Способ мембранно-адсорбционного концентрирования водорода из обедненных газовых смесей (варианты)

Изобретение относится к области химии и биотехнологии. Способ непрерывного выделения и концентрирования водорода из биосингаза, состоящего из пяти и более компонентов, включающий подачу биосингаза из реактора (пиролизного реактора или биореактора) с помощью компрессора в мембранный модуль для предконцентрирования водорода в пермеате или ретентате и последующую подачу пермеата (после дополнительного компремирования) или ретентата (без дополнительного компремирования) в блок короткоцикловой адсорбции с получением на выходе концентрата водорода. При этом мембраны с селективностью H2/CO2>1 используют для предконцентрирования водорода в виде пермеата; мембраны с селективностью H2/CO2<1 используют для предконцентрирования водорода в виде ретентата. Технический результат заключается в обеспечении возможности выделения водорода из биогаза и возможности длительного применения мембраны. 2 н.п. ф-лы, 5 ил., 1 табл.

 

Изобретение относится к области химии и биотехнологии, а именно разделению газовых смесей, и может применяться в различных отраслях промышленности, энергетики и сельского хозяйства. Особое применение способа предназначено для концентрирования водорода из биосингаза, состав которого варьируется в зависимости от условий пиролиза и сырья: Н2 (25-45%), СН4 (~1%), CO (25-42%), CO2 (10-35%), N2 (2-5%) H2S(~1). Одним из процессов разделения газовых смесей, еще ограниченно применяемым в промышленных масштабах, являются мембранное разделение и короткоцикловая адсорбция (КЦА). Мембранный процесс газоразделения достаточно эффективно применяется для получения азота из воздуха; обогащения воздуха кислородом, концентрирования водорода из смесей с содержание Н2>50%, удаления CO2 из биогаза и природного газа [Richard W. Baker. Membrane technology and application. - 2nd ed. - California, USA: John Wiley &Sons, Ltd, 2004. - 538 p.]. Процессы короткоцикловой адсорбции известны достаточно давно [Skarstrom С.W. Method and apparatus for fractionating gaseous mixtures by adsorption. US Pat. 2,944,627 (1960)] и позволяют разделять смеси газов с различной адсорбционной способностью, включая водород-содержащие газовые смеси, причем эффективность разделения экономически оправдана только при исходном содержании водорода >60% [Ritter J.A., A.D.Ebner. State-of-the-Art Adsorption and Membrane Separation Processes for Hydrogen Production in the Chemical and Petrochemical Industries // Separation Science and Technology. - 2007. - №42 (6). - С.1123-1193]. Перспективность применения описанных выше процессов принципиально оправдана тем, что в обоих случаях нет затрат на фазовые переходы (как, например, в криогенных технологиях), способы характеризуются малой энергоемкостью, безреагентностью, достаточной компактностью оборудования, достаточной простотой управления и масштабирования.

Мембранное разделение газовых смесей по принципу «диффузионной растворимости» заключается в том, что разделяемая смесь (сырье - питающий поток) приводится в контакт с одной стороной селективно проницаемой непористой мембраны, при этом проникшая через мембрану смесь (пермеат) обогащена легко-проницаемым компонентом, а непроникшая через мембрану смесь (ретентат) - обогащена труднопроницаемым компонентом.

На практике движущей силой процесса является градиент концентрации (градиент парциального давления), который достигается одним из методов по тангенциальной схеме (фиг.1):

- либо подачей питающей смеси в мембранный модуль (до мембраны) при повышенных давлениях и отвода пермеата при атмосферном давлении;

- либо подачей питающей смеси в мембранный модуль (до мембраны) при повышенных давлениях и отвода пермеата вакуумированием;

- либо подачей питающей смеси в мембранный модуль (до мембраны) при атмосферном давлении и отвода пермеата вакуумированием;

Последний из указанных методов обычно применяют в лабораторных исследованиях. Отметим, что выбор полимерной мембраны происходит чисто эмпирически - по известным газоразделительным свойствам полимера селективного слоя. Как правило, эти данные очень ограничены и не охватывают все многообразие пенетрантов (компонентов смеси), например, биосингаза; если водород-содержащие смеси содержат CO2, то и водород и CO2 (их проницаемости близки) накапливаются в пермеате и концентрирования водорода в чистом виде не происходит.

Известен способ, включающий стадию КЦА и последующее мембранное разделения для разделения смесей водорода и углеводородов (см. патент США 6,183,628, от 6 февраля 2001 года). Здесь КЦА отводится роль предконцентратора для водорода, так как водород относится к несорбируемым газам, а углеводороды - к сильносорбируемым газам. Мембраны усиливают концентрирование водорода за счет того, что мембраны являются углеводород-селективными. Отделить водород от CO2 по такой схеме не представляется возможным, поскольку при наличии в смеси CO2 этот компонент должен скапливаться в углеводородной фракции, а CO2 и H2 мембранами не разделяются и тем более такой метод не подходит к выделению водорода из биосингаза, где углеводороды не представлены.

Наиболее близким к заявленному является способ очистки газообразного водорода из газовой смеси, содержащей незначительное количество водорода, с помощью системы, включающей этап мембранного разделения и этап короткоцикловой адсорбции (КЦА). В соответствии с изобретением данная система очистки работает на одном компрессоре, который обеспечивает одновременно сжатие пермеата, обогащенного водородом, между этапом мембранного разделения и этапом КЦА (PSA) и сжатие газа регенерации, выходящего из устройства КЦА (PSA) до его рециклинга (Патент №2904821, Франция, МПК C01B 3/56, опубл. 15.02.2008).

Однако данное техническое решение не предназначено к выделению и концентрированию водорода из биосингаза (биосингаз получают при небольших давлениях), так как не оговариваются разделительные свойства мембраны: водород может концентрироваться как пермеате, так и в ретентате и, кроме того, не ясно, где будет концентрироваться CO2 как балластный компонент. Более того, не ясно, где будут концентрироваться другие компоненты биосингаза.

Задача изобретения состоит в том, чтобы обеспечить выделение водорода из биосингаза для дальнейшего использования в качестве энергоносителя, получаемого из трудно-перерабатываемой биомассы. Предлагаемый способ предполагает длительное рабочее применение, так как и мембрана и КЦА известны тем, что срок их действия без замены мембраны и/или адсорбента составляет не менее 10 лет.

Для решения указанной задачи предложены два варианта способа непрерывного выделения и концентрирования водорода из биосингаза общего состава Н2 (25-45%), СН4 (-1%), CO (25-42%), CO2 (10-35%), N2 (2-5%) H2S (~1) мембранно-сорбционным методом, включающим мембранное предконцентрирование водорода и последующее выделение водорода с помощью коротко-цикловой адсорбции.

Предложен способ мембранно-адсорбционного концентрирования водорода из обедненных газовых смесей, включающий, стадии сжатия потока газовых смесей, мембранного предконцентрирования водорода, и концентрирования водорода в блоке короткоцикловой адсорбции КЦА с последующим отводом водорода потребителю, при этом, в качестве смеси газов используют биосингаз, осуществляют его сжатие до мембранного предконцентрирования с последующим сжатием пермеата перед блоком короткоцикловой адсорбции КЦА, при этом отводят ретентат после разделения газовой смеси на мембране с селективностью H2/CO2>1.

Также предложен способ мембранно-адсорбционного концентрирования водорода из обедненных газовых смесей, включающий, стадии сжатия потока газовых смесей, мембранного предконцентрирования водорода, и концентрирования водорода в блоке короткоцикловой адсорбции КЦА с последующим отводом водорода потребителю, при этом в качестве смеси газов используют биосингаз, осуществляют его сжатие до мембранного предконцентрирования с последующим отводом пермеата, и подачей ретентата в блок короткоцикловой адсорбции КЦА, при этом селективность мембраны должна быть H2/CO2<1.

На фигуре 1 показана тангенциальная схема работы мембранного модуля.

На Фигуре 2 дана зависимость концентрации H2 в пермеате от степени тбора (θ) при разделении биосингаза различными мембранами.

На Фигуре 3 дана зависимость степени извлечения (б) от степени отбора (θ) при разделении биосингаза различными мембранами.

На Фигуре 4 показана схема мембранного предконцентрирования водорода в пермеате после реактора по переработке вторичных отходов с последующей подачей на блок КЦА для получения концентрата водорода.

На Фигуре 5 показана схема мембранного предконцентрирования водорода в ретентате после реактора по переработке вторичных отходов с последующей подачей на блок КЦА для получения концентрата водорода.

На фигурах позициями обозначены:

1 - биореактор для переработки биомассы,

2, 6 - компрессор,

3 - мембранный модуль,

4 - ретентат

5 - пермеат

7 - блок КЦА,

8 - водород.

Способ осуществляется следующим образом.

В первом варианте биосингаз из реактора по переработке вторичных отходов 1 направляют в компрессор 2, осуществляя сжатие биосингаза, далее в мембранном блоке 3 происходит разделение смеси на мембране с селективностью H2/CO2>1, после чего ретентат 4 отводят из мембранного блока 3, а перметат сжимают в компрессоре 6 и направляют в блок КЦА 7, где происходит концентрирование водорода с последующим отводом его потребителю 8.

Во втором варианте биосингаз из реактора по переработке вторичных отходов 1 направляют в компрессор 2, осуществляя сжатие биосингаза, далее в мембранном блоке 3 происходит разделение смеси на мембране с селективностью H2/CO2<1, после чего пермеат 5 отводят из мембранного блока 3, а ретентат 4 направляют в блок КЦА 7 для дальнейшего концентрирования водорода и отвода его потребителю 8.

При реализации способа были исследованы газоразделительные свойства мембран, данные сведены в таблицу.

Таблица
Вид мембраны Газ, Q, л/(м2·час·атм)
GENERON® H2 He CO2 O2 SO2 H2S N2 CO CH4 C3H8
160 180 45 13,6 10,31 41 1,8 1,61 1,3 0,11
ПВТМС 2000 1800 1600 450 10001 3501 120 1501 220 40
AIR PRODUCTS® 151 151 104 22,7 47,51 14,281 3,8 6,6 6,3 7,251
СИЛАР® 440 250 2000 400 2570 1195 190 270 545 28181

Из таблицы видно, что, например, мембраны GENERON® обладают небольшой положительной селективностью Н2/CO2>1; мембраны СИЛАР - небольшой отрицательной селективностью Н2/CO2<1. В первом случае мембранный блок лучше использовать для предконцентрирования водорода в виде пермеата, а во-втором случае - в виде ретентата.

На Фиг.2 и 3 приведены примеры использования мембранного блока для предконцентрирования водорода в виде пермеата (мембраны GENERON®, ПВТМС, AIR PRODUCTS®) и виде ретентата (мембраны СИЛАР®). Видно, что в ретентате концентрация водорода может достигать минимально необходимые 50% при степенях отбора ~0.7. В других вариантах во всех случаях концентрация водорода >50%. Сравнительные зависимости построены по методике Тепляков В.В., Малых О.В., Амосова О.Л., Ястребов Р.А. Программа для ЭВМ «Расчет мембранного разделения многокомпонентных газовых смесей с использованием базы данных по мембранам с функцией расчетной оценки недостающих экспериментальных величин. Свидетельство №2011615930 от 28 июля 2011 с использованием доступных экспериментальных данных по газопроницаемости коммерческих полимерных мембран.

Таким образом, предложение позволит достичь концентрирования водорода из биосингаза с технической чистотой (до 98%) независимо от его содержания в исходном сырье в пределах 10-40% с возможностью реализации промышленного применения способа.

1. Способ мембранно-адсорбционного концентрирования водорода из обедненных газовых смесей, включающий стадии сжатия потока газовых смесей, мембранного предконцентрирования водорода, и концентрирования водорода в блоке короткоцикловой адсорбции КЦА с последующим отводом водорода потребителю, отличающийся тем, что в качестве смеси газов используют биосинтезгаз, осуществляют его сжатие до мембранного предконцентрирования с последующим сжатием пермеата перед блоком короткоцикловой адсорбции КЦА, при этом отводят ретентат после разделения газовой смеси на мембране с селективностью Н2/CO2>1.

2. Способ мембранно-адсорбционного концентрирования водорода из обедненных газовых смесей, включающий стадии сжатия потока газовых смесей, мембранного предконцентрирования водорода, и концентрирования водорода в блоке короткоцикловой адсорбции КЦА с последующим отводом водорода потребителю, отличающийся тем, что в качестве смеси газов используют биосинтезгаз, осуществляют его сжатие до мембранного предконцентрирования с последующим отводом пермеата, и подачей ретентата в блок короткоцикловой адсорбции КЦА, при этом селективность мембраны должна быть H2/CO2<1.



 

Похожие патенты:

Изобретение относится к области химии. Сырьевой поток 209 разделяют в первой адсорбционной системе с переменным давлением (PSA1) на первую фракцию 210, включающую в значительной степени адсорбированные компоненты и на вторую фракцию 212, включающую в значительной степени неадсорбированные компоненты, при этом первая фракция 210 включает большую часть СН4 и CO2 из сырьевого потока, а вторая фракция 212 включает большую часть Н2 и СО из сырьевого потока.

Изобретение относится к области химии. .

Изобретение относится к способам разделения газовых смесей методом короткоцикловой безнагревной адсорбции. .

Изобретение относится к области химии и может быть использовано для выделения и очистки водорода. .

Адсорбер // 2257944
Изобретение относится к устройствам для разделения газов адсорбцией, в частности к адсорберам для осуществления циклического адсорбционно-десорбционного процесса разделения воздуха.

Изобретение относится к технологии разделения газов на цеолитах короткоцикловой безнагревной адсорбцией и предназначено для разделения на кислородо- и азотообогащенные газы газа переменного состава с постоянно увеличивающейся концентрацией кислорода.

Изобретение относится к адсорбционной технике, а именно к конструктивному оформлению процессов сорбции, и может быть применено в газовой, химической и нефтехимической промышленности.

Изобретение относится к области очистки газов адсорбентами, регенерация которых осуществляется горячим газом, проходящим через адсорбент . .

Изобретение относится к способу и устройству для отделения по меньшей мере одного газообразного компонента из отработанного газа установки для изготовления жидкого чугуна, жидкого стального полуфабриката или губчатого железа. На первом этапе поток отработанного газа при первом давлении проходит через, по меньшей мере, один адсорбционный сепаратор, посредством чего газообразный компонент преобладающим образом отделяется из отработанного газа. На втором этапе газообразный компонент при втором давлении, которое ниже, чем первое давление, преобладающим образом удаляется из адсорбционного сепаратора. Изобретение позволяет создать способ и устройство, которое не требует технического обслуживания, обуславливает низкие инвестиционные затраты и затраты энергии и характеризуется незначительной занимаемой площадью. 2 н. и 10 з.п. ф-лы, 6 ил.
Изобретение относится к способу эксплуатации коксовой печи. Согласно способу возникающий в процессе коксования коксовый газ в виде полезного газа подается на материальную переработку, при этом от коксового газа отделяют водород, а для создания части необходимой для процесса коксования тепловой энергии в качестве горючего газа подается синтез-газ, который получают из ископаемого топлива посредством процесса газификации, при этом в качестве горючего газа используют первую долю полученного синтез-газа, при этом дополнительную долю полученного синтез-газа используют для дальнейшего синтеза с отделенным от коксового газа водородом. Изобретение обеспечивает эффективное использование возникающего коксового газа при эксплуатации коксовой печи. 24 з.п. ф-лы.

Изобретение относится к системе для получения кислорода в учреждении, содержащей по меньшей мере одно устройство для получения медицинского воздуха, блок адсорбции с перепадом давления, который служит для получения потока кислорода, и учреждение, содержащее сеть трубопроводов для медицинского воздуха и вакуумную систему, причем по меньшей мере одно устройство для получения медицинского воздуха присоединено к сети трубопроводов для медицинского воздуха, при этом по меньшей мере первая часть потока получаемого медицинского воздуха подается из по меньшей мере одного устройства для получения медицинского воздуха к сети трубопроводов для медицинского воздуха. При этом по меньшей мере одно устройство для получения медицинского воздуха присоединено к блоку адсорбции с перепадом давления, при этом по меньшей мере вторая часть потока получаемого медицинского воздуха подается в качестве исходного газа в блок адсорбции с перепадом давления, причем блок адсорбции с перепадом давления и вакуумная система соединены между собой, при этом обеспечивается регенерация адсорбера или адсорберов блока адсорбции с перепадом давления с помощью вакуумной системы. Также изобретение относится к способу работы системы и способу ее монтажа. Использование настоящего изобретения позволяет использовать имеющуюся инфраструктуру медицинского учреждения. 3 н. и 20 з.п. ф-лы, 1 ил.

Изобретение относится к способам разделения газовых смесей короткоцикловой безнагревной адсорбцией. Способ реализуется на установке, которая состоит, в частности, из источника давления, трех идентичных адсорбционных колонн, системы переключающих клапанов. Поток разделяемой газовой смеси под давлением пропускают через слой адсорбента одновременно в одной из трех параллельно соединенных адсорбционных колонн, в которых циклически и последовательно организовывают режимы адсорбции и десорбции при повышении и понижении давления, посредством переключения системы входных, продувочных и перепускных клапанов. Из трех адсорбционных колонн в каждый момент времени две находятся в режиме адсорбции хорошо сорбируемых компонентов газовой смеси, одна находится в режиме десорбции ранее сорбированных компонентов газовой смеси. В сравнении с традиционно применяющимися установками с двумя адсорбционными колоннами, изобретение позволяет обеспечить непрерывность и повышенную равномерность потреблени разделяемой газовой смеси, непрерывность и повышенную равномерность продуцирования целевого газа, а также позволяет повысить степень извлечения целевых компонентов из газовой смеси с сопутствующим увеличением срока службы адсорбента, снижением общих габаритов и материалоемкости установки. 2 ил.

Описаны способ и устройство для повышения степени извлечения гелия. Поток, содержащий гелий и по меньшей мере один способный окисляться компонент, вводят в зону окисления в присутствии кислорода для окисления способного окисляться компонента с образованием первого потока паров и первого потока жидкости. Первый поток паров вводят в зону адсорбции при переменном давлении для образования потока очищенного гелия и потока хвостового газа. Поток хвостового газа подвергают сжатию. Сжатый поток хвостового газа вводят в зону мембранного разделения для образования обогащенного гелием потока пермеата и потока ретентата. Обогащенный гелием поток пермеата подвергают сжатию и возвращают в систему окисления. Технический результат: увеличение степени извлечения гелия путем доизвлечения его из пермеата. 3 н. и 17 з.п. ф-лы, 1 ил., 1 табл., 1 пр.

Изобретение относится к химической промышленности и может быть использовано при производстве азота, кислорода и аргона из атмосферного воздуха. Способ включает использование нескольких адсорбционных колонн. Основные колонны (1, 2) заполнены адсорбентом, поглощающим нецелевые компоненты газовой смеси, а вспомогательные адсорбционные колонны (3) заполнены адсорбентом, поглощающим целевой компонент газовой смеси. Сырьевую газовую смесь под избыточным давлением подают в основные адсорбционные колонны (1, 2), после чего обогащенный целевым продуктом газ перемещают в вспомогательные адсорбционные колонны (3), где адсорбент поглощает целевой газ. После этого целевой газ выделяют из адсорбента и перемещают обратно в основные адсорбционные колонны (1, 2), где поднимают давление целевого газа с его доведением до высокой чистоты. Адсорбенты подбираются таким образом, чтобы время насыщения адсорбента в основных адсорбционных колоннах было примерно вдвое больше времени насыщения адсорбента в одной или нескольких вспомогательных адсорбционных колоннах. Изобретение позволяет уменьшить сложность технологической схемы, общие габариты и материалоемкость установки. 5 з.п. ф-лы, 1 табл., 1 ил.

Изобретение относится к мембранно-адсорбционным устройствам с использованием газового эжектора для разделения газовых смесей. Эжекторное мембранно-сорбционное устройство для разделения газовых смесей содержит компрессор, к выходу которого подключен вход эжекционного смесителя, через регулятор давления газа по меньшей мере два адсорбера, заполненных твердым адсорбентом и через регулятор давления газа вход десорбционного эжектора. Выход эжекционного смесителя через регулятор расхода газа подключен к первому распределительному клапану. Входы адсорберов подключены к первому распределительному клапану для переключения потока сжатого газа из компрессора между адсорберами. Выходы адсорберов снабжены управляющими клапанами для отвода газа из адсорберов в сбросной трубопровод и подключены через второй распределительный клапан к мембранному фильтру, один из патрубков отвода которого соединен с потребителем, а второй с эжекционным смесителем. Технический результат - обеспечение стационарного режима работы мембранного фильтра при постоянных потоках питания и продукта и постоянного потока вытеснения с адсорберов для обеспечения максимальных разделительных характеристик устройства в целом. 2 з.п. ф-лы, 1 ил., 2 пр.

Изобретение относится к устройствам для разделения смеси газов адсорбцией при переменном давлении и может быть использовано при разделении воздуха путем короткоцикловой безнагревной адсорбции с получением газовой смеси с повышенным содержанием кислорода. Адсорбционная установка состоит из электропривода 1, редуктора 2, роторно-пластинчатого адсорбционного модуля 3. Роторно-пластинчатый адсорбционный модуль состоит из следующих конструктивных элементов: статора 4, внутренний криволинейный профиль которого образован двумя окружностями с меньшим и большим радиусом, переход между которыми осуществляет через криволинейные сопрягающие поверхности, в котором имеются впускное отверстие с фильтрующим элементом 5 для разделяемой газовой смеси и выпускное отверстие, оборудованное глушителем 6 и фильтром 7 для удаления газа при регенерации; вращающегося ротора 8 цилиндрической формы с радиальными пазами, на внешней поверхности которого между радиальными пазами имеются полости, заполненные адсорбентом 9, повторяющим по форме внешнюю поверхность ротора, от каждой полости к центру ротора радиально отходит канал, соединяемый с одной из торцевых поверхностей ротора; свободнодвижущихся уплотнительных пластин 10, установленных в пазы ротора; двух торцевых крышек, одна из которых изготовлена как крышка ресивера и имеет два отверстия, одно отверстие служит для установки однонаправленного регулируемого клапана 11 и подачи обогащенного кислородом воздуха, второе отверстие служит для установки дросселя 12 и обеспечивает дросселирование газа при регенерации в рабочий объем роторно-пластинчатого модуля; ресивера 13; регулировочного устройства расхода продуктового газа потребителю 14. Технический результат изобретения заключается в упрощении конструкции, уменьшении массовых и габаритных характеристик, повышении удельной производительности и надежности адсорбционной установки. 9 ил.

Изобретение относится к области отделения кислорода. Способ отделения кислорода из кислородсодержащего газа содержит этапы, по меньшей мере, первого и второго периодов отделения кислорода, где каждый первый и второй периоды отделения кислорода содержат этапы направления кислородсодержащего газа на первичную сторону устройства (12, 14) отделения кислорода, содержащего сорбент (16, 18) для отделения кислорода, и генерирования потока обогащенного кислородом газа из устройства (12, 14) отделения кислорода путем создания разности давлений между первичной стороной и вторичной стороной устройства (12, 14) отделения кислорода. Способ содержит этап охлаждения между первым и вторым периодами отделения кислорода, где данный период охлаждения содержит этапы направления добавляемого сорбата через устройство (12, 14) отделения кислорода, причем добавляемый сорбат имеет энергию адсорбции е1 в отношении сорбента (16, 18) для отделения кислорода, и направления охлаждающего сорбата через устройство (12, 14) отделения кислорода. Охлаждающий сорбат имеет энергию адсорбции е2 в отношении сорбента (16, 18) для отделения кислорода. Энергия адсорбции е2 меньше, чем энергия адсорбции е1. Изобретение позволяет обеспечить улучшение отделения кислорода, особенно при высоких температурах. Изобретение также предлагает сепаратор кислорода (10). 2 н. и 7 з.п. ф-лы, 3 ил.

Изобретение относится к кислородному сепаратору, включающему в себя по меньшей мере одно отделяющее кислород устройство, содержащее кислородоотделяющий сорбент для отделения кислорода от кислородсодержащего газа, причем отделяющее кислород устройство имеет газовый впуск на первичной стороне, присоединенный к впускному трубопроводу для направления потока кислородсодержащего газа в отделяющее кислород устройство, и имеет газовый выпуск на вторичной стороне, присоединенный к выпускному трубопроводу для направления потока обогащенного кислородом газа из отделяющего кислород устройства, причем вторичная сторона отделяющего кислород устройства дополнительно соединена с источником продувочного газа для направления продувочного газа через отделяющее кислород устройство, и при этом первичная сторона отделяющего кислород устройства соединена с отводным трубопроводом для направления отходящего газа из кислородного сепаратора, причем кислородный сепаратор дополнительно включает в себя регулирующее давление устройство (40) для создания перепада давления между первичной стороной и вторичной стороной отделяющего кислород устройства, и при этом в отводном трубопроводе предусмотрен газовый датчик для определения концентрации по меньшей мере одного компонента отходящего газа. Изобретение обеспечивает улучшенную управляемость. 2 н. и 7 з.п. ф-лы, 3 ил.
Наверх