Датчик границы сред (дгс) для нефтеводяной фильтрующей установки (нвфу)

Изобретение относится к контрольно-измерительной технике и предназначено для контроля и сигнализации границы раздела сред нефтепродукт-вода в установках для очистки воды от нефтепродуктов или обводненных нефтепродуктов от воды. Сущность: датчик границы сред (ДГС) для нефтеводяной фильтрующей установки (НВФУ) содержит бронзовый фланец с отверстиями и приспособлениями для герметичного крепления к крышке или днищу резервуара; на фланце закреплен водонепроницаемый электронный блок, стойки измерительного канала. С электронным блоком соединены герметично проложенными проводниками ультразвуковые приемники и ультразвуковые излучатели в виде пьезокерамических шайб диаметром ~15÷18 мм и толщиной ~1.5÷3 мм. Для герметизации пьезокерамики применяются силкаст или полиуретан. Электронный блок постоянно контролирует скорость прохождения и амплитуду ультразвуковых импульсов в контролируемой среде. Датчик не содержит резьбовых соединений. Технический результат - упрощение в обслуживании, повышение надежности и безопасности работы датчика. 3 з.п. ф-лы, 2 ил.

 

Датчик границы сред (ДГС) для нефтеводяной фильтрующей установки (НВФУ) относится к контрольно-измерительной технике и предназначен для сигнализации и контроля верхнего и нижнего положения границы раздела сред нефтепродукт-вода, выработки управляющего сигнала и выдачи его в систему автоматического управления нефтеводяных сепарационных установок.

Известны датчики, принцип действия которых основан на взаимодействии электромагнитных колебаний с контролируемой средой и измерении электрического параметра, функционально связанного с физико-химическим свойством среды, находящейся в месте расположения датчика (РФ, заявка на изобретение №99124836 «Способ для измерения уровня и/или границы раздела жидких сред в резервуарах»; РФ, заявка на изобретение №99104084 «Способ измерения уровня и/или границы раздела жидких сред, преимущественно водонефтяных эмульсий в резервуарах»; РФ, патент №2321831 «Датчик контроля и сигнализации границы раздела сред нефтепродукта»).

В известных датчиках имеются следующие недостатки: применение резьбовых креплений, что влечет сложности в обслуживании и надежности, а также применение тока с определенной частотой и напряжением влечет к взрывоопасности.

Цель изобретения - упрощение в обслуживании, повышение надежности и безопасности работы датчика.

Поставленная цель достигается тем, что датчик границы сред (ДГС) для нефтеводяной фильтрующей установки (НВФУ) содержит бронзовый фланец с отверстиями и приспособлениями для герметичного крепления к крышке или днищу резервуара. На фланце закреплен водонепроницаемый электронный блок, стойки измерительного канала. С электронным блоком соединены герметично проложенными проводниками ультразвуковые приемники и ультразвуковые излучатели, которые представляют собой пьезокерамические шайбы диаметром ~15÷18 мм и толщиной ~1.5÷3 мм, при этом для герметизации пьезокерамики применяются силкаст или полиуретан.

Датчик границы сред (ДГС) для нефтеводяной фильтрующей установки (НВФУ) не содержит резьбовых соединений в отличие от других известных конструкций. Крепление стоек, измерение канала осуществляется с помощью клепки, вальцовки, тонкой сварки, ультразвуковые преобразователи приклеиваются специальным токопроводящим клеем. Все узлы креплений загерметизированы бензостойкой резиной (силкаст или полиуретан, уплотнительные кольца), поэтому вибрации и агрессивная среда не оказывают существенного влияния на результат. Качка корабля компенсируется программно с помощью микросхемы - инклинометра, входящей в состав электронного блока.

Принцип действия датчика границы сред (ДГС) для нефтеводяной фильтрующей установки (НВФУ) основан на значительном отличии скорости звука в воде и нефтепродуктах. Электронный блок постоянно контролирует скорость прохождения и амплитуду ультразвуковых импульсов в контролируемой среде.

Работой датчика границы сред (ДГС) для нефтеводяной фильтрующей установки (НВФУ) управляет электронный блок на базе микроконтроллера (фиг.1). Контроллер (15), входящий в состав микроконвертора (14), формирует сигнал, который с помощью ЦАП (17) преобразуется в аналоговый импульс, усиливается в усилителе мощности (13) и подается через согласующее устройство (11) на ультразвуковой излучатель (8). Акустический сигнал, пройдя через контролируемую среду, принимается ультразвуковым приемником (7) и через согласующее устройство (10) усиливается преселектором (12) для увеличения отношения сигнал/помеха. Далее принятый сигнал преобразуется с помощью АЦП (16) в цифровой вид и поступает в контроллер (15), где вычисляются скорость звука в модуле определения скорости (19) и затухание сигнала в модуле измерения затухания (20). Модуль синхронизации (18) обеспечивает синхронную работу излучателя и приемника. В контроллере также имеется канал измерения температуры среды (21) от датчика (9). Модуль принятия решения (22) вырабатывает выходной сигнал. Все устройство питается от внешнего источника напряжения 24 В с помощью стабилизатора (23).

Датчик имеет четыре выходных состояния (в соответствии с программой обработки сигналов):

1. промежуток между приемником и излучателем заполнен водой;

2. промежуток между приемником и излучателем заполнен нефтепродуктом;

3. между приемником и излучателем находится граница раздела нефтепродукт-вода;

4. между приемником и излучателем находится воздух.

Состояния 1 и 2 вычисляются прибором по скорости звука в среде, 3-е состояние дополнительно может определяться по резкой потере мощности сигнала (затуханию) при его отражении от границы раздела. Точность определения уровня линии раздела нефтепродукт-вода может составлять 5÷10 мм; четвертое состояние - по отсутствию сигнала на приемнике.

На фиг.2 представлена конструкция датчика границы сред (ДГС) для нефтеводяной фильтрующей установки (НВФУ). Датчик содержит бронзовый фланец (2) с отверстиями и приспособлениями для герметичного крепления к крышке или днищу резервуара. На фланце закреплен водонепроницаемый электронный блок (3) и стойка измерительного канала (4). С электронным блоком соединены герметично проложенными проводниками ультразвуковой приемник (5) и ультразвуковой излучатель (6). Кабель с помощью сальника входит в электронный блок (1).

Изобретение обеспечивает четкий, надежный и безопасный контроль положения границы сред нефтепродукт-вода.

1. Датчик границы сред (ДГС) для нефтеводяной фильтрующей установки (НВФУ), содержащий бронзовый фланец с отверстиями и приспособлениями для герметичного крепления к крышке или днищу резервуара; на фланце закреплен водонепроницаемый электронный блок, стойки измерительного канала; ультразвуковые излучатели, ультразвуковые приемники, отличающийся тем, что ультразвуковые излучатели и ультразвуковые приемники представляют собой пьезокерамические шайбы диаметром ~15÷18 мм и толщиной ~1.5÷3 мм, при этом соединены герметично проложенными проводниками с электронным блоком.

2. Датчик границы сред (ДГС) для нефтеводяной фильтрующей установки (НВФУ) по п.1, отличающийся тем, что все узлы креплений загерметизированы бензостойкой резиной - силкаст или полиуретан.

3. Датчик границы сред (ДГС) для нефтеводяной фильтрующей установки (НВФУ) по п.1, отличающийся тем, что его конструкция не содержит резьбовых соединений.

4. Датчик границы сред (ДГС) для нефтеводяной фильтрующей установки (НВФУ) по п.1, отличающийся тем, что имеет компенсатор качки при использовании на флоте.



 

Похожие патенты:

Описывается устройство (1) для измерения электропроводности, по меньшей мере, для определения уровня наполнения электропроводных жидкостей. Предусмотрен измерительный элемент (10), по меньшей мере, с одним несущим корпусом (12) и, по меньшей мере, двумя, имеющими первый (42) и второй (44) концы и проходящими в вертикальном направлении электродами (40а, b), причем электроды (40а, b) в зоне первого конца (42) имеют, по меньшей мере, одну экранированную зону (22), и каждый электрод (40а, b) имеет, по меньшей мере, одну первую и одну вторую соответственно граничащую с экранированной зоной (22) свободную контактную поверхность (46, 52).

Изобретение относится к измерительной технике и может быть использовано при определении раздела фаз в парогенерирующих установках. Способ заключается в том, что устанавливают датчик, выполненный, например, в виде электропроводной проволоки, в канале по направлению силы тяжести нагревают датчик путем пропускания тока через датчик, измеряют электрическое сопротивление датчика R, отличающийся тем, что измеряют ток I, проходящий через датчик, определяют приращение температуры датчика на участках датчика, контактирующих с паровой и жидкой фазами Δtп=I2R/πdLαп, Δtж=I2R/πdLαж, определяют удельное электрическое сопротивление датчика, контактирующего с паровой и жидкой фазами ρп=ρ0(1+βΔtп), ρж=ρ0(1+βΔtж), определяют толщину парового hп и жидкостного слоя hж:hп=(RS-ρжL)/(ρп-ρж), hж=L-hп, где ρж и ρп - удельное электрическое сопротивление датчика, находящегося в жидкой ρж и паровой фазе соответственно; R - электрическое сопротивление датчика; I - ток через датчик; L - длина датчика; S - поперечное сечение датчика, β - термический коэффициент сопротивления, d - диаметр датчика, ρ0 - удельное электрическое сопротивление материала датчика при t=20°C, αп, αж - коэффициенты теплоотдачи на поверхности датчика при взаимодействии с паровой и жидкой фазами.

Изобретение относится к устройствам для определения уровня криогенной жидкости и может быть применено как в криогенерирующих установках, так и в системах, потребляющих криопродукцию.

Изобретение относится к приборостроению, а именно к дискретным датчикам контроля уровня, и может быть использовано в системах и приборах для контроля уровня топлива при хранении, заправке, а также в процессе работы двигателей на криогенном топливе при жестких механических воздействиях.

Изобретение относится к области контрольно-измерительной техники и может быть использовано для измерения уровня диэлектрических и токопроводящих жидкостей, например в резервуарах с нефтью или нефтепродуктами.

Изобретение относится к измерительному устройству для определения количества d(V(z)) электрически проводящей жидкости с проводимостью LF с помощью емкости при изменяющихся в вертикальном направлении (z-направлении) уровнях заполнения.

Изобретение относится к области средств для автоматизации контроля уровня различных жидкостей в промышленных и бытовых резервуарах, а также для контроля наличия и протока жидкостей в трубопроводах.

Изобретение относится к контрольно-измерительной технике и предназначено для контроля и сигнализации границы раздела сред нефтепродукт-вода в установках для очистки воды от нефтепродуктов или обводненных нефтепродуктов от воды.

Изобретение относится к области приборостроения и предназначено для контроля уровня диэлектрических и токопроводящих жидкостей в гидравлических системах (топливных, охлаждающих, накопительных и др.), например, уровня масла, топлива или тосола на транспортных средствах.

Изобретение относится к области приборостроения, в частности к средствам контроля и измерения уровня жидких и сыпучих сред в замкнутых объемах. .

Изобретение относится к технике измерения уровня жидкости и может быть использовано в автоматических системах автоматики и аварийной сигнализации для измерения уровня жидкого азота. Сигнализатор уровня жидкого азота включает терморезисторы, расположенные на контролируемых уровнях в дьюаре и через которые проходит ток подогрева. Измерительный узел каждого из терморезисторов, выполняющий функцию определения изменения сопротивления терморезистора, функцию сравнения измеренного сопротивления с эталонным и функцию индикации, выполнен в виде микроконтроллера, подключенного токовыми выходом и входом для измерения напряжения к терморезистору. Микроконтроллер на токовом выходе формирует ток подогрева. Микроконтроллер дополнительно имеет функцию обновления эталонного значения сопротивления терморезистора при формировании сигнала о достижении жидким азотом контролируемого уровня. Технический результат - повышение быстродействия сигнализатора жидкого азота при опорожнении и заполнении дьюара, а также уменьшение непроизводственных потерь жидкого азота, вызванных кипением и испарением жидкого азота на нагретом термочувствительном элементе и исключение влияния на результат контроля изменения характеристик терморезистора из-за эффекта «старения». 1 з.п.ф-лы, 1 ил.

Изобретение относится к области криогенной техники. Способ измерения уровня жидкого гелия дискретным уровнемером с точечным резистивным датчиком температуры марки ТВО и контроллером управления процессом измерения отличается тем, что датчик устанавливается на разных уровнях и определяется разброс показаний значений сопротивления датчика: стабильный и малый разброс указанных значений характеризует расположение датчика в жидкой среде гелия, несколько худший разброс указанных значений характеризует расположение датчика в газообразной среде, наибольший разброс указанных значений соответствует положению датчика у поверхности жидкого гелия, и по итогу анализа разброса показаний сопротивления определяют уровень жидкого гелия. Задача, решаемая изобретением, заключается в нахождении способа определения уровня жидкого гелия точечным датчиком, не требующим его предварительной калибровки. 2 ил.

Изобретение относится к области контроля уровня электропроводных сред, преимущественно жидких металлов в атомно-энергетической промышленности. Кондуктометрический способ позволяет измерять уровень жидкого металла без введения каких-либо элементов конструкции уровнемера внутрь резервуара, где находится жидкий металл. Способ состоит в том, что в зоне возможного положения или перемещения уровня жидкого натрия в резервуаре на внешней поверхности стенки резервуара создается электрическое поле. Затем на выбранной локальной области, расположенной на внешней стенке резервуара с помощью двух электродов и измерительного устройства измеряется напряженность электрического поля, по которой вычисляется присутствие на данном участке за стенкой резервуара одной из сред, электропроводность которой соответствует либо жидкому натрию, либо воздуху. Электроды через определенные промежутки устанавливаются на всей зоне возможного положения уровня. Последовательным или одновременным зондированием стенки на различных участках резервуара дискретно-аналоговым способом определяется место, где находится граница раздела между воздухом и жидким натрием, т.е. определяется положение уровня жидкого металла в резервуаре. Электрическое поле образуется с помощью тока, подводимого к двум электродам, контактирующим с внешней стороной стенки резервуара, причем один из электродов находится на самой верхней части резервуара, куда может подняться уровень жидкого натрия, а другой электрод находится на самой нижней части резервуара. Напряженность электрического поля на внешней поверхности стенки резервуара определяется путем измерения отношения разности потенциалов между двумя зондирующими электродами, расположенными по вертикали на некоторой выбранной локальной области внешней поверхности резервуара, к расстоянию между этими электродами. Технический результат: надежный контроль уровня жидкого металла при обеспечении заданных метрологических характеристик в широком диапазоне температур, а также непрерывность контроля и умеренная стоимость. 5 з.п. ф-лы, 3 ил.

Изобретение относится к технике измерения уровня потока жидкости, протекающего по открытому каналу. Техническим результатом является повышение надежности измерения уровня. Устройство состоит из первичного преобразователя, имеющего участок канала, по которому протекает поток жидкости, и измерительного блока, имеющего источник переменного напряжения низкой частоты, причем первичный преобразователь имеет кран, выполненный из электропроводного материала и подключенный к водопроводной сети, и два электрода, из которых один расположен по линии траектории струи, приблизительно на ее середине, а другой расположен в потоке на дне канала, причем кран и электрод, расположенный на дне канала, подключены к источнику переменного напряжения низкой частоты, а электрод, расположенный приблизительно на середине струи, и электрод, расположенный на дне канала, подключены ко входу измерительного блока, и отличается тем, что первичный преобразователь имеет лоток, выполненный из неэлектропроводного материала и расположенный между краном и электродом, находящимся на дне канала, под углом α<π/2 к поверхности раздела сред «воздух - жидкость», а электрод, расположенный по линии траектории струи приблизительно на ее середине, закреплен в полости лотка. 1 ил.

Изобретение относится к измерительной технике и предназначено для измерения уровня жидкостей при заполнении и опорожнении резервуаров, в частности уровня компонентов жидкого криогенного топлива в емкостях и баках при жестких механических воздействиях. Технический результат - повышение механической прочности и надежности измерителя уровня жидкости, точности его измерений, а также возможность его расположения с наклоном к вертикали, что повышает его универсальность применения для баков (емкостей) различных геометрических конфигураций. Дополнительно повышение технологичности изготовления устройства и снижение его стоимости. Измеритель уровня жидкости, содержащий корпус измерителя с размещенными по его высоте в каждой контрольной точке измеряемых уровней одним или несколькими терморезисторами «точечного» исполнения, отличающийся тем, что корпус измерителя выполнен полым трубчатым с посадочными местами для терморезисторных датчиков, выходы которых проводными линиями связи соединены с внешним измерительным прибором, при этом в контрольных точках измеряемых уровней точечные терморезисторы, установленные в нескольких датчиках, находятся в плоскости, параллельной поверхности жидкости, корпус измерителя при установке расположен вертикально или под углом к вертикали, при этом посадочные места нескольких терморезисторных датчиков установлены под соответствующими углами, зависящими от угла наклона корпуса к вертикали так, что их точечные терморезисторы расположены в контрольных точках измеряемых уровней, а в плане в каждой точке измерения терморезисторные датчики равномерно разнесены относительно друг друга. 8 ил., 2 табл.

Изобретение относится к области криогенной техники и может быть использовано в различного рода накопительных сосудах. Предложен способ измерения уровня жидкого гелия дискретным уровнемером с точечным датчиком, содержащим резистивный датчик температуры марки ТВО и контроллер управления процессом измерения. Новым является то, что анализируют изменение значений сопротивления датчика при запитке его поочередно током 0,1 и 3 мА и по величине скачка сопротивления судят о фазе вещества. Технический результат - определение уровня жидкого гелия точечным датчиком без предварительной калибровки. 2 ил.

Изобретение может быть использовано для контроля уровня жидкости в различных сосудах. Динамический датчик уровня жидкости, содержащий мостовую схему с включенным в ее плечо измерительным резистором, выполненным по длине контролируемого столба жидкости, с последовательно подключенными операционным усилителем, аналого-цифровым преобразователем, бортовым компьютером, в котором имеется пластмассовый корпус трубчатого сечения, на внешней поверхности которого выполнена резьба для крепления, на всей внутренней поверхности напыление оксидным порошком, с нижнего торца закрыто пластмассовым диском с отверстиями, покрытым снизу сеткой, а сверху корпус закрыт навинчивающейся пластмассовой крышкой, имеющей контакты на внешней поверхности, со сквозными отверстиями и пластмассовым стержнем, равным по длине с корпусом и установленным соосно с зазором от внутренней поверхности корпуса, имеющим снаружи по всей длине напыление оксидным порошком. Техническим результатом является постоянный контроль уровня жидкости, в любой емкости проводящей и непроводящей, повышение точности показания прибора. 2 ил.

Изобретение может использоваться для контроля уровня как нагреваемых, так и ненагреваемых электролитов, растворов и/или промывной воды в ваннах гальванических линий. Способ реализации датчика уровня включает изготовление основания и размещение через расположенные в нем отверстия чувствительных элементов, включая общий электрод и/или электрод для контроля наличия жидкости в ванне, подключенных к устройству для контроля уровня. Размещение чувствительных элементов выполняют с возможностью их вертикального перемещения и фиксации их положения внутри соединяемых с нижней поверхностью основания датчика уровня и/или кронштейна для размещения последнего проходных втулок, выполненных с резьбой и цапфовыми зажимами или соединенных с резьбовыми элементами, оснащенными цапфовыми зажимами, используемыми для фиксации выбранного положения электродов с помощью гаек, фиксирующих выбранные положения чувствительных элементов. При этом металлические электроды размещают либо в трубках из неэлектропроводного материала, либо в общем экране. Техническим результатом является расширение функциональных возможностей способа при регулировке положения электродов датчика уровня и снижение вероятности ложных срабатываний. 5 з.п. ф-лы, 4 ил.

Настоящее изобретение относится к способу установки зонда для контроля поверхностного уровня текучей среды в сосуде, установленного внутри сосуда с его внешней стороны, а также к сосуду для использования в указанном способе. Указанный сосуд (2) имеет боковую стенку (6) и первое отверстие (22) в боковой стенке (6) для установки зонда (20, 120) внутрь сосуда (2) для контроля уровня текучей среды, при этом зонд (20, 120) имеет первый конец (24'), второй конец (24") и детектор (24), расположенный между ними. При этом детектор (24) имеет множество датчиков (38) вдоль его длины и средство (40) для передачи, при его использовании, связанной с поверхностным уровнем информации от датчиков на средство управления. При этом зонд (20) снабжен первым средством (28) и по меньшей мере вторым средством (36) для прикрепления зонда (20). Передающее средство (40) установлено в соединении с первым или вторым средствами (28; 36) закрепления, при этом первое отверстие (22) имеет такие размеры, что обеспечивается возможность введения второго средства (34, 36; 136) закрепления зонда (20, 120) внутрь сосуда (2). Техническим результатом является возможность легкой установки и обслуживания, поскольку зонд устанавливается снаружи сосуда. 2 н. и 15 з.п. ф-лы, 10 ил.
Наверх