Двигатель с замкнутым дрейфом электронов

Изобретение относится к электроракетному двигателю с замкнутым дрейфом электронов. Электроракетный двигатель с замкнутым дрейфом электронов содержит основной кольцевой ионизационный и ускорительный канал, по меньшей мере, один полый катод, кольцеобразный анод, трубку с коллектором для питания анода ионизируемым газом, и магнитную цепь для создания магнитного поля в основном кольцевом канале. Основной кольцевой канал образован вокруг оси ЭРД. Анод концентричен указанному основному кольцевому каналу. Магнитная цепь содержит, по меньшей мере, один аксиальный магнитопровод, окруженный первой катушкой и внутренним тыльным полюсным наконечником, образующим тело вращения, и несколько наружных магнитопроводов, окруженных наружными катушками. Указанная магнитная цепь дополнительно содержит по существу радиальный, наружный, первый полюсный наконечник, образующий вогнутую внутреннюю периферическую поверхность, и по существу радиальный, внутренний, второй полюсный наконечник, образующий выпуклую наружную периферическую поверхность. Указанные периферические поверхности представляют собой соответственным образом откорректированные профили. Эти профили отличаются от круговых цилиндрических поверхностей с целью образования между ними зазора переменной ширины. Максимальная величина зазора имеет место на участках, совпадающих с местоположением наружных катушек. Минимальная величина зазора имеет место на участках, расположенных между указанными наружными катушками, так чтобы создавалось равномерное радиальное магнитное поле. Техническим результатом является создание ЭРД высокой мощности с замкнутым дрейфом электронов, в котором одновременно реализовано хорошее охлаждение основного кольцевого канала, в указанном канале получено равномерное радиальное магнитное поле, и минимизирована длина провода, необходимого для обмоток, и минимизирована масса обмоток. 7 з.п. ф-лы, 8 ил.

 

Область техники, к которой относится изобретение

Настоящее изобретение относится к электроракетному двигателю с замкнутым дрейфом электронов, содержащему основной кольцевой ионизационный и ускорительный канал, образованный вокруг оси ускорителя, по меньшей мере, один полый катод, кольцеобразный анод, концентричный основному кольцевому каналу, трубку с коллектором для питания анода ионизируемым газом, и магнитную цепь для создания магнитного поля в основном кольцевом канале, причем указанная магнитная цепь содержит, по меньшей мере, один аксиальный магнитопровод, окруженный первой катушкой и внутренним тыльным полюсным наконечником, образующим тело вращения, а также несколько наружных магнитопроводов, окруженных другими катушками.

Уровень техники

Известно множество различных типов электроракетных двигателей (ЭРД) с замкнутым дрейфом электронов.

Первый тип ЭРД с замкнутым дрейфом электронов включает в себя наружный полюсный наконечник, который намагничивается кольцевой катушкой.

ЭРД такого типа с экранированной наружной катушкой описан, например, в европейском патентном документе 0900196 A1.

В патентном документе Франции 2693770 A1 также описан ЭРД с замкнутым дрейфом электронов с тремя катушками, включающими кольцевую наружную катушку.

На фиг.8 представлен вид сбоку и осевое полусечение варианта ЭРД с замкнутым дрейфом электронов, содержащего наружную кольцевую катушку 31, согласно описанию в патентном документе Франции 2693770 A1.

Данный ЭРД 20 содержит основной кольцевой ионизационный и ускорительный канал 24, который образован деталями 22, выполненными из изоляционного материала, и открыт на своем выходном конце 225; по меньшей мере, один полый катод 40, соединенный с устройством 41 для подачи ионизируемого газа; и кольцевой анод 25, концентричный основному кольцевому каналу 24, и расположенный на некотором расстоянии от открытого выходного конца 225. Анод 25 расположен на изолирующих деталях 22 и соединен электрической линией 43 с положительным полюсом источника 44 напряжения постоянного тока с напряжением, например, от 200 B до 300 B, при этом отрицательный полюс источника соединен линией 42 с полым катодом 40, который связан с контуром 41 подачи ионизируемого газа, такого как ксенон. Полый катод 40 вырабатывает плазму 29, находящуюся, по существу, под опорным потенциалом, из которой извлекаются электроны, и направляются к аноду 25 за счет электростатического поля Е, возникающего благодаря разности потенциалов между анодом 25 и катодом 40. Канал 26 для подачи ионизируемого газа открывается перед анодом 25 через кольцевой коллектор 27.

Управление градиентом радиального магнитного поля в основном кольцевом канале 24 осуществляется за счет установки внутренних кольцевых катушек 32 и 33 и наружной кольцевой катушки 31 вместе с внутренним и наружным полюсными наконечниками 35 и 34, причем внутренний полюсный наконечник посредством центрального магнитопровода 38, а наружный полюсный наконечник посредством соединительных стяжек 37 соединяются с ярмом 36, которое может быть защищено одним или несколькими слоями 30 дополнительного теплоизоляционного материала.

ЭРД с замкнутым дрейфом электронов с кольцевой наружной катушкой, такие как ЭРД, представленный на фиг.8, гарантируют постоянство радиального магнитного поля в зазоре, образованном наружными и внутренними полюсными наконечниками 34 и 35.

Тем не менее, для космических полетов, где требуется высокая мощность и высокий удельный импульс, плазменные ЭРД с замкнутым дрейфом электронов обладают недостатком в тепловом отношении, поскольку наружная кольцевая катушка заключает в себе провод большой длины, что приводит к высокому уровню рассеяния тепла, и в отношении массы катушки, которая также велика. Кроме того, наружная кольцевая катушка 31 мешает охлаждению керамического канала 24, в частности, на участке выхода, на который ложится максимальная тепловая нагрузка.

Также известен второй тип ЭРД с замкнутым дрейфом электронов, в котором не используется большая наружная кольцевая катушка, ось которой совпадает с осью ЭРД, а вместо этого используются несколько небольших катушек, которые распределены по периферии ЭРД, и служат для намагничивания наружного полюсного наконечника.

Так, в европейском патенте 0982976 B1 описан ЭРД, содержащий несколько наружных катушек, который приспособлен к высоким тепловым нагрузкам.

В патентах США 6208080 B1 и 5359258 также описываются ЭРД, у каждого из которых имеются четыре наружных катушки.

Другой ЭРД с замкнутым дрейфом электронов, известный под маркой ALT D55, содержит три наружных катушки. Такой ЭРД ALT D55 с замкнутым дрейфом электронов описан в материалах 30-й конференции Американского Института аэронавтики и астронавтики (American Institute of Aeronautics and Astronautics - AIAA) по ракетным двигателям, в статье AIAA-94-3011 “Operating characteristics of the Russian D-55 thruster with anode layer” («Рабочие характеристики российского ЭРД Д-55 с анодным слоем») авторов John М. Sankovic, Thomas X. Haag, NASA Lewis Research Center, Cleveland, Ohio, и Davis H. Manzella, Nyma Inc., Brook Park, Ohio, a также в статье AIAA-94-3010 “Experimental evaluation of Russian anode layer thrusters” («Экспериментальная оценка российских ЭРД с анодным слоем»), авторов С.Garner, J.R. Bropy, J.E. Polk, S. Semenkin, V. Garkuska, S. Tverdokhelbov, и С. Marrese.

Тем не менее, установлено, что радиальное магнитное поле, создаваемое в ЭРД с несколькими наружными катушками, не является строго однородным, и ему свойственны вариации, которые могут достигать нескольких процентов.

К сожалению, такая неоднородность радиального магнитного поля приводит к серьезным проблемам, когда ЭРД создают высокую мощность или работают при высоком напряжении. Установлено, что из-за того, что удержание плазмы напрямую связано с интенсивностью магнитного поля, небольшие вариации магнитного поля приводят к взаимодействию плазмы со стенками, которое варьирует по азимуту и снижает кпд и потенциальный ресурс работы ЭРД. Кроме того, чтобы гарантированно получить требуемое магнитное поле во всех точках кольцевого канала, необходимо увеличивать магнитный потенциал, т.е. число ампер-витков катушек, исходя из тех зон, где магнитное поле имеет наименьшую величину, и, тем самым, увеличивать массу обмотки.

Раскрытие изобретения

Задача настоящего изобретения состоит в устранении вышеуказанных недостатков и создании ЭРД высокой мощности с замкнутым дрейфом электронов, в котором одновременно реализовано хорошее охлаждение основного кольцевого канала, в указанном канале получено равномерное радиальное магнитное поле, и минимизирована длина провода, необходимого для обмоток, и, как следствие, минимизирована масса обмоток.

В соответствии с изобретением, указанные задачи решаются посредством ЭРД с замкнутым дрейфом электронов, содержащего основной кольцевой ионизационный и ускорительный канал, образованный вокруг оси ЭРД, по меньшей мере, один полый катод, кольцеобразный анод, концентричный основному кольцевому каналу, трубку с коллектором для питания анода ионизируемым газом, и магнитную цепь для создания магнитного поля в основном кольцевом канале, причем указанная магнитная цепь содержит, по меньшей мере, один аксиальный магнитопровод, окруженный первой катушкой и внутренним тыльным полюсным наконечником, образующим тело вращения, и несколько наружных магнитопроводов, окруженных наружными катушками, при этом указанная магнитная цепь дополнительно содержит по существу радиальный, наружный, первый полюсный наконечник, образующий вогнутую внутреннюю периферическую поверхность, и по существу радиальный, внутренний, второй полюсный наконечник, образующий выпуклую наружную периферическую поверхность, причем указанные периферические поверхности представляют собой соответственным образом откорректированные профили, которые отличаются от круговых цилиндрических поверхностей с целью образования между ними зазора переменной ширины, при этом максимальная величина зазора имеет место на участках, совпадающих с местоположением наружных катушек, а минимальная величина зазора имеет место на участках, расположенных между указанными наружными катушками, так чтобы создавалось равномерное радиальное магнитное поле.

В первом возможном варианте осуществления изобретения, указанный внутренний тыльный полюсный наконечник, образующий тело вращения, является по существу коническим и на своем свободном торце, который находится ближе к катоду, образует профилированную периферическую грань.

При данных обстоятельствах, в соответствии с изобретением, указанная магнитная цепь дополнительно содержит по существу конический наружный тыльный полюсный наконечник, который на своем свободном торце, находящемся ближе к катоду, образует профилированную периферическую грань, причем профилированная периферическая грань указанного, по существу, конического внутреннего тыльного полюсного наконечника, образующего тело вращения, и профилированная периферическая грань, по существу, конического наружного тыльного полюсного наконечника представляют собой соответственным образом откорректированные профили с участками, смещенными назад вдоль оси ЭРД, и совпадающими с местоположением наружных катушек, так чтобы поддерживать профиль магнитного поля постоянным по азимуту.

В другом возможном варианте осуществления изобретения, указанный внутренний тыльный полюсный наконечник, образующий тело вращения, заключает в себе по существу цилиндрический внутренний магнитный экран, который на своем свободном торце, находящемся ближе к катоду, образует профилированную периферическую грань

При данных обстоятельствах, в соответствии с изобретением, указанная магнитная цепь дополнительно содержит по существу цилиндрический наружный магнитный экран, который на своем свободном торце, находящемся ближе к катоду, образует профилированную периферическую грань, при этом указанная профилированная периферическая грань внутреннего магнитного экрана и профилированная периферическая грань наружного магнитного экрана представляют собой соответственным образом откорректированные профили с участками, смещенными назад вдоль оси ЭРД и совпадающими с местоположением наружных катушек, так чтобы поддерживать профиль магнитного поля постоянным по азимуту.

В предпочтительном случае, соответствующий настоящему изобретению ЭРД содержит четыре наружные катушки, окружающие четыре наружных магнитопровода.

Тем не менее, если принять меры, рекомендованные изобретением, то превосходные результаты могут быть получены с тремя наружными катушками, окружающими три наружных магнитопровода, или даже с двумя наружными катушками, окружающими два наружных магнитопровода.

Краткое описание чертежей

Другие характеристики и преимущества изобретения следуют из дальнейшего подробного описания конкретных вариантов осуществления со ссылками на прилагаемые чертежи, на которых:

фиг.1 представляет собой осевое полусечение ЭРД с замкнутым дрейфом электронов, соответствующего первому варианту осуществления изобретения;

фиг.2 в перспективной проекции схематически изображает определенные элементы ЭРД фиг.1;

фиг.3 представляет собой фронтальную проекцию полюсных наконечников ЭРД фиг.1 с откорректированным профилем;

фиг.4 представляет собой боковую проекцию тыльных полюсных наконечников ЭРД фиг.1 с откорректированным профилем;

фиг.5 представляет собой фронтальную проекцию ЭРД с замкнутым дрейфом электронов, соответствующего второму варианту осуществления изобретения;

фиг.6 представляет собой боковую проекцию магнитного экрана ЭРД фиг.5 с откорректированным профилем;

фиг.7 представляет собой осевое полусечение ЭРД фиг.5 и 6; и

фиг.8 представляет собой боковую проекцию и осевое полусечение плазменного ЭРД с замкнутым дрейфом электронов с кольцевой наружной катушкой, соответствующего известному уровню техники.

Осуществление изобретения

На фиг.1-4 представлен первый вариант осуществления ЭРД с замкнутым дрейфом электронов, соответствующий настоящему изобретению.

ЭРД данного типа в своей основе имеет конструкцию, в большой степени соответствующую описанию, приведенному в европейском патентном документе 0982976.

Таким образом, рассматриваемый плазменный ЭРД содержит основной кольцевой ионизационный и ускорительный канал 124, образованный изолирующими стенками 122. Канал 124 на своем выходном конце 125а открыт; в осевом сечении на тыльном участке имеет форму усеченного конуса, а на выходном участке - цилиндрическую форму. Полый катод 140 расположен снаружи основного канала 124, а кольцеобразный анод 125 располагается в основном канале 124. Коллектор 127 ионизируемого газа, который питается от трубки 126, служит для ввода ионизируемого газа через отверстия 120, выполненные в стенке анода 125. На фиг.1 также виден провод 145 для подачи смещения на анод 125.

Управление разрядом, возникающим между анодом 125 и катодом 140, осуществляется за счет распределения магнитного поля, которое определяется магнитной цепью, содержащей наружный полюсный наконечник 134, который по существу является радиальным и образует вогнутую внутреннюю периферическую поверхность 134а.

Наружный полюсный наконечник 134 посредством нескольких магнитопроводов 137, окруженных наружными катушками 131, соединяется с другим наружным полюсным наконечником 311 по существу конической формы, который образует профилированную периферическую грань 311а на своем свободном торце, ближнем к катоду 140.

Магнитная цепь также содержит внутренний полюсный наконечник 135, который является по существу радиальным, и образует выпуклую наружную периферическую поверхность 135a.

Внутренний полюсный наконечник 135 продолжен за счет центрального, осевого магнитопровода 138, окруженного внутренней катушкой 133. В тыльной части ЭРД, сам осевой магнитопровод 138 переходит в соединительный участок, соединенный с другим внутренним полюсным наконечником 351, который расположен в тыльной части ЭРД, имеет коническую форму, при этом, в предпочтительном варианте, вершина конуса направлена в сторону, обратную реактивной струе (к тыльной части ЭРД, см. фиг.1 и 2).

Следует отметить, что в данном описании термином «выходная» именуется зона, расположенная ближе к плоскости S выпускного отверстия реактивной струи и открытому концу 125a канала 124, а термином «тыльная» названа зона, удаленная от плоскости S выпускного отверстия, и обращенная к закрытому участку кольцевого канала 124, оснащенному анодом 125.

На тыльной части внутреннего полюсного наконечника 351 с наружной стороны может быть расположена дополнительная внутренняя магнитная катушка 132. Проводка магнитного поля катушки 132 осуществляется наружным и внутренним полюсными наконечниками 311 и 351, а также радиальными участками 136, соединяющими аксиальный магнитопровод 138 с наружными магнитопроводами 137.

Катушки 133, 131 и 132 могут охлаждаться непосредственно за счет теплопроводности через основание 175 конструкции, выполненное из теплопроводящего материала, которое также служит в качестве опоры для ЭРД.

Число наружных катушек 131 может быть в диапазоне от двух до восьми, а в предпочтительном случае должно быть равно трем или четырем, при этом указанные катушки должны быть оснащены магнитопроводами 137, расположенными между наружными полюсными наконечниками 134 и 311. Применение таких наружных катушек 131 дает возможность пропустить большую долю излучения, исходящего от наружной стенки кольцевого канала 124. Коническая форма наружного полюсного наконечника 311 способствует увеличению объема, пригодного для размещения наружных катушек 131 и для увеличения телесного угла излучения. Кроме того, конический наружный полюсный наконечник 311 снабжен отверстиями, способствующими увеличению апертуры (view factor) выхода излучения от керамических деталей 122, и, тем самым, получается магнитная цепь, которая очень компактна, но располагает большими промежутками, что дает возможность излучать всей боковой поверхности канала 124.

Соответствующий настоящему изобретению плазменный ЭРД с замкнутым дрейфом электронов может быть применен для работы с высокими уровнями мощности при условии возможности хорошего охлаждения основного кольцевого канала, если минимизирована длина провода, необходимого для обмоток, за счет использования нескольких наружных катушек 131 вместо одной кольцевой катушки большого диаметра, и если приняты меры, гарантирующие получение равномерного радиального магнитного поля в канале 124.

Понятие «равномерный профиль магнитного поля в ускорительном канале 124» в настоящем описании означает, что в канале 124 магнитное поле идентично во всех плоскостях, проходящих через ось ЭРД.

В соответствии с изобретением, равномерное радиальное магнитное поле в канале 124 получается благодаря вогнутой внутренней периферической поверхности 134a наружного полюсного наконечника 134 и выпуклой наружной периферической поверхности 135a внутреннего полюсного наконечника 135, при этом обе указанные поверхности представляют собой соответственным образом откорректированные профили, которые отличаются от круговых цилиндрических поверхностей, так что между ними образован зазор переменной ширины, имеющий максимальную величину в зонах 232, совпадающих с местоположением наружных катушек 131, и минимальную величину в зонах 231, между наружными катушками 131 (см. фиг.2 и 3).

На фиг.3 штриховые линии 434a и 435a показывают то положение периферических поверхностей 134a и 135a, какое бы они занимали, если бы были строго круговыми цилиндрическими поверхностями без какой-либо коррекции.

Кроме того, профилированная периферическая грань 351a, по существу, конического внутреннего тыльного полюсного наконечника 351, образующего тело вращения, и профилированная периферическая грань 311а, по существу, конического наружного тыльного полюсного наконечника 311 также представляют собой соответственным образом откорректированные профили, смещенные назад вдоль оси ЭРД на участках, совпадающих с местоположением наружных катушек 131, так чтобы поддерживать профиль магнитного поля постоянным по азимуту в канале 124 (см. фиг.1 и 4). На фиг.4 штриховая линия 411a показывает то положение периферической грани 311a, какое бы она занимала при отсутствии какой-либо коррекции, т.е. если бы указанная грань была выполнена аналогично известным техническим решениям, в которых данная грань не содержит смещенных назад участков.

Следует заметить, что, в соответствии с первым возможным способом, расчет коррекции, приводящей к получению исправленных профилей 135a, 134a внутреннего и наружного полюсных наконечников 135 и 134, может быть выполнен с использованием программы для расчета трехмерных магнитных полей, при этом вначале программа используется для расчета увеличения магнитного поля на участках, совпадающих с местоположением наружных катушек 131, а затем - для определения увеличения зазора, которое необходимо для того, чтобы сделать поле равномерным. На фиг.3, которая относится к варианту осуществления изобретения с четырьмя наружными катушками 131, установленными на магнитопроводах 137, расположенных по существу в вершинах квадрата, видно, что ширина зазора больше в зонах 232, совпадающих с катушками 131, чем в зонах 231, отстоящих на 45° от магнитопроводов 137, где ширина зазора минимальна. На фиг.3 видны как исходные профили 434a и 435a периферических поверхностей полюсных наконечников 134 и 135, изображенные штриховыми линиями, так и откорректированные профили этих периферических поверхностей 134a и 135a, показанные сплошными линиями. После того как будет проведен расчет коррекции, производится станочная обработка деталей, например, на станке с ЧПУ, с целью получения требуемых поверхностей 134a, 135a, 311a и 351a.

Следует заметить, что в соответствии с другим возможным способом, определение указанной коррекции может быть выполнено экспериментально, методом последовательного приближения: после первого трехмерного замера магнитного поля с симметричной круговой конфигурацией деталей производят первую коррекцию, обрабатывая детали на станке с ЧПУ, и снова производят замер трехмерного распределения магнитного поля. Если первая коррекция окажется неудовлетворительной, то производят станочную обработку во второй раз, и так далее.

Настоящее изобретение также применимо к плазменным ЭРД с замкнутым дрейфом электронов, содержащим магнитные экраны, такие, что описаны в патенте США 5359258.

На фиг.5-7 представлен такой плазменный ЭРД, содержащий газовый коллектор 1, образующий кольцеобразный анод, катод 2, кольцевую разрядную камеру 3, наружный магнитный экран, который окружает разрядную камеру 3 и заканчивается свободной торцевой поверхностью 5a, наружный полюсный наконечник 6, который заканчивается вогнутой периферической поверхностью 6a, внутренний полюсный наконечник 7, который заканчивается выпуклой периферической поверхностью 7a, магнитопровод 8, центральную катушку 9, создающую внутреннее магнитное поле, несколько наружных катушек 10 для создания наружного магнитного поля, центральный магнитопровод 12, тепловые экраны 13 и держатель 17.

На фиг.5 можно видеть четыре наружные катушки 10I, 10II, 10III, 10IV вместе с наружным полюсным наконечником 6.

Аналогично варианту осуществления, представленному на фиг.1-4, вогнутая внутренняя периферическая поверхность 6а полюсного наконечника 6 и выпуклая наружная периферическая поверхность 7а полюсного наконечника 7 представляют собой соответственным образом откорректированные профили, которые отличаются от круговых цилиндрических поверхностей, так что между ними образован зазор переменной ширины, при этом участки с максимальной шириной совпадают с местоположением наружных катушек 10, а участки с минимальной шириной располагаются между наружными катушками 10 (катушками 10I, 10II, 10III, 10IV на фиг.5). Профили некорректированных поверхностей 6a, 7a (т.е. строго круговых поверхностей, как они выглядят до коррекции) на фиг.5 показаны штриховыми линиями.

ЭРД, показанный на фиг.5-7, включает в себя внутренний магнитный экран 4, который является по существу цилиндрическим, и на своем свободном торце, находящемся ближе к катоду 2, образует профилированную периферическую грань 4a. Профилированная периферическая грань 4a внутреннего магнитного экрана 4 и профилированная периферическая грань 5a наружного магнитного экрана 5 представляют собой соответствующим образом откорректированные профили с участками, смещенными назад вдоль оси ЭРД в местах, совпадающих с местоположением наружных катушек 10, с целью поддержания профиля магнитного поля постоянным по азимуту. На фиг.7 сплошной линией показан откорректированный профиль периферической грани 5a, а штриховой линией - исходный профиль 405a грани 5a до применения коррекции.

1. Электроракетный двигатель (ЭРД) с замкнутым дрейфом электронов, содержащий основной кольцевой ионизационный и ускорительный канал, образованный вокруг оси ЭРД, по меньшей мере, один полый катод, кольцеобразный анод, концентричный указанному основному кольцевому каналу, трубку с коллектором для питания анода ионизируемым газом и магнитную цепь для создания магнитного поля в основном кольцевом канале, причем указанная магнитная цепь содержит, по меньшей мере, один аксиальный магнитопровод, окруженный первой катушкой и внутренним тыльным полюсным наконечником, образующим тело вращения, и несколько наружных магнитопроводов, окруженных наружными катушками, отличающийся тем, что указанная магнитная цепь дополнительно содержит, по существу, радиальный, наружный, первый полюсный наконечник, образующий вогнутую внутреннюю периферическую поверхность, и, по существу, радиальный, внутренний, второй полюсный наконечник, образующий выпуклую наружную периферическую поверхность, причем указанные периферические поверхности представляют собой соответственным образом откорректированные профили, которые отличаются от круговых цилиндрических поверхностей с целью образования между ними зазора переменной ширины, при этом максимальная величина зазора имеет место на участках, совпадающих с местоположением наружных катушек, а минимальная величина зазора имеет место на участках, расположенных между указанными наружными катушками, так чтобы создавалось равномерное радиальное магнитное поле.

2. Электроракетный двигатель по п.1, отличающийся тем, что указанный внутренний тыльный полюсный наконечник, образующий тело вращения, является, по существу, коническим и на своем свободном торце, который находится ближе к катоду, образует профилированную периферическую грань.

3. Электроракетный двигатель по п.2, отличающийся тем, что указанная магнитная цепь дополнительно содержит, по существу, конический наружный тыльный полюсный наконечник, который на своем свободном торце, находящемся ближе к катоду, образует профилированную периферическую грань, причем профилированная периферическая грань указанного, по существу, конического внутреннего тыльного полюсного наконечника, образующего тело вращения, и профилированная периферическая грань, по существу, конического наружного тыльного полюсного наконечника представляют собой соответственным образом откорректированные профили с участками, смещенными назад вдоль оси ЭРД и совпадающими с местоположением наружных катушек, так чтобы поддерживать профиль магнитного поля постоянным по азимуту.

4. Электроракетный двигатель по п.1, отличающийся тем, что указанный внутренний тыльный полюсный наконечник, образующий тело вращения, заключает в себе по существу цилиндрический внутренний магнитный экран, который на своем свободном торце, находящемся ближе к катоду, образует профилированную периферическую грань.

5. Электроракетный двигатель по п.4, отличающийся тем, что указанная магнитная цепь дополнительно содержит, по существу, цилиндрический наружный магнитный экран, который на своем свободном торце, находящемся ближе к катоду, образует профилированную периферическую грань, при этом указанная профилированная периферическая грань внутреннего магнитного экрана и профилированная периферическая грань наружного магнитного экрана представляют собой соответственным образом откорректированные профили с участками, смещенными назад вдоль оси ЭРД и совпадающими с местоположением наружных катушек, так чтобы поддерживать профиль магнитного поля постоянным по азимуту.

6. Электроракетный двигатель по любому из пп.1-5, отличающийся тем, что содержит четыре наружные катушки, окружающие четыре наружных магнитопровода.

7. Электроракетный двигатель по любому из пп.1-5, отличающийся тем, что содержит три наружные катушки, окружающие три наружных магнитопровода.

8. Электроракетный двигатель по любому из пп.1-5, отличающийся тем, что содержит две наружные катушки, окружающие два наружных магнитопровода.



 

Похожие патенты:

Изобретение относится к области электроракетных двигателей. В модели стационарного плазменного двигателя (СПД), содержащей кольцевую диэлектрическую разрядную камеру, с расположенным внутри нее кольцевым анодом-газораспределителем, магнитную систему и катод, внутри его разрядной камеры установлен дополнительный газораспределитель, выполненный в виде кольца, пристыкованного через изолятор к аноду-газораспределителю.

Изобретение относится к электрореактивным двигателям, использующим электронно-детонационный тип разряда. Двигатель состоит из анода и катода с разрядным промежутком между ними, заполненным жидким рабочим телом в виде пленки.

Изобретение относится к летательным аппаратам тяжелее воздуха с вертикальным взлетом и посадкой, в частности к способам создания подъемной силы у летательных аппаратов с электрической силовой установкой.

Изобретение относится к устройству для отвода тепловых потерь, а также к системе ионного ускорителя с таким устройством. .

Изобретение относится к воздушному транспорту с вертикальным взлетом и посадкой. .

Изобретение относится к плазменной технике и может использоваться при разработке плазменных ускорителей с замкнутым дрейфом электронов и протяженной зоной ускорения (УЗДЭ).

Изобретение относится к ионному ускорителю в качестве приводного устройства космического летательного аппарата. .

Изобретение относится к аэрокосмической технике и может быть использовано в качестве двигателя и источника электроэнергии для аэрокосмических транспортных средств и аппаратов.

Изобретение относится к технике создания ракетных двигательных установок и может быть использовано для орбитальных и аэрокосмических аппаратов. .

Изобретение относится к области плазменных двигателей. Устройство содержит, по меньшей мере: один главный кольцевой канал (21) ионизации и ускорения, при этом кольцевой канал (21) имеет открытый конец, анод (26), находящийся внутри канала (21), катод (30), находящийся снаружи канала на его выходе, магнитную цепь (4) для создания магнитного поля в части кольцевого канала (21). Магнитная цепь содержит, по меньшей мере, кольцевую внутреннюю стенку (22), кольцевую наружную стенку (23) и дно (8), соединяющее внутреннюю (22) и наружную (23) стенки и образующее выходную часть магнитной цепи (4), при этом магнитная цепь (4) выполнена с возможностью создания на выходе кольцевого канала (21) магнитного поля, не зависящего от азимута. Технический результат - повышение вероятности ионизирующих столкновений между электронами и атомами инертного газа. 3 н. и 12 з.п. ф-лы, 6 ил.

Изобретение относится к плазменной технике и к плазменным технологиям и может использоваться в импульсных плазменных ускорителях, применяемых, в частности, в качестве электроракетных двигателей. Катод (1) и анод (2) эрозионного импульсного плазменного ускорителя (ЭИПУ) имеют плоскую форму. Между разрядными электродами (1 и 2) установлены две диэлектрические шашки (4), выполненные из абляционного материала. Торцевой изолятор (6) установлен между разрядными электродами в области размещения диэлектрических шашек (4). Устройство (9) инициирования электрического разряда подключено к электродам (8). Емкостный накопитель энергии (3) системы электропитания подключен через токоподводы к разрядным электродам (1 и 2). Разрядный канал ЭИПУ образован поверхностями разрядных электродов (1 и 2), торцевого изолятора (б) и торцевых частей диэлектрических шашек (4). Разрядный канал выполнен с двумя взаимно перпендикулярными срединными плоскостями. Разрядные электроды (1 и 2) установлены симметрично относительно первой срединной плоскости. Диэлектрические шашки (4) установлены симметрично относительно второй срединной плоскости. Касательная к поверхности торцевого изолятора (6), обращенной к разрядному каналу, направлена под углом от 87° до 45° относительно первой срединной плоскости разрядного канала. В торцевом изоляторе (6) выполнено углубление (7) с прямоугольным поперечным сечением. В углублении (7) со стороны катода (1) расположены электроды (8). Касательная к фронтальной поверхности углубления (7) направлена под углом от 87° до 45° относительно первой срединной плоскости разрядного канала. Углубление (7) вдоль поверхности торцевого изолятора (6) имеет форму трапеции. Большее основание трапеции расположено у поверхности анода (2). Меньшее основание трапеции расположено у поверхности катода (1). На поверхности торцевого изолятора (6) выполнены три прямолинейные канавки, ориентированные параллельно поверхностям разрядных электродов (1 и 2). Технический результат заключается в увеличении ресурса, повышении надежности, тяговой эффективности, эффективности использования рабочего вещества и стабильности тяговых характеристик ЭИПУ за счет равномерного испарения рабочего вещества с рабочей поверхности диэлектрических шашек. 8 з.п. ф-лы, 3 ил.

Изобретение относится к космической технике, к классу электрореактивных двигателей и предназначено для управления движением космических аппаратов малой (до 5 Н) тягой. Циклотронный плазменный двигатель содержит корпус плазменного ускорителя, соленоиды (катушки индуктивности), электрическую цепь с катодами-компенсаторами. При этом содержится автономный источник ионов, разделитель потоков электронов и ионов. Плазменный ускоритель представляет собой асинхронный циклотрон. Циклотрон разделен вдоль на дуанты двумя соосными парами параллельных сеток с зазорами. Дуанты создают однородные, равные и постоянные ускоряющие электрические поля взаимно противоположного направления векторов напряженности. Циклотрон имеет по числу основных направлений создания тяги выходные каналы плазменного ускорителя - основные переходники-ферромагнетики с катушками индуктивности. Выходные прямые газовые диэлектрические каналы двигателя соединены с основными переходниками через пропускные электроклапаны. Эти каналы соединены между собой переходниками-ферромагнетиками с катушками индуктивности. Техническим результатом является увеличение удельного импульса тяги с сохранением и возможным уменьшением массогабаритных характеристик двигательных установок на космических аппаратах при относительно невысокой мощности энергопотребления. 2 з.п. ф-лы, 2 ил.
Изобретение относится к пучковым технологиям и может быть использовано для компенсации (нейтрализации) пространственного заряда пучка положительных ионов электроракетных двигателей, в частности, для применения в двигательных установках микро- и наноспутников. Способ нейтрализации объемного заряда ионного потока электроракетной двигательной установки путем эмиссии электронов множественными автоэмиссионными источниками. Источники расположены вокруг каждого из электроракетных двигателей указанной установки. Управление токами эмиссии отдельных автоэмиссионных источников или групп указанных множественных автоэмиссионных источников производят независимо друг от друга. Техническим результатом является снижение расхода рабочего тела ЭРД, в том числе многорежимного ЭРД или многодвигательной установки, обеспечение минимального времени выхода на рабочий режим нейтрализации и быстрого переключения электронного тока согласовано с режимом работы такого ЭРД, оптимизирование транспорта электронов в область нейтрализации с тем, чтобы уменьшить расходимость ионного пучка или отклонения его, изменяя таким образом направление ионной тяги. 5 з.п. ф-лы.

Изобретение относится к реактивным средствам перемещения преимущественно в свободном космическом пространстве. Предлагаемое средство перемещения содержит корпус (1), полезную нагрузку (2), систему управления и не менее одной кольцевой системы сверхпроводящих фокусирующе-отклоняющих магнитов (3). Каждый магнит (3) прикреплен к корпусу (1) силовым элементом (4). Предпочтительно использовать две описанных кольцевых системы, расположенных в параллельных плоскостях («друг над другом»). Каждая кольцевая система предназначена для длительного хранения циркулирующего в ней потока (5) высокоэнергичных электрически заряженных частиц (релятивистских протонов). Потоки в кольцевых системах взаимно противоположны и вводятся в эти системы перед полетом (на орбите старта). К выходу одного из магнитов (3) «верхней» кольцевой системы прикреплено устройство (6) для выведения части потока (7) во внешнее космическое пространство. Аналогично производится выведение части потока (9) через устройство (8) одного из магнитов «нижней» кольцевой системы. Потоки (7) и (9) создают реактивную тягу. Устройства (6) и (8) могут быть выполнены в виде отклоняющей магнитной системы, нейтрализатора электрического заряда потока или ондулятора. Техническим результатом изобретения является увеличение энергоотдачи рабочего тела, создающего тягу. 1 н. и 3 з.п. ф-лы, 2 ил.

Группа изобретений относится к области электрореактивных двигателей, а именно к классу плазменных ускорителей (холловских, ионных), использующих в своем составе катоды. При необходимости оно может быть использовано также в смежных областях техники, например, при проведении испытаний катодов для источников плазмы или катодов для сильноточных плазменных двигателей. Способ ускоренных испытаний катодов плазменных двигателей включает проведение автономных огневых испытаний катода, осуществление многократных включений катода, измерение его базовых параметров деградации, проведение испытаний в форсированном режиме работы катода. Испытания разбивают на этапы. При выполнении каждого этапа производят форсирование одного из факторов деградации катода при одновременном воздействии на катод всех остальных факторов деградации в эксплуатационном режиме. Форсирование каждого из факторов деградации осуществляют по меньшей мере один раз. Техническим результатом группы изобретения является осуществление комплексного учета воздействия всех базовых факторов деградации катода при проведении ускоренных ресурсных испытаний, существенное сокращение времени проведения ресурсных испытаний катода и обеспечение возможности исследования воздействия каждого фактора деградации на ресурсные характеристики катода. 2 н. и 5 з.п. ф-лы, 4 ил.

Изобретение относится к области электрореактивных двигателей, а именно, к широкому классу плазменных ускорителей (холловских, ионных, магнитоплазмодинамических и др.), использующих в своем составе катоды. Технический результат-повышение ресурса и надежности работы катода при больших токах разряда путем выравнивания температур эмитирующих электроны элементов и обеспечения равномерности распределения рабочего тела по этим элементам. Катод плазменного ускорителя по первому варианту содержит полые эмитирующие электроны элементы, трубопровод с каналами для подачи рабочего тела к полым эмитирующим электроны элементам, единый теплопровод, охватывающий с внешней стороны каждый из полых эмитирующих электроны элементов, выполненных в виде тела вращения. Материал теплопровода имеет коэффициент теплопроводности не ниже коэффициента теплопроводности материала этих элементов. Каждый из полых эмитирующих электроны элементов присоединен к отдельному каналу трубопровода, а в каждом канале со стороны подачи рабочего тела установлен дроссель, причем поперечные сечения отверстий дросселей выполнены одинаковыми.Во втором варианте изобретения единый теплопровод охватывает и с внешней стороны по всей длине образующей и по выходному торцу каждый из полых эмитирующих электроны элементов, выполненных в виде тела вращения. В выходном торце единого теплопровода выполнены отверстия, оси которых совпадают с осями полых эмитирующих электроны элементов, причем проходные сечения отверстий в едином теплопроводе не больше проходных сечений отверстий в полых эмитирующих электроны элементах.2 н.п. и 2 з.п.ф-лы, 2 ил.

Изобретение относится к плазменному маневровому реактивному двигателю на основе эффекта Холла, используемому для перемещения спутников с помощью электричества. Плазменный реактивный двигатель на основе эффекта Холла содержит основной кольцевой канал ионизации и ускорения. Канал имеет открытый выходной конец. Двигатель также содержит, по меньшей мере, один катод, кольцевой анод, трубопровод с распределителем для подачи способного к ионизации газа в основной кольцевой канал и магнитную цепь для создания магнитного поля в основном кольцевом канале. Анод концентричен основному кольцевому каналу. Основной кольцевой канал содержит расположенные вблизи открытого выходного конца участок внутренней кольцевой стенки и участок наружной кольцевой стенки. Каждый из указанных участков содержит пакет расположенных рядом друг с другом проводящих или полупроводящих колец в виде пластин. Пластины разделены тонкими слоями изолирующего материала. Техническим результатом является устранение указанных в описании недостатков и, в частности, повышение долговечности плазменных реактивных двигателей на основе эффекта Холла при сохранении высокого уровня их энергетической эффективности. 9 н.п. ф-лы, 5 ил.

Группа изобретений относится к ионному двигателю (ИД) для космического аппарата и способу его эксплуатации. ИД (1) включает в себя ионизационную камеру (2) с высокочастотным генератором (4) ионизирующего электромагнитного поля. Система (7) ускорения носителей заряда имеет экранирующую (8) и ускоряющую (9) решетки. ИД снабжен нейтрализатором (14). Высокие напряжения для системы (7) и, возможно, нейтрализатора (14) получают с помощью первого средства (12), которое отбирает эти напряжения из цепи генератора (4). Высокочастотная мощность может отбираться посредством конденсаторов или катушек. Могут быть предусмотрены средства (22) и (23) для выпрямления и сглаживания напряжений. Техническим результатом группы изобретений является создание конструктивно более простого и недорогого ионного двигателя, эксплуатация которого обеспечивает надежность и минимальные затраты на управление. 2 н. и 10 з.п. ф-лы, 1 ил.

Изобретение относится к области ракетно-космической техники. Плазменный двигатель на наночастицах металлов или металлоидов содержит последовательно расположенные камеру сгорания, один вход в которую служит для ввода твердых наночастиц металла или металлоида в качестве топлива, а другой - для ввода окислителя топлива в виде водяного пара или кислорода, при смешении которых в камере возникает горение, хемоионизационные реакции окисления, дающие тепловой эффект, высокие температуры и образование нагретой плазмы, содержащей жидкие оксиды металлов или металлоидов, устройство охлаждения плазмы до температуры ниже температуры плавления полученных оксидов и образования в нагретой плазме твердых пылевых отрицательно заряженных оксидов металлов или металлоидов, электростатическое или электромагнитное разгонное устройство, которое разгоняет электростатическим или электромагнитным полем истекающую из устройства охлаждения нагретую плазму и создает высокоскоростной поток нагретой пылевой плазмы с высокоскростными отрицательно заряженными оксидами металлов или металлоидов, который истекает в окружающую среду и создает реактивную тягу двигателя. Металл может быть применен любым из ряда алюминий, бериллий, цирконий, железо, титан, металлоид - из ряда бор, кремний. Изобретение обеспечивает увеличение удельного импульса тяги двигателя за счет дополнительного включения тепловой энергии хемоионизационных реакций и массы более тяжелых отрицательно заряженных оксидов металлов или металлоидов пылевидной плазмы. 3 з.п. ф-лы, 1 ил.
Наверх