо, где
fн - средняя частота излучаемого РЛС непрерывного сигнала с частотной модуляцией по одностороннему пилообразному линейно возрастающему закону (НЛЧМ сигнал), выбираемая из условия До/Vo=fн/Fм fд, где
fд и Fм - соответственно девиация частоты и частота модуляции НЛЧМ сигнала;
Vo - минимально возможная радиальная скорость дозаправляемого самолета;
До и С - соответственно выбираемое базовое расстояние и скорость света, отличающийся тем, что при формировании на РЛС короткого импульса, в момент обнаружения на ней сигнала с разностной частотой Fдо=2Vofн/С, самолет-заправщик поворачивают в сторону от дозаправляемого самолета, а при формировании на РЛС короткого импульса, в момент обнаружения на ней сигнала с разностной частотой 3Fдо=2Vоfн/С, самолет-заправщик поворачивают в сторону к дозаправляемому самолету, что позволяет удерживать борта самолетов на расстоянии от До до 3 До от антенны РЛС и перемещаться параллельными курсами.

2. Устройство для перемещения самолета-заправщика параллельно курсу дозаправляемого самолета, содержащее приемо-передающую антенну, вход которой, работающий на передачу, подключен к высокомощному выходу передатчика непрерывного сигнала с частотной модуляцией по одностороннему пилообразному линейно возрастающему закону (НЛЧМ сигнал), а выход, работающий на прием, подключен к первому входу смесителя, второй вход которого подключен к маломощному выходу передатчика НЛЧМ сигнала, а выход через фильтр разностных частот - к входу обнаружителя сигнала узкополосного спектра частот, отличающееся тем, что выход обнаружителя сигнала узкополосного спектра частот подключен к входам первого и второго элементов И, выходы которых подключены соответственно к первому и второму исполнительным блокам, выход фильтра разностных частот через частотный детектор подключен к входам первого и второго аналоговых компараторов, вторые входы которых подключены соответственно к выходам первого и второго блоков опорных напряжений, а выходы - к вторым входам соответственно первого и второго элементов И и выход второго аналогового компаратора через элемент НЕ подключен к третьему входу первого элемента И.



 

Похожие патенты:
Группа изобретений относится к способу и радиолокационной станции (РЛС) определения момента выдачи команды на пуск защитного боеприпаса. Способ заключается в том, что момент выдачи команды на пуск защитного боеприпаса устанавливают по началу возникновения и обнаружения на РЛС сигнала конкретной разностной частоты.

Изобретения относятся к радиолокационной технике. Достигаемый технический результат - расширение функциональных возможностей.

Изобретение относится к средствам уничтожения беспилотных летательных аппаратов. Устройство уничтожения дистанционно пилотируемых (беспилотных) летательных аппаратов (ДПЛА) состоит из ДПЛА и системы наведения с земли в виде радиолокатора.

Изобретения относятся к радиолокационной технике. Техническим результатом является повышение эффективности работы комплексов активной защиты объектов.

Изобретение относится к авиации, в частности к устройствам противодействия средствам обнаружения летательных аппаратов. .
Изобретение относится к радиолокационной технике и может быть использовано при создании комплексов активной защиты объектов. .

Для защиты воздушного судна от управляемых ракет с инфракрасными головками самонаведения определяют факт пуска одной или нескольких ракет, генерируют лазерное излучение с плотностью, превышающей плотность мощности теплового излучения двигателя воздушного судна, и посылают в точку нахождения ракеты, благодаря чему ракета получает ложную информацию о местонахождении цели. Повторяют вышеуказанное для каждой последующей ракеты. Повышается эффективность защиты воздушного судна. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области противодействия управляемому оружию, в частности, к способу противодействия ложной тепловой ловушкой. Способ применения ложной тепловой ловушки основан на обнаружении управляемого элемента поражения с тепловой головкой самонаведения. Способ заключается в определении текущей скорости полета летательного аппарата, в соответствии с которой регулируют силу тяги и время включения реактивного двигателя тепловой ловушки, в поджигании вышибного заряда и термического вещества тепловой ловушки, в выбросе тепловой ловушки и стабилизации ее полета в требуемом направлении, во включении в заданное время реактивного двигателя тепловой ловушки и осуществлении ее полета под действием силы тяги реактивного двигателя с требуемой скоростью. Достигается увеличение дальности полета тепловой ловушки. 2 ил.
Изобретения относятся к радиолокационной технике и могут быть использованы при создании комплексов активной защиты объектов. Достигаемый технический результат - повышение достоверности определения промаха снаряда в защищаемый объект, которая достигается за счет определения промаха снаряда в объект двумя способами, реализованными с использованием одного приемно-передающего СВЧ модуля частотного радиолокатора. Указанный результат достигается за счет измерения частот Доплера в дальней и ближней зонах обнаружения РЛС и сравнения их значений, которые при промахе снаряда в объект оказываются разными, а при попадании одинаковыми, а также за счет выбора частоты излучаемого РЛС сигнала при условии: Do/Vo=fo/Fmdfm, где fo - частота излучаемого непрерывного сигнала с частотной модуляцией по закону симметричной треугольной кривой, Vi-радиальная скорость снаряда, Fm и dfm - соответственно частота модуляции и девиация частоты сигнала, Do - известное расстояние до точки упреждения встречи, Vo и Fдо - радиальная скорость и частота Доплера защитного боеприпаса, и сравнения длительности второго и половины первого интервалов времени, первый из которых формируют между началами возникновения и обнаружения на РЛС соответственно сигналов частотой (N+4)Fдо и NFдо, где N число большее 3, а второй, между началами возникновения и обнаружения соответственно сигналов частотой 3Fдо и Fдо, когда между антенной РЛС и снарядом будут соответственно расстояния: (N+4)Do+(Vi/Vo)Do, NDo+(Vi/Vo)Do, 3Do+(Vi/Vo)Do и Do+(Vi/Vo)Do, и которые оказываются равными при точном попадании снаряда в объект, и разными при неточном. Устройство повышения достоверности определения промаха снаряда в защищаемый объект содержит частотный радиодальномер (РЛС), блок памяти, схему сравнения, элемент ИЛИ, обнаружитель сигнала узкополосного спектра частот и блок формирования команды на пуск защитного боеприпаса. 2 н.п. ф-лы.

Изобретения относятся к высокоскоростной радиолокационной технике и могут быть использованы при создании активной системы защиты объекта (человека-снайпера) от поражения его сверхскоростной малоразмерной целью (пулей). Техническим результатом является снижение массогабаритных и стоимостных характеристик РЛС формирования команды на срабатывание систем защиты. Указанный результат достигается за счет того, что формируют команду на срабатывание системы активной защиты объекта только при равенстве по длительности второго и половины первого интервалов времени, первый из которых формируют между началами возникновения и обнаружения на РЛС соответственно сигналов разностной частотой Fp4=(N+4)Fp и Fp3=NFp, где N - число большее 3, а второй - между началами возникновения и обнаружения соответственно сигналов разностной частотой Fp2=3Fp и Fр1=Fр=Fдо+А=2Vofo/С+Вtз, когда между антенной РЛС и целью будут расстояния Д4=(Fp4-A+Fi/3)C/2B, Д3=(Fр3-A+Fi/3)C/2B, Д2=(Fp2-A+Fi/3)C/2B, Д1=(Fp1-A+Fi/3)C/2B, где Fi=2Vifo/C - частота Доплера, С - скорость света, Vo - радиальная скорость защитного боеприпаса, fo - частота излучаемого непрерывного сигнала с частотной модуляцией по одностороннему пилообразному линейно возрастающему закону (НЛЧМ сигнал), B=Fmdfm и A=Btз - соответственно скорость изменения частоты НЛЧМ сигнала и часть частоты разностного сигнала, возникающая за счет искусственной задержки на время tз излучаемого НЛЧМ сигнала, Fm и dfm - соответственно частота модуляции и девиация частоты НЛЧМ сигнала. Радиолокатор «Антиснайпер» содержит антенну, элемент задержки, два смесителя, передатчик НЛЧМ сигнала, фильтр разностных частот, два генератора непрерывной частоты, аналоговый сумматор, широкополосный и узкополосный фильтры, амплитудный детектор, усилитель-ограничитель, компаратор, формирователь импульса, генератор счетных импульсов, реверсивный счетчик, цифровой компаратор, ждущий мультивибратор, три элемента И, два элемента ИЛИ, делитель на два, коммутатор, блок памяти, преобразователь кода. 2 н.п. ф-лы, 2 ил.

Группа изобретений относится к радиолокационной технике. Техническим результатом является повышение эффективности защиты объектов, что достигается за счет использования нескольких классов защитных боеприпасов, каждый из которых выстреливается в нужный момент времени и подрывается в своей определенной точке упреждения. Определяют защитные боеприпасы, подлежащие пуску, и их моменты пуска и подрыва, боеприпасы, совмещенные с радиолокационной станцией (РЛС) после обнаружения и определения момента возникновения на РЛС сигнала разностной частоты Fдо=2Vofн/C, где fн - частота излучаемого непрерывного сигнала с частотной модуляцией по одностороннему пилообразному линейно возрастающему закону (НЛЧМ сигнал), Vo и С - скорость последнего третьего защитного боеприпаса и скорость света, соответствующего моменту пуска последнего защитного боеприпаса в наиболее близко отстоящую от РЛС третью точку упреждения, причем на РЛС сначала определяют моменты возникновения сигналов разностных частот (N+4)Fдо и NFдо, когда цель находится соответственно на (До/Vo)[Vi+(N+4)Vo] и (До/Vo)(Vi+NVo) удалениях от приемно-передающей антенны РЛС, где N - положительное число, Vi - радиальная скорость цели, До - расстояние от приемно-передающей антенны РЛС до третьей точки упреждения, выбираемое из условия До/Vo=fн/Fмfд, fд и Fм - девиация частоты и частота модуляции НЛЧМ сигнала, затем определяют моменты возникновения сигналов разностных частот (А+4)Fдо и АFдо, когда цель находится соответственно на (До/Vo)[Vi+(А+4)Vo] и (До/Vo)(Vi+AVo) удалениях от приемно-передающей антенны РЛС, где А - положительное число, значительно меньшее N, и измеряют сначала интервал времени t между моментами возникновения сигналов разностных частот (N+4)Fдо и NFдo, после чего, в соответствии с длительностью измеренного интервала времени t, выбирают из совокупности заранее рассчитанных величин две: Дi=(До/Vo)(Vi+NVo) - дальность и (Vi+Vp1) - сумму скоростей, где Vp1 - скорость первого защитного боеприпаса, и вычисляют отношение t1=Дi/(Vi+Vp1), определяющее время между пуском первого защитного боеприпаса в момент, когда цель будет находится на (До/Vo)(Vi+NVo) расстоянии от приемно-передающей антенны РЛС и моментом подрыва первого защитного боеприпаса, когда он будет находиться в наиболее удаленной от РЛС первой точке упреждения - месте встречи с целью, а затем измеряют интервал времени t2 между моментами возникновения сигналов разностных частот (А+4)Fдо и АFдо, после чего, в соответствии с длительностью измеренного интервала времени t2, выбирают из совокупности заранее рассчитанных величин две: Дi=(До/Vo)(Vi+AVo) и (Vi+Vp2), где Vp2 - скорость следующего второго защитного боеприпаса, и вычисляют отношение t3=Дi/(Vi+Vp2), определяющее время между пуском второго защитного боеприпаса в момент, когда цель будет находиться на (До/Vo)(Vi+AVo) расстоянии от приемно-передающей антенны РЛС и моментом подрыва второго защитного боеприпаса, когда он будет находиться на уже меньшем удаленной от РЛС - очередной второй точке упреждения. Устройство определения защитного боеприпаса, подлежащего пуску, и его моментов пуска и подрыва содержит: антенну, передатчик НЛЧМ сигнала, смеситель, фильтр разностных частот, обнаружитель сигнала узкополосного спектра частот, регистр сдвига, два элемента И, элемент ИЛИ, два элемента задержки, два счетчика импульсов, генератор счетных импульсов, две схемы деления, четыре постоянных запоминающих устройства и два реле времени. 2 н.п. ф-лы, 1 ил.

Изобретения относятся к радиолокационной технике. Техническим результатом является расширение функциональных возможностей устройств определения защитного боеприпаса, подлежащего пуску. Защитный боеприпас, подлежащий пуску, выбирают по величине отношения интервала времени между началами формирования на радиолокационных станциях (РЛС) сигналов разностной частоты (N+4)2Vofo/C, где N - число значительно большее 1, fo - средняя частота излучаемого непрерывного сигнала с частотной модуляцией по одностороннему пилообразному линейно возрастающему закону, С, Do, Vo, Fm, dfm - известные: скорость света и расстояние, скорость, частота модуляции и девиация частоты, выбираемые из условия Do/Vo=fo/Fmdfm, к интервалу времени между началами формирования на одной из РЛС сигналов разностных частот (N+4)2Vofo/C и N2Vofo/C. Устройство формирования команды на защиту объекта от приближающейся к нему цели содержит две РЛС определения момента выдачи команды на пуск защитного боеприпаса, срабатывающий по фронту фазовый детектор с запоминанием знака, регистр сдвига, четыре элемента И, элемент ИЛИ, генератор импульсов, четыре счетчика, делитель, элемент задержки и цифровой компаратор. 3 н.п. ф-лы, 2 ил.

Группа изобретений относится к способу и устройству формирования команды на пуск защитного боеприпаса, а также к применению этого устройства в качестве радиолокационной станции (РЛС) измерения скорости цели, в качестве радиовзрывателя и в качестве измерителя интервала времени пролета целью известного расстояния. Способ заключается в определении момента выдачи команды на пуск защитного боеприпаса устанавливаемому по началу возникновения и обнаружения на РЛС сигнала конкретной разностной частоты. Команду на пуск защитного боеприпаса формируют только при равенстве по длительности второго и половины первого интервалов времени. Устройство содержит антенну, первый и второй смесители, передатчик непрерывного сигнала с частотной модуляцией по одностороннему пилообразному линейно возрастающему закону (НЛЧМ сигнал), фильтр разностных частот, генератор непрерывной частоты, широкополосный фильтр, усилитель-ограничитель, узкополосный полосовой фильтр, амплитудный детектор, компаратор, формирователь импульса, второй генератор непрерывной частоты, аналоговый сумматор, регистр сдвига, генератор счетных импульсов, реверсивный счетчик, цифровой компаратор, ждущий мультивибратор, три элемента И, два элемента ИЛИ, делитель на два, коммутатор, блок памяти, преобразователь кода. Вход антенны, работающий на передачу, подключен к высокомощному выходу передатчика НЛЧМ сигнала через элемент задержки. Технический результат заключается в повышении надежности обнаружения сверхскоростных целей. 5 н. и 1 з.п. ф-лы, 2 ил.

Изобретение относится к классу моделирующих устройств, которые следует рассматривать как учебные или тренировочные устройства. Устройство для тренировки должностных лиц боевых расчетов командных пунктов войск воздушно-космической обороны содержит узел доступа первого уровня, узел доступа второго уровня, маршрутизатор первого уровня, автоматизированное рабочее место сегмента первого уровня, автоматизированное рабочее место сегмента второго уровня. Кроме того, в заявленное устройство дополнительно включены блок задания сценария тренировки, генератор опорных данных об обстановке, блок завязывания трасс, блок учета факта поражения, имитатор обстановки с соответствующими связями. На подготовительном этапе работы устройства руководитель тренировки через вход блока задания сценария тренировки вводит в оперативную память указанного блока данные о замысле тренировки и основных параметрах, необходимых и достаточных для формирования электронной модели воздушно-космической обстановки. В ходе тренировки автоматически определяется командный пункт (или пункты), являющийся источником координатной информации. В устройстве учитывается факт условного поражения конкретных имитируемых воздушных и космических целей. В результате технически обеспечиваются условия для создания и постоянного наращивания на рабочих местах пространственно-разнесенных командных пунктов войск воздушно-космической обороны поучительной воздушной и космической обстановки. 1 ил.

Группа изобретений относится к оборонной технике. При способе противодействия оптико-электронным системам с лазерным наведением (ОЭСЛН) регистрируют облучающие лазерные импульсы и генерируют помеховые лазерные импульсы определенным способом сразу после регистрации каждого облучающего лазерного импульса. Устройство противодействия оптико-электронным системам с лазерным наведением содержит приемник лазерного излучения, усилительно-преобразовательный блок обработки сигналов, формирователь импульсов запуска лазера, лазер, блок наведения помеховых лазерных импульсов и блок его управления, блок определения минимального временного интервала между облучающими лазерными импульсами, соединенные определенным образом. Обеспечивается высокая эффективность противодействия ОЭСЛН при любой частотно-временной последовательности облучающих импульсов. 2 н.п. ф-лы, 2 ил.

Изобретение относится к военной технике. При адаптивном способе защиты объекта от управляемой по лазерному лучу ракеты обнаруживают лазерный сигнал ракеты. Определяют координаты источника этого излучения. Производят ориентацию помехового лазера по этим координатам. Обнаруживают лазерные сигналы управления ракетой, отраженные ее корпусом. Определяют их градиент мощности и сравнивают с заданным порогом. Формируют помеховый сигнал частотно-импульсного помехового лазера путем изменения его частоты до значения, превышающего заданное значение порога градиентом мощности отраженных корпусом ракеты лазерных сигналов управления. Обеспечивается высокая эффективность защиты объекта от управляемых по лазерному лучу ракет. 2 ил.
Наверх