Соединения иттербия с o,n-хелатным гетероциклическим лигандом, люминесцирующие в ик-области, и органический ик-излучающий диод с использованием указанных соединений в качестве эмиссионного слоя



Соединения иттербия с o,n-хелатным гетероциклическим лигандом, люминесцирующие в ик-области, и органический ик-излучающий диод с использованием указанных соединений в качестве эмиссионного слоя
Соединения иттербия с o,n-хелатным гетероциклическим лигандом, люминесцирующие в ик-области, и органический ик-излучающий диод с использованием указанных соединений в качестве эмиссионного слоя
Соединения иттербия с o,n-хелатным гетероциклическим лигандом, люминесцирующие в ик-области, и органический ик-излучающий диод с использованием указанных соединений в качестве эмиссионного слоя
Соединения иттербия с o,n-хелатным гетероциклическим лигандом, люминесцирующие в ик-области, и органический ик-излучающий диод с использованием указанных соединений в качестве эмиссионного слоя
Соединения иттербия с o,n-хелатным гетероциклическим лигандом, люминесцирующие в ик-области, и органический ик-излучающий диод с использованием указанных соединений в качестве эмиссионного слоя
Соединения иттербия с o,n-хелатным гетероциклическим лигандом, люминесцирующие в ик-области, и органический ик-излучающий диод с использованием указанных соединений в качестве эмиссионного слоя
Соединения иттербия с o,n-хелатным гетероциклическим лигандом, люминесцирующие в ик-области, и органический ик-излучающий диод с использованием указанных соединений в качестве эмиссионного слоя
Соединения иттербия с o,n-хелатным гетероциклическим лигандом, люминесцирующие в ик-области, и органический ик-излучающий диод с использованием указанных соединений в качестве эмиссионного слоя
Соединения иттербия с o,n-хелатным гетероциклическим лигандом, люминесцирующие в ик-области, и органический ик-излучающий диод с использованием указанных соединений в качестве эмиссионного слоя
Соединения иттербия с o,n-хелатным гетероциклическим лигандом, люминесцирующие в ик-области, и органический ик-излучающий диод с использованием указанных соединений в качестве эмиссионного слоя
Соединения иттербия с o,n-хелатным гетероциклическим лигандом, люминесцирующие в ик-области, и органический ик-излучающий диод с использованием указанных соединений в качестве эмиссионного слоя
Соединения иттербия с o,n-хелатным гетероциклическим лигандом, люминесцирующие в ик-области, и органический ик-излучающий диод с использованием указанных соединений в качестве эмиссионного слоя
Соединения иттербия с o,n-хелатным гетероциклическим лигандом, люминесцирующие в ик-области, и органический ик-излучающий диод с использованием указанных соединений в качестве эмиссионного слоя
Соединения иттербия с o,n-хелатным гетероциклическим лигандом, люминесцирующие в ик-области, и органический ик-излучающий диод с использованием указанных соединений в качестве эмиссионного слоя
Соединения иттербия с o,n-хелатным гетероциклическим лигандом, люминесцирующие в ик-области, и органический ик-излучающий диод с использованием указанных соединений в качестве эмиссионного слоя
H01L51/50 - Приборы на твердом теле, предназначенные для выпрямления, усиления, генерирования или переключения или конденсаторы или резисторы по меньшей мере с одним потенциальным барьером или поверхностным барьером; с использованием органических материалов в качестве активной части или с использованием комбинации органических материалов с другими материалами в качестве активной части; способы или устройства специально предназначенные для производства или обработки таких приборов или их частей (способы или устройства для обработки неорганических полупроводниковых тел, включающей в себя образование или обработку органических слоев на них H01L 21/00,H01L 21/312,H01L 21/47)

Владельцы патента RU 2509772:

Федеральное государственное бюджетное учреждение науки Институт металлоорганической химии им Г.А. Разуваева Российской академии наук (ИМХ РАН) (RU)

Изобретение относится к новым химическим соединениям иттербия, люминесцирующим в ближней ИК-области, в частности к соединениям иттербия, содержащим, по меньшей мере, один O,N-хелатный гетероциклический лиганд. Лиганд представляет собой кислотный остаток ароматического спирта, имеющего от 2 до 4 конденсированных шестичленных углеродных циклов и в орто-положении азольный заместитель с гетероатомом Х (где Х - сера, или кислород, или NH). Соединения имеют общую формулу I

где 1 - кислотный остаток ароматического спирта, имеющего от 2 до 4 конденсированных шестичленных углеродных циклов; 2 - азольный заместитель с гетероатомом, являющийся 1-бензотиазольным, 1-бензоимидазольным или 1-бензоксазольным фрагментом. Также предложен органический светоизлучающий диод. Изобретение позволяет получить соединения иттербия, проявляющие люминесценцию в ближней ИК-области. 2 н. и 6 з.п. ф-лы, 1 ил., 1 табл., 3 пр.

 

Заявляемое изобретение относится к новым химическим соединениям иттербия, люминесцирующим в ближней ИК-области, в частности к комплексам с O,N-хелатным гетероциклическим лигандом, представляющим собой кислотный остаток ароматического спирта, имеющего от 2 до 4 конденсированных шестичленных углеродных циклов и в орто-положении азольный заместитель с гетероатомом Х (где Х - сера, или кислород, или NH), общей формулы I

где 1 - кислотный остаток ароматического спирта, имеющего от 2 до 4 конденсированных шестичленных углеродных циклов; 2 - азольный заместитель с гетероатомом, являющийся 1-бензотиазольным, 1-бензоимидазольным или 1-бензоксазольным фрагментом.

Изобретение относится также к области полупроводниковой оптоэлектроники, а именно к твердотельным источникам ИК-излучения на основе органических светоизлучающих диодов (OLED - Organic Light Emitting Diodes), которые используются для создания экономичных и эффективных источников ИК-излучения.

Спектральный диапазон, эффективность и интенсивность излучения OLED зависят от использованных при их производстве эмиссионных материалов. Особый интерес представляют люминесцентные материалы, излучающие в ИК-области, которые могут быть использованы для создания органических светодиодов, в лазерной технике в качестве источников накачки и активных сред, в медицинской диагностике в качестве люминесцентных меток и других областях. Поэтому задача поиска и исследования новых эффективных и устойчивых ИК-люминесцирующих материалов является одной из приоритетных.

Несмотря на большие успехи, достигнутые в области органических светоизлучающих диодов, задача поиска и исследования новых органических материалов, проявляющих электролюминесцентные свойства в ИК-области, остается в настоящий момент чрезвычайно актуальной. Известно, что соединения иттербия обладают ИК-люминесценцией, которая может генерироваться в результате оптического или других видов возбуждения, например, электротоком (электролюминесценция) (см. М.Н. Бочкарев, А.Г Витухновский, М.А. Каткова. "Органические светоизлучающие диоды (OLED)", Нижний Новгород, 2011, стр.272). Наиболее проблемной областью органических светодиодов, излучающих в ИК-диапазоне, является их недостаточно высокая эффективность. Лучшие на сегодня рабочие характеристики ИК-излучающих диодов на основе органолантаноидных соединений получены на тетрафенилпорфириновых соединениях иттербия (интенсивность 10 мкВт/см2, внешний квантовый выход 0,013% (см. Chem. Mater., 16 (2004) 2938) и трис[2-(1,3-бензоксазол-2-ил)фенолят] иттербия (максимальная интенсивность излучения 286 мкВт/см2, эффективность по мощности при 12 В составляет 1.22 мВт/Вт (см. J. Mater. Chem., 21 (2011) 16611).

Наиболее близкими по сущности и достигаемому эффекту являются комплексы иттербия состава Yb(ХОМ)3 с димерной структурой Yb2(OON)6 - (2-(2-бензоксазол-2-ил)фенолят), Yb2(SON)6 - (2-(2-бензотиазол-2-ил)фенолят) и Yb2(NON)6 - (2-(2-бензоимидазол-2-ил)фенолят) общей формулы:

где X=О, или S, или NH, которые обладают ИК-люминесценцией (см. J. Mater. Chem., 21 (2011) 16611).

В этом же источнике описан органический светоизлучающий диод конфигурации ITO/TPD/Yb-complex/BATH/Yb (ITO - оксид индия, допированный оловом, TPD - N,N'-бис(3-метилфенил)-N,N'-дифенилбензидин, BATH - 4,7-дифенил-1,10-фенантролин), на котором определяли электролюминесцентные свойства известных упомянутых соединений. Известный органический светоизлучающий диод, на котором получены лучшие характеристики (максимальная интенсивность излучения 286 мкВт/см2, эффективность по мощности при 12 В составляет 1.22 мВт/Вт), содержит несущую основу, выполненную в виде стеклянной подложки с размещенным на ней прозрачным слоем анода ITO (100 нм, 20 Ом/см2), на котором расположен слой органического вещества с дырочной проводимостью TPD (70 нм), затем расположен излучающий (эмиссионный) слой (40 нм) из одного из комплексов иттербия с гетероциклическими лигандами Ln2(XON)6, описанных выше, затем расположен слой дырочно-блокирующего материала BATH, а поверх органических слоев расположен слой катода, выполненный из металлического иттербия (150 нм). Упомянутое устройство взято в качестве прототипа.

Задачей, на решение которой направлено заявляемое изобретение, является расширение арсенала химических соединений, проявляющих люминесценцию в ближней ИК-области, увеличение интенсивности и эффективности ИК-люминесценцирующих материалов, и создание на их основе органических ИК-излучающих диодов с высокими рабочими характеристиками за счет использования нового химического вещества эмиссионного слоя.

Эта задача решается за счет того, что получены новые химические соединения иттербия с O,N-хелатным гетероциклическим лигандом, представляющим собой кислотный остаток ароматического спирта, имеющего от 2 до 4 конденсированных шестичленных углеродных циклов и в орто-положении азольный заместитель с гетероатомом Х (где Х - сера, или кислород, или NH), общей формулы I.

где 1 - кислотный остаток ароматического спирта, имеющего от 2 до 4 конденсированных шестичленных углеродных циклов; 2 - азольный заместитель с гетероатомом, являющийся 1-бензотиазольным, 1-бензоимидазольным или 1-бензоксазольным фрагментом.

Лиганд представляет собой кислотный остаток ароматического спирта, замещенного в орто-положении азольным заместителем, таким образом, что в комплексе осуществляется хелатное O,N-связывание с ионом иттербия. При этом ароматическими спиртами, имеющими от 2 до 4 конденсированных шестичленных углеродных циклов, могут быть нафтолы (два конденсированных шестичленных углеродных цикла), или антраценолы или фенантренолы (три конденсированных шестичленных углеродных цикла), или бензантраценолы или пиренолы (четыре конденсированных шестичленных углеродных цикла). При использовании ароматических спиртов с числом конденсированных шестичленных углеродных циклов более 4 возникают технологические сложности при синтезе, связанные с низкой растворимостью исходных соединений. Заместителями в орто-проложении могут быть 1-арилоксазолятные, 1-арилтиазолятные или 1-арилимидазолятные фрагменты.

Получены соединения, являющиеся димерными комплексами иттербия с 2-(1,3-бензокс(ти, имид)азол-2-ил)-3-нафтолятными лигандами формулы II

(где Х=О, или S, или NH), в которых ароматический спирт выбран из ряда нафтолов, содержащих 2 конденсированных шестичленных углеродных цикла и является 2-нафтолом, а в opто-положении находится азольный заместитель с гетероатомом, являющийся 1-бензотиазолильным, 1-бензоимидазолильным или 1-бензоксазолильным фрагментом.

Получено соединение [2-(1,3-бензоксазол-2-ил)-3-нафтолят]иттербия формулы III.

Получено соединение [2-(1,3-бензотиазол-2-ил)-3-нафтолят]иттербия формулы IV.

Получено соединение [2-(1,3-бензимидазол-2-ил)-3-нафтолят]иттербия формулы V

Также могут быть получены соединения, в которых число конденсированных шестичленных углеродных циклов в ароматическом спирте более двух (3 или 4). Заявителем были получены и описаны соединения, содержащие фрагмент формулы I. В этих соединениях тип связывания лиганда с металлом, соответствующий общей формуле I, идентичен. Все они имеют димерную структуру, доказанную методом рентгеноструктурного анализа (см. прототип - J. Mater. Chem., 21 (2011) 16611).

Также могут быть получены соединения, в которых азольными заместителями с гетероатомами, находящимися в орто-положении ароматического спирта, являются нафтотиазолильные нафтоимидазолильные и нафтооксазолильные фрагменты. Заявителем были получены и описаны соединения, содержащие фрагмент формулы I. В этих соединениях тип связывания лиганда с металлом, соответствующий общей формуле I, идентичен. Все они имеют димерную структуру, доказанную методом рентгеноструктурного анализа (см. прототип - J. Mater. Chem., 21 (2011) 16611).

Заявляемые соединения представляют собой комплексы с гетероциклическим лигандом, являющимся кислотным остатком ароматического спирта, имеющего от 2 до 4 конденсированных шестичленных углеродных циклов и в орто-положении азольный заместитель с гетероатомом, хелатно (O,N)-связанный с атомом иттербия.

Лиганд состоит из двух фрагментов - ароматического спирта и гетероциклического азольного фрагмента, который в качестве гетероатома содержит кислород, или серу, или NH.

Способ получения соединений заключается во взаимодействии трис-триметилсилиламида иттербия с ароматическим спиртом, в орто-положении которого находится азольный гетероциклический фрагмент.

где Х - кислород, или сера, или NH.

Заявителем были изготовлены органические светоизлучающие диоды, в которых эмиссионный слой выполнен из новых соединений иттербия - димерных трис[2-(1,3-бензоксазол-2-ил)-3-нафтолят]иттербия или трис[2-(1,3-бензотиазол-2-ил)-3-нафтолят]иттербия (см. таблицу ниже).

Задача изобретения также решается за счет того, что изготовлен органический светоизлучающий диод, содержащий несущую основу, выполненную в виде стеклянной подложки с размещенным на ней прозрачным слоем анода, на котором расположен, по меньшей мере, органический излучающий (эмиссионный) слой, содержащий [2-(1,3-бензотиазол-2-ил)-3-нафтолят]иттербия (формула III) или [2-(1,3-бензоксазол-2-ил)-3-нафтолят]иттербия (формула IV), поверх которого расположен металлический катод, выполненный, например, из иттербия.

Предпочтительно наличие в устройстве слоя органического вещества с дырочно-проводящими свойствами, расположенного между эмиссионным слоем и анодом. Роль этого слоя заключается в облегчении инжекции дырок из анода в эмиссионный слой, а также в блокировании электронов в эмиссионном слое. В качестве материала дырочно-транспортного слоя используют соединения, обладающие высокой дырочной проводимостью, например N,N'-бис(3-метилфенил)-N,N'-дифенилбензидин.

Предпочтительно наличие в устройстве слоя органического вещества с электронно-проводящими и дырочно-блокирующими свойствами, расположенного между эмиссионным слоем и катодом. Роль этого слоя заключается в облегчении инжекции электронов из катода в эмиссионный слой, а также в блокировании дырок в эмиссионном слое. В качестве материала электронно-транспортного (дырочно-блокирующего) слоя используют соединения, обладающие хорошей электронной проводимостью, например, 4,7-дифенил-1,10-фенантролин.

В качестве несущей основы могут быть использованы стеклянные или пластмассовые подложки. Стеклянные подложки с размещенным на них слоем анода, материалом которого традиционно является оксид индия, допированный оловом, выпускаются промышленностью. В заявляемом устройстве используются упомянутые подложки. При этом в качестве материала анода могут быть использованы другие соединения, обладающие высокой инжекцией дырок (например, прозрачные оксиды галлия и цинка, нитриды титана и галлия и др.) Электролюминесцентный (эмиссионный) слой является средой, в которой непосредственно происходит соединение инжектированных в него электронов и дырок с образованием электронно-дырочных пар (экситонов). При схлопывании экситонов возникают возбужденные электроны, релаксация из которых (возвращение в основное состояние) может происходить с выбросом кванта света. Толщина эмиссионного слоя составляет 30-50 нм.

Опытным путем было установлено, что использование эмиссионного слоя, выполненного из трис[2-(1,3-бензотиазол-2-ил)-3-нафтолята] иттербия, улучшает рабочие характеристики устройства по сравнению с прототипом.

Заявителем были изготовлены для сравнения органические светоизлучающие диоды, в одном из которых эмиссионный слой выполнен из трис[2-(1,3-бензоксазол-2-ил)-3-нафтолята]иттербия, Yb2(NpOON)6 (см. формулу III), а в другом из трис[2-(1,3-бензотиазол-2-ил)фенолята]иттербия, Yb2(NpSON)6 (см. формулу IV), и определены их технические характеристики (см. таблицу).

Таблица
Комплекс Квантовая эффективность, % Эффективность по мощности, (мВт/Вт) Максимальная интенсивность, мкВт Рабочее напряжение, В
Yb2(NpOON)6 1.1 0.86 632 12
Yb2(NpSON)6 3.2 1.83 1777 12
Yb2(SON)6 (прототип) - 1.22 286 12

Из таблицы видно, что при использовании устройства с эмиссионным слоем, выполненным из трис[2-(1,3-бензотиазол-2-ил)-3-нафтолята] иттербия, в сравнении с прототипом, в котором упомянутый слой выполнен из трис[2-(1,3-бензотиазол-2-ил)фенолята]иттербия, Yb2(SON)6 эффективность по мощности увеличивается с 1.22 до 1.83 мВт/Вт, а максимальная интенсивность ИК-излучения увеличивается с 286 до 1777 мкВт/см2.

Улучшение рабочих характеристик при использовании эмиссионного слоя из новых соединений можно объяснить, по-видимому, внутримолекулярными окислительно-восстановительными процессами, протекающими при пропускании через люминесцентное вещество электрического тока и включающими образование на промежуточных стадиях катионов двухвалентного иттербия. Теоретические подходы не позволяют предсказать обнаруженный эффект, т.е. полученный результат является неочевидным для решения поставленной задачи и явным образом не следует из уровня техники.

Пример 1. Трис[2-(1,3-бензоксазол-2-ил)-3-нафолят] иттербия.

К раствору 1 ммоля трис(триметилсилиламида) иттербия, Yb[N(SiMe3)2]3, в 20 мл тетрагидрофурана прибавляют раствор 3 ммоля 2-(1,3-бензоксазол-2-ил)-3-нафтола в 10 мл тетрагидрофурана при перемешивании в течение 30 минут. Реакционную смесь перемешивают еще 30 минут при комнатной температуре, после чего растворитель и летучие продукты реакции удаляют в вакууме. Образовавшийся твердый остаток промывают толуолом и после перекристаллизации из диметилформамида выделяют целевой продукт в виде светло-желтых кристаллов с Тпл>350°C. Вычислено: C102H60N6O12Yb2: С 64.22, Н 3.17, N 4.41, Yb 18.14. Найдено: С 64.28, Н 3.07, N 4.35, Yb 18.23. ИК-спектр (вазелиновое масло, см-1): 3047 (пл), 1625 (с), 1606 (ср), 1592 (с), 1528 (с), 1489 (сл), 1378 (ср), 1338 (с), 1305 (сл), 1274 (ср), 1258 (сл), 1245 (ср), 1214 (ср), 1174 (с), 1145 (ср), 1033 (с), 918 (сл), 895 (с), 862 (ср), 831 (с), 779 (сл), 760 (с), 631 (ср), 497 (ср).

Пример 2. Трис[2-(1,3-бензотиазол-2-ил)-3-нафтолят] иттербия

К раствору 1 ммоля трис(триметилсилиламида) иттербия Yb[N(SiМе3)2]3 в 20 мл тетрагидрофурана прибавляют 3 ммоля 2-(1,3-бензотиазол-2-ил)-3-нафтола в 10 мл тетрагидрофурана при перемешивании в течение 30 минут. Реакционную смесь перемешивают еще 30 минут при комнатной температуре, после чего растворитель и летучие продукты реакции удаляют в вакууме. Твердый остаток промывают толуолом и после перекристаллизации из диметилформамида выделяют целевой продукт в виде желтых кристаллов с Тпл>350°C. Вычислено: С102Н60N6О6S6Yb2: С 61.13, Н 3.02, N 4.19, Yb 17.26. Найдено: С 61.11, Н 3.02, N 4.20, Yb 17.28. ИК-спектр (вазелиновое масло, см-1): 3053 (пл), 1627 (с), 1590 (с), 1490 (с), 1476 (с), 1345 (с), 1318 (сл), 1275 (ср), 1255 (сл), 1187 (ср), 1144 (ср), 1126 (ср), 1077 (ср), 1014 (ср), 952 (ср), 922 (сл), 861 (ср), 807 (сл), 755 (с), 628 (ср), 567 (сл), 500 (сл).

Пример 3. Трис[2-(1H-бензимидазол-2-ил)-3-нафтолят]иттербия.

К раствору 1 ммоля трис(триметилсилиламида) иттербия Yb[N(SiMe3)2]3 в 20 мл тетрагидрофурана прибавляют 3 ммоля 2-(1H-бензимидазол-2-ил)-3-нафтола в 10 мл тетрагидрофурана при перемешивании в течение 30 минут. Реакционную смесь перемешивают еще 30 минут при комнатной температуре, после чего растворитель и летучие продукты реакции удаляют в вакууме. Твердый остаток промывают толуолом и после перекристаллизации из диметилформамида выделяют целевой продукт в виде бесцветных кристаллов с Тпл>350°С. Вычислено: C102H66N12O6Yb2: С 64.42, Н 3.50, N 8.84, Yb 18.19. Найдено: С 64.39, Н 3.51, N 8.83, Yb 18.20. ИК-спектр (вазелиновое масло, см-1): 3390 (ср), 3286 (ср), 1623 (ср), 1602 (с), 1560 (ср), 1528 (ср), 1317 (с), 1268 (с), 1135 (ср), 1098 (cл), 1040 (ср), 850 (с), 803 (ср), 747 (с).

На чертеже изображен органический светоизлучающий диод, содержащий несущую основу, выполненную в виде стеклянной подложки 1 с размещенным на ней прозрачным слоем анода 2 - источника дырок, выполненным из оксида индия, допированного оловом. На аноде расположен слой органического вещества с дырочной проводимостью 3 -слой проводника дырок, выполненный из N,N'-бис(3-метилфенил-N,N'-дифенилбензидина) толщиной 20 нм. Затем следуют излучающий (эмиссионный) слой 4, выполненный из трис[2-(1,3-бензотиазол-2-ил)-3-нафтолят] иттербия или трис[2-(1,3-бензоксазол-2-ил)-3-нафтолята]иттербия, который является средой, где непосредственно происходит соединение инжектированных в него электронов и дырок и образование квантов света. Затем следует электронно-транспортный слой 5, который одновременно выполняет дырочно-блокирующую функцию, выполненный из 4,7-дифенил-1,10-фенантролина толщиной 20 нм. Поверх органических слоев расположен слой катода 6 - источник электронов, выполненный из иттербия. Толщина эмиссионного и катодного слоев составляет 50 и 200 нм соответственно.

Устройство работает следующим образом. При подаче напряжения минусом к катоду 6, а плюсом к аноду 2 из них инжектируются соответственно электроны и дырки, т.е. отрицательные и положительные заряды. В излучающем слое 4 происходит рекомбинация этих зарядов, что вызывает эффект электролюминесценции (излучение света). В качестве несущей основы 1 устройства использовали выпускаемую промышленностью стеклянную подложку с размещенным на ней прозрачным слоем оксида индия, допированного оловом, выполняющего функцию анода. Для получения органических пленок материалов слоев, входящих в структуру заявляемого OLED и слоя катода, использовали метод термического испарения в вакууме.

Заявляемое устройство с использованием в качестве эмиссионного слоя заявляемых соединений иттербия характеризуется высокими техническими характеристиками: интенсивность излучения 1777 мкВт/см2 при напряжении 19 В, эффективность по мощности составляет 1.83 мВт/Вт. Внешний квантовый выход заявляемого органического светоизлучающего диода составляет 3.2% при плотности тока 30 мА/см2.

Создание нового материала расширяет арсенал химических соединений, проявляющих высокие электролюминесцентные свойства, что позволяет использовать его в качестве эмиссионного слоя в органических ИК-излучающих диодах для улучшения их рабочих характеристик.

1. Соединения иттербия, содержащие, по меньшей мере один O,N-хелатный гетероциклический лиганд, представляющий собой кислотный остаток ароматического спирта, имеющего от 2 до 4 конденсированных шестичленных углеродных циклов и в орто-положении азольный заместитель с гетероатомом Х (где Х - сера, или кислород, или NH), общей формулы I

где 1 - кислотный остаток ароматического спирта, имеющего от 2 до 4 конденсированных шестичленных углеродных циклов; 2 - азольный заместитель с гетероатомом, являющийся 1-бензотиазольным, 1-бензоимидазольным или 1-бензоксазольным фрагментом.

2. Соединения по п.1, которые представляет собой димерные комплексы иттербия с 2-(1,3-бензокс(ти, имид)азол-2-ил)-3-нафтолятными лигандами формулы II

где Х=О, или S, или NH, в которых ароматический спирт выбран из ряда нафтолов, содержащих 2 конденсированных шестичленных углеродных цикла и является 2-нафтолом, а в орто-положении находится азольный заместитель с гетероатомом, являющийся 1-бензотиазолильным, или 1-бензоимидазолильным, или 1-бензоксазолильным фрагментом.

3. Соединение по п.2, которое представляет собой димерный комплекс [2-(1,3-бензоксазол-2-ил)-3-нафтолят]иттербия формулы III

4. Соединение по п.2, которое представляет собой димерный комплекс [2-(1,3-бензтиазол-2-ил)-3-нафтолят]иттербия формулы IV

5. Органический светоизлучающий диод, содержащий несущую основу, выполненную в виде подложки с размещенным на ней прозрачным слоем анода, на котором расположен, по меньшей мере, излучающий (эмиссионный) слой, выполненный на основе комплекса иттербия, поверх излучающего слоя расположен катод, выполненный, например из металлического иттербия, отличающийся тем, что в качестве комплекса иттербия используется димеры трис[2-(1,3-бензоксазол-2-ил)-3-нафтолят]иттербия или трис[2-(1,3-бензотиазол-2-ил)-3-нафтолят]иттербия.

6. Органический светоизлучающий диод по п.5, отличающийся тем, что содержит слой органического вещества с дырочной проводимостью (дырочно-транспортный слой), выполненный, например, из N,N'-бис(3-метилфенил)-N,N'-дифенилбензидина, расположенный на слое анода.

7. Органический светоизлучающий диод по п.5, отличающийся тем, что содержит слой органического вещества с низкой дырочной проводимостью (дырочно-блокирующий слой), выполненный, например, из 4,7-дифенил-1,10-фенантролина, расположенный под слоем катода.

8. Органический светоизлучающий диод по п.5, отличающийся тем, что слой анода выполнен из оксида индия, допированного оловом.



 

Похожие патенты:

Изобретение относится к устройству (100) прозрачного органического светодиода, содержащему органический слой (130) между анодом (120) и катодом (140) и зеркальный слой (150) на аноде или катоде.

Устройство органического светоизлучающего диода (OLED) включает подложку (1), проводящий слой (3), органический слой (2) в качестве активного слоя и шунтирующую линию (4) в качестве дополнительного канала распределения тока, причем проводящий слой (3) обеспечен на подложке (1), шунтирующая линия (4) обеспечена посредством лазерного осаждения на проводящем слое (3), при этом шунтирующая линия (4), по меньшей мере, частично покрыта электроизоляционным слоем (5), осажденным посредством струйной печати краской, глубокой печати или/и трафаретной печати, а электроизоляционный слой имеет толщину от 1 до 2 мкм.

Изобретение относится к органическим светодиодам. Конструкция светоизлучающего диода содержит гибкую подложку, являющуюся фольгой и включающую в себя внутреннюю поверхность и наружную поверхность, и светоизлучающий диод, распложенный на внутренней поверхности гибкой подложки, причем светоизлучающий диод является органическим светоизлучающим диодом, имеющим наружную поверхность, противоположную поверхности, обращенной на упомянутую внутреннюю поверхность гибкой подложки.

Изобретение может быть использовано при создании эффективных устройств для отображения алфавитно-цифровой и графической информации. Актуальность создания алфавитно-цифровых дисплеев нового поколения обусловлена растущим потоком визуальной информации и прогрессом в компьютерной технике.

Изобретение относится к области приведения в контакт ОСИД с проводником. В способе для приведения в контакт ОСИД с проводником, ОСИД содержит подложку, по меньшей мере, с одной ячейкой, область контакта и инкапсулирующую оболочку, содержащую тонкую пленку, которая содержит нитрид кремния, карбид кремния или оксид алюминия, причем инкапсулирующая оболочка инкапсулирует, по меньшей мере, область контакта, а способ содержит этапы компоновки проводника на инкапсулирующей оболочке и взаимного соединения проводника с областью контакта, без предварительного удаления инкапсулирующей оболочки между проводником и областью контакта.

Органическое электролюминесцентное устройство (1) отображения включает в себя первую подложку (30), вторую подложку (20), обращенную к первой подложке (30), органический электролюминесцентный элемент (4), сформированный на первой подложке (30) и обеспеченный между первой подложкой (30) и второй подложкой (20), уплотнительный элемент (5), обеспеченный между первой подложкой (30) и второй подложкой (20) и выполненный с возможностью скрепления первой подложки (30) и второй подложки (20) для изоляции органического электролюминесцентного элемента (4), и герметизирующую смолу (14), сформированную на второй подложке (20), расположенную между первой подложкой (30) и второй подложкой (20) и выполненную с возможностью покрытия поверхности органического электролюминесцентного элемента (4).

Изобретение относится к твердотельным источникам света на основе органических светоизлучающих диодов (ОСИД), которые используются для создания цветных информационных экранов и цветовых индикаторных устройств с высокими потребительскими свойствами, а также экономичных и эффективных источников света.

Изобретение относится к элементам с памятью формы для гибких экранов дисплеев на основе органических светодиодов (OLED). Технический результат - возможность надежно удерживать гибкий дисплей в одном из состояний: либо в плоском состоянии, не позволяя дисплею самопроизвольно сгибаться, либо в сжатом состоянии, не позволяя дисплею самопроизвольно разворачиваться или разгибаться.

Изобретение относится к светоизлучающему устройству с множеством светоизлучающих элементов, выполненному с возможностью приведения в действие переменным током, и осветительному прибору, содержащему такое светоизлучающее устройство.

Изобретение относится к области полупроводниковых приборов на твердом теле с использованием комбинации органических материалов с другими материалами в качестве активной части, специально предназначенных для преобразования энергии светового излучения в электрическую энергию.

Изобретение относится к обратимому цветовому индикатору температуры на основе моногидрата гекса(изотиоцианато)хромата(III) диакватрис(никотиновая кислота)неодима(III).

Изобретение относится к комплексным соединениям лантапоидов, в частности к новому соединению трис[1-(4-(4-пропилциклогексил)фенил)декан-1,3-дионо]-[1,10-фенантролин]европия формулы которое может быть использовано в качестве люминесцентного материала.

Изобретение относится к конъюгагу фолиевой кислоты. Конъюгат включает фолиевую кислоту и хелат лантанида, связанные через спейсер L-аланин, соединенный с фенантролином, и имеет общую формулу: где Ln представляет собой ион Eu3+, Tb3+, Sm3+, Dy3+, Yb3+, Nd3+, Er3+, Tm3+.

Изобретение относится к комплексному соединению самонамагничивающегося металла с саленом. Комплексное соединение представлено формулой (I) где М представляет собой Fe, Cr, Mn, Co, Ni, Mo, Ru, Rh, Pd, W, Re, Os, Ir или Pt и a-f и Y представляют собой, соответственно, водород, или -NHR3-, -NHCOR3, при условии, что a-f и Y одновременно не являются водородом, где R3 представляет собой лекарственную молекулу, причем R3 обладает переносом заряда, эквивалентного менее чем 0,5 электрона(е); или формулой (II) где М представляет собой Fe, Y, a, c, d, f, g, i, j, l представляют собой, соответственно, водород; b и k представляют собой -NH2, h и e представляют собой -NHR3-, где -R3 представляет собой таксол (паклитаксел), или М представляет собой Fe, Y, a, c, d, f, g, i, j, l представляют собой, соответственно, водород; b, e, h и k представляют собой -NHR3-, где -R3 представляет собой гемфиброзил.

Изобретение относится к новым комплексным соединениям редкоземельных элементов, которые могут быть использованы в качестве активных слоев органических светоизлучающих диодов, оптико-электронных устройств, а также флуоресцентных меток и маркеров.

Изобретение относится к новым комплексным соединениям редкоземельных элементов, которые могут быть использованы в качестве активных слоев органических светоизлучающих диодов, оптико-электронных устройств, а также флуоресцентных меток и маркеров.

Изобретение относится к способу получения катионных комплексов палладия, содержащих органические и элементорганические лиганды общей формулы [(acac)Pd(L)]BF4 (где acac - ацетилацетонат, L - бидентатные фосфорорганические лиганды, такие как дифенилфосфинометан, дифенилфосфиноэтан, дифенилфосфинопропан, дифенилфосфинобутан и дифенилфосфиноферроцен).

Изобретение относится к комплексному соединению редкоземельных элементов общей формулы [Ln(L1)3L2 ] где Ln - ион трехвалентного редкоземельного элемента, например Nd, Pr, Sm, Eu, Tb, Dy, Ho, Tm, Er, Yb; L1 - дикетонатный лиганд, являющийся производным 1,3-дипиразолилпропандиона-1,3 общей формулы где R1, R3 - алкильный, фторалкильный, арильный, циклоалкильный или гетероциклический заместитель, R2, R4 - атом водорода, алкильный, фторалкильный, арильный, циклоалкильный или гетероциклический заместитель, атом галогена, CF3 или NO2 -группа.

Изобретение относится к комплексному соединению редкоземельных элементов общей формулы , где Ln - ион трехвалентного редкоземельного элемента, например Nd, Рr, Sm, Eu, Tb, Dy, Но, Tm, Er, Yb; L1 - дикетонатный лиганд, являющийся производным 1,3-дипиразолилпропандиона-1,3 общей формулы .

Настоящее изобретение относится к способу получения хелатного соединения металла или его соли, используемого в качестве диагностического реагента. Способ включает следующие стадии: a) контактирование жидкой композиции, содержащей компонент иона металла, с катионообменным твердым носителем, модифицированным функциональными группами иминодиуксусной кислоты или тиомочевины, для получения металлохелатного носителя; и b) контактирование указанного металлохелатного носителя с жидкой композицией, содержащей аминокарбоновый хелатообразующий реагент или его соль. Указанный металл в хелатном соединении или компоненте иона представляет собой лантанид. Также предложен способ получения гадобенатдимеглюмина. Способ позволяет селективно получить хелатное соединение металла с высокими выходами в форме, практически не содержащей побочных продуктов или непрореагировавшего материала. 2 н. и 9 з.п. ф-лы, 3 пр.
Наверх