Способ дистанционного обнаружения вещества

Использование: предлагаемая система относится к радиотехническим средствам, использующим магнитный резонанс для поиска и обнаружения преимущественно наркотиков и взрывчатых веществ в составе предъявленных для исследования предметов, а также поляризационную селекцию и фазовый анализ для поиска и обнаружения наркотиков, упакованных в неметаллическую оболочку и находящихся в укрывающих средах, например в брюшной полости человека, используемого для транспортировки наркотических средств, багаже, чемоданах, дипломатах, сумках и т.п., и может найти применение в аэропортах, таможенных терминалах, блокпостах, автопарковках, железнодорожных вокзалах и т.п. Сущность: система содержит передающую антенну 1, передатчик 2, генератор 3 импульсов, синхронизатор 4, первую 5 и вторую 13 приемные антенны, первый 6 и второй 14 приемники, накопитель 7, исследуемое вещество 8, наркотическое средство 9, помещенное в укрывающую среду, антенный блок 10, блок 11 временной задержки, ключ 12, смеситель 15, гетеродин 16, усилитель 17 промежуточной частоты, перемножители 18, 23, 24, 26 и 27, узкополосный фильтр 19, фазовый детектор 20, блок 21 сравнения, блок 22 регистрации, фазовращатель 25 на 90°, масштабирующий перемножитель 28, блок 29 вычитания и сумматор 30. Технический результат: повышение чувствительности при измерении малых фазовых сдвигов, соответствующих малоконтрастным наркотическим веществам, путем их «усиления» в четыре раза. 1 ил.

 

Изобретение система относится к радиотехническим средствам, использующим магнитный резонанс для поиска и обнаружения преимущественно наркотиков и взрывчатых веществ в составе предъявленных для исследования предметов, а также поляризационную селекцию и фазовый анализ для поиска и обнаружения наркотиков, упакованных в неметаллическую оболочку и находящихся в укрывающих средах, например в брюшной полости человека, используемого для транспортировки наркотических средств, багаже, чемоданах, дипломатах, сумках и т.п., и может найти применение в аэропортах, таможенных терминалах, блокпостах, автопарковках, железнодорожных вокзалах и т.п.

Известны способы и системы дистанционного обнаружения вещества (патенты РФ №№2128832, 2148817, 2150105, 2161300, 2165104, 2179716, 2185614, 2226686, 2244942, 2249202, 2340913, 2377549; патенты США №№4756866, 5986455, 6194898, 6392408; патенты Великобритании №№2159626, 2254923, 2289344, 2293.885; Гречишкин В.Д. и др. Локальный ЯКР в твердых телах. Успехи физических наук, 1993, т.163, №10; Дикарев В.И., Заренков В.А., Заренков Д.В. Обнаружение взрывоопасных объектов, оружия, наркотиков, опасных газов и радиоактивных загрязнений. СПб, 2004 и др.).

Из известных систем наиболее близкой к предлагаемой является «Система дистанционного обнаружения вещества» (патент РФ №2377549, G01N 24/00, 2008), которая и выбрана в качестве прототипа.

Указанная система основана на дистанционном обнаружении вещества с использованием дистанционного возбуждения электромагнитной волной магнитного резонанса в веществе с последующим измерением отклика, по наличию которого делается заключение о наличии данного вещества, при этом возбуждающий электромагнитный сигнал излучается на частоте, много большей частоты магнитного резонанса подлежащего обнаружению вещества, и модулируют излучаемый возбуждающий электромагнитный сигнал по поляризации на частоте магнитного резонанса, а отклик регистрируется на частоте модуляции, а также на поляризационной селекции и фазовом анализе для поиска и обнаружения наркотиков, упакованных в неметаллическую оболочку и находящихся в укрывающих средах, например в брюшной полости человека, используемого для транспортировки наркотических средств, багаже, сумках, чемоданах, дипломатах и т.п.

Недостатком известной системы является низкая чувствительность при измерении малых фазовых сдвигов, соответствующих малоконтрастным наркотическим веществам.

Технической задачей изобретения является повышение чувствительности при измерении малых фазовых сдвигов, соответствующих малоконтрастным наркотическим веществам, путем их «усиления» в четыре раза.

Поставленная задача решается тем, что система дистанционного обнаружения вещества, содержащая в соответствии с ближайшим аналогом исследуемое вещество, наркотическое средство, помещенное в укрывающую среду, последовательно включенные синхронизатор, генератор импульсов, передатчик, второй вход которого соединен с вторым выходом синхронизатора, и передающую антенну, последовательно включенные первую приемную антенну, первый приемник, второй вход которого соединен с третьим выходом синхронизатора, накопитель, второй вход которого соединен с третьим выходом синхронизатора, и блок регистрации, второй вход которого соединен с выходом блока сравнения, последовательно включенные вторую приемную антенну, второй приемник, второй вход которого соединен с третьим выходом синхронизатора, смеситель, второй вход которого соединен с выходом гетеродина, усилитель промежуточной частоты, первый перемножитель, узкополосный фильтр и фазовый детектор, второй вход которого соединен с выходом гетеродина, последовательно подключенные к четвертому выходу синхронизатора блок временной задержки и ключ, второй вход которого соединен с выходом первого приемника, а выход подключен к второму входу первого перемножителя, при этом передающая антенна, первая и вторая приемные антенны снабжены поляризаторами и объединены в антенный блок, отличается от ближайшего аналога тем, что она снабжена вторым, третьим, четвертым и пятым перемножителями, фазовращателем на 90°, масштабирующим перемножителем, блоком вычитания и сумматором, причем к выходу фазового детектора последовательно подключены второй перемножитель, второй вход которого соединен с выходом фазового детектора, третий перемножитель, второй вход которого соединен с выходом второго перемножителя, блок вычитания и сумматор, выход которого соединен с входом блока сравнения, к выходу фазового детектора последовательно подключены фазовращатель на 90°, четвертый перемножитель, второй вход которого соединен с выходом фазовращателя на 90°, и пятый перемножитель, второй вход которого соединен с выходом четвертого перемножителя, а выход подключен к второму входу сумматора, второй вход блока вычитания через масштабирующий перемножитель, соединен с выходами второго и четвертого перемножителей.

Структурная схема предлагаемой системы представлена на чертеже. Система содержит исследуемое вещество 8, наркотическое средство 9, помещенное в укрывающую среду, последовательно включенные синхронизатор 4, генератор 3 импульсов, передатчик 2, второй вход которого соединен с вторым выходом синхронизатора 4, и передающую антенну 1, последовательно включенные первую приемную антенну 5, первый приемник 6, второй вход которого соединен с третьим выходом синхронизатора 4, накопитель 7, второй вход которого соединен с третьим выходом синхронизатора 4, и блок 22 регистрации, второй вход которого соединен с выходом блока 21 сравнения, последовательно включенные вторую приемную антенну 13, второй приемник 14, второй вход которого соединен с третьим выходом синхронизатора 4, смеситель 15, второй вход которого соединен с выходом гетеродина 16, усилитель 17 промежуточной частоты, первый перемножитель 18, узкополосный фильтр 19, фазовый детектор 20, второй вход которого соединен с выходом гетеродина 16, второй перемножитель 23, второй вход которого соединен с выходом фазового детектора 20, третий перемножитель 24, второй вход которого соединен с выходом второго перемножителя 23, блок 29 вычитания и сумматор 30, выход которого соединен с входом блока 21 сравнения. К выходу фазового детектора 20 последовательно подключены фазовращатель 25 на 90°, четвертый перемножитель 26, второй вход которого соединен с выходом фазовращателя 25 на 90°, и пятый перемножитель 27, второй вход которого соединен с выходом четвертого перемножителя 26, а выход подключен к второму входу сумматора 30. Второй вход блока 29 вычитания через масштабирующий перемножитель 28 соединен с выходами второго 23 и четвертого 26 перемножителей. К четвертому выходу синхронизатора 4 последовательно подключены блок 11 временной задержки и ключ 12, второй вход которого соединен с выходом первого приемника 6, а выход подключен к второму входу первого перемножителя 18.

Передающая антенна 1, первая 5 и вторая 13 приемные антенны снабжены поляризаторами и объединены в антенный блок 10.

Предлагаемая система может работать в двух режимах.

Первый режим основан на дистанционном возбуждении электромагнитной волной магнитного резонанса в исследуемом веществе с последующим измерением частоты отклика.

Второй режим основан на радиомагнитном радиолокационном зондировании плоскополяризованной волной предполагаемого места закладки наркотического средства, упакованного в неметаллическую оболочку и размещенного в укрывающей среде, с последующим измерением сдвига фаз между двумя отраженными составляющими, которые в общем случае имеют эллиптическую поляризацию с противоположными направлениями вращения вектора электромагнитного поля.

В первом режиме импульсы с частотой заполнения w1 (w1-w), формируемые в генераторе 3 импульсов, поступают в передатчик 2 и излучаются передающей антенной 1 в направлении исследуемого вещества 8. Последнее может располагаться, например, на теле человека под его одеждой. Передающая 1 и приемные 5, 13 антенны выполнены, например, в виде рупорных антенн, которые снабжены поляризаторами. Сигнал в передающую антенну 1 поступает с круглого волновода, на который, в свою очередь, с передатчика 2 подаются две ортогональные (по поляризации) составляющие, одна на частоте w1, а другая - на частоте (w1-w), в результате чего излучаемая антенной 1 волна будет модулирована по поляризации с частотой магнитного резонанса w.

Исследуемое вещество 8, облученное электромагнитной волной, содержащей составляющую по частоте магнитного резонанса w, возбуждается и по окончании импульса облучения излучает сигнал отклика на этой же частоте. Сигнал отклика принимается приемной антенной 5, содержащей четыре ферритовых стержня диаметром 8 мм и длиной 138 мм, при этом на стержни намотаны катушки индуктивности, содержащие по 20 витков и соединенные параллельно. Работой системы управляет синхронизатор 4.

Сигнал с приемной антенной 5 поступает на первый вход приемника 6, на второй вход которого поступает опорное напряжение с третьего выхода синхронизатора 4, запирающее приемник 6 на время излучения импульсов. С выхода приемника 6 сигналы поступают на вход накопителя 7, где они постепенно накапливаются, что позволяет увеличить дальность от приемной антенны 5 до исследуемого вещества 8 в 2-3 раза. На второй вход накопителя 7 поступает также опорное напряжение с третьего выхода синхронизатора 4, обеспечивающее синхронизацию накапливаемых импульсов.

В случае модуляции по поляризации излучаемого сигнала с частотой w, равной частоте магнитного резонанса исследуемого вещества 8, при частоте излучаемого сигнала w1>>w, вектор напряженности H ^ магнитного поля излучаемого электромагнитного сигнала содержит составляющую:

H ^ = C o s w 1 t ( S i n w t C o s w t )

Исследуемое вещество 8 будет активно взаимодействовать с магнитном полем H ^ на частоте w (Дудкин В.И., Пахомов Л.Н. Основы квантовой электроники. СПб ГТУ, 2001). Поскольку частота w1 может быть выбрана достаточно высокой w1>>w, то в этом случае реализация передающей антенны 1 может быть осуществлена, например, с помощью техники антенн сверхвысоких частот (СВЧ), на которую модулированный по поляризации сигнал поступает из круглого волновода, на который, в свою очередь, поступают две линейно-поляризованные ортогональные волны H ^ ' и H ^ ' ' , частоты которых равны соответственно w1 и (w1-w).

Переход на частоту возбуждающего излучения в диапазоне СВЧ позволяет обеспечить «дальнюю зону» для излучаемого электромагнитного сигнала уже при дальности в несколько десятков сантиметров. В результате на расстояниях порядка нескольких метров от излучателя обеспечивается уровень электромагнитного излучения, достаточный для возбуждения резонанса в веществе.

Во втором режиме генератор 3 импульсов формирует зондирующий импульс:

u1(t)=U1·Cos(w1t+φ1), 0≤t≤T,

где U1, w1, φ1, T1 - амплитуда, несущая частота, начальная фаза и длительность импульса;

который поступает на вход передатчика 2, а затем на вход передающей антенны 1, где он приобретает плоскую поляризацию и излучается в направлении поверхности укрывающей среды, под которой может находиться наркотическое средство 9.

Обнаружение наркотических средств в укрывающих средах осуществляется оператором путем перемещения антенного блока 10 над предполагаемым местом закладки наркотического средства 9. При этом в укрывающей среде создается электромагнитное поле путем его электромагнитного зондирования. При достижении зондирующим сигналом наркотического средства 9 происходит его частичное отражение в сторону поверхности укрывающей среды.

Когда плоскополяризованная электромагнитная волна отражается от наркотического средства 9, на которое воздействует внешнее магнитное поле Земли, то она разделяется на две независимые составляющие, которые в общем случае имеют эллиптическую поляризацию с противоположными направлениями вращения вектора электромагнитного поля. На частотах дециметрового диапазона обе составляющие имеют круговую поляризацию. Наркотическое средство 9 имеет отличные от укрывающей среды электрические параметры (проводимость и диэлектрическую проницаемость).

Обе волны отражаются и распространяются с различными скоростями, вследствие чего фазовые соотношения между этими волнами изменяются. Это явление обычно называют эффектом Фарадея, из-за которого отраженный сигнал испытывает вращение плоскости поляризации. Угол поворота плоскости поляризации, который определяется разной скоростью распространения и отражения сигналов с правой и левой круговой поляризацией от наркотического средства 9, находится из соотношения

δ Z = 1 2 ( ϕ п ϕ л )

где φп, φл - фазовые запаздывания отраженных сигналов с правой (вращение плоскости поляризации по часовой стрелке) и левой (вращение плоскости поляризации против часовой стрелки) круговой поляризации соответственно.

Отраженный сигнал улавливается приемными антеннами 5 и 13. При этом приемная антенна 5 восприимчива только к отраженному сигналу с правой круговой поляризацией, а приемная антенна 13 - только к отраженному сигналу с левой круговой поляризацией.

На выходе приемников 6 и 14 образуются следующие сигналы:

un(t)=Uп·Cos[w1±Δw)t+φп],

uл(t)=Uл·Cos[(w1±Δw)t+φл], 0≤t≤T1,

где индексы «п» и «л» относятся соответственно к сигналам с правой и левой круговой поляризацией;

±Δw - нестабильность несущей частоты, обусловленная некогерентным отражением и другими дестабилизирующими факторами.

Сигнал uп(t) с выхода приемника 6 через ключ 12 поступает на первый вход перемножителя 18. Чтобы измеряемая разность фаз соответствовала глубине h залегания наркотического средства 9, перемножитель 18 стробируется по времени с помощью ключа 12, на управляющий вход которого поступают стробирующие импульсы, формируемые блоком 11 временной задержки. Последний управляется синхронизатором 4. Временная задержка импульсов определяется глубиной h залегания наркотического средства 9 в укрывающей среде. При изменении глубины меняется и время задержки.

Отраженный сигнал uл(t) с выхода приемника 14 поступает на первый вход смесителя 15, на второй вход которого подается напряжение гетеродина 16:

uг(t)=Uг·Cos(wгг).

На выходе смесителя 15 образуются напряжения комбинационных частот. Усилителем 17 выделяется напряжение промежуточной (разностной) частоты:

Uпр(t)=Uпр·Cos[(wпр±Δw)t+φпр], 0≤t≤T1,

где U п р = 1 2 U л U г

wпр=w1-wГ - промежуточная частота;

φпрлг,

которое поступает на второй вход перемножителя 18. На выходе последнего образуется гармоническое напряжение:

u2(t)=U2·Cos(wгt+φг+Δφ), 0≤t≤T1,

где U 2 = 1 2 U п U п р

Δφ=φпл - разность фаз между отраженными сигналами с правой и левой круговой поляризацией,

которая выделяется узкополосным фильтром 19 и поступает на первый вход фазового детектора 20, на второй вход которого подается напряжение гетеродина uг(t). На выходе последнего образуется низкочастотное напряжение:

uн(Δφ)=Uн·CosΔφ,

где U н = 1 2 U 2 U г

пропорциональное измеряемому сдвигу фаз Δφ.

Это напряжение поступает на два входа второго перемножителя 23, на выходе которого образуется напряжение

u 3 ( Δ ϕ ) = U н 2 C o s 2 Δ ϕ ,

которое поступает на два входа третьего перемножителя 24. На выходе последнего образуется напряжение

u 4 ( Δ ϕ ) = U н 4 C o s 4 Δ ϕ .

Одновременно низкочастотное напряжение uн(Δφ) с выхода фазового детектора 20 поступает на вход фазовращателя 25 на 90°, на выходе которого формируется напряжение

U5(Δφ)=uн·Cos(Δφ+90°)=-Uн·SinΔφ,

которое поступает на два входа четвертого перемножителя 26. На выходе последнего образуется напряжение

u 6 ( Δ ϕ ) = U н 2 S i n 2 Δ ϕ ,

которое поступает на два входа пятого перемножителя 27. На выходе последнего образуется напряжение

u 7 ( Δ ϕ ) = U н 4 S i n 4 Δ ϕ .

Напряжения из (Δφ) и u6(Δφ) поступают на два входа масштабирующего перемножителя 28, масштабирующий коэффициент Км которого выбирается равным 6 (Км=6). На выходе масштабирующего перемножителя 28 формируется напряжение

u 8 ( Δ ϕ ) = 6 u 3 ( Δ ϕ ) u 6 ( Δ ϕ ) = 6 U н 4 C o s 2 Δ ϕ S i n 2 Δ ϕ .

Напряжения u4(Δφ) и u8(Δφ) поступают на два входа блока 29 вычитания, на выходе которого формируется напряжение

u 9 ( Δ ϕ ) = u 4 ( Δ ϕ ) u 8 ( Δ ϕ ) = U н 4 C o s 4 Δ ϕ 6 U н 4 C o s 2 Δ ϕ S i n 2 Δ ϕ .

Напряжения u7(Δφ) и u9(Δφ) поступают на два входа сумматора 30, на выходе которого формируется напряжение

u 10 ( Δ ϕ ) = u 9 ( Δ ϕ ) + u 7 ( Δ ϕ ) = U н 4 C o s 2 Δ ϕ 6 U н 4 C o s 2 Δ ϕ S i n 2 Δ ϕ + U н 4 S i n 4 Δ ϕ = = U н 4 C o s 4 Δ ϕ = U 1 C o s Δ ϕ 1

где U 1 = U н 4 , Δ ϕ 1 = 4 Δ ϕ .

Следовательно, фазовый сдвиг «усиливается» в 4 раза.

Напряжение u10(Δφ) сравнивается в блоке 21 сравнения с эталонным напряжением

uэ(Δφэ)=uэ·CosΔφэ,

где Δφэ - неизменяемый фазовый сдвиг, получаемый при зондировании укрывающей среды при отсутствии наркотического средства 9.

Сдвиг фаз Δφэ определяется частотой зондирующего сигнала и электрическими параметрами укрывающей среды. Этот сдвиг фаз остается неизменным при зондировании укрывающей среды в отсутствии наркотических средств.

Если u10(Δφ)≈uэ(Δφэ), то в блоке 21 сравнения постоянное напряжение не формируется.

При u10(Δφ)>uэ(Δφэ) в блоке 21 сравнения формируется постоянное напряжение, которое поступает на второй вход блока 22 регистрации.

Причем факт регистрации этого напряжения свидетельствует о наличии наркотического средства в данной укрывающей среде.

Предлагаемая система обеспечивает поиск и обнаружение наркотических средств, упакованных в неметаллическую оболочку и находящихся в укрывающих средах, например в брюшной полости человека, используемого для транспортировки наркотических средств, багаже, чемоданах, дипломатах, сумках и т.п.

При этом предлагаемая система позволяет повысить достоверность поиска и обнаружения и разрешающую способность по глубине при определении местоположения наркотических средств, находящихся в укрывающих средах. Это достигается за счет использования поляризационной селекции и устранения неоднозначности фазовых измерений, что обеспечивается тем, что фазовые измерения осуществляются между отраженными сигналами с правой и левой круговой поляризацией, а не между зондирующими и отраженными сигналами. При этом фазовый сдвиг между отраженными сигналами с правой и левой круговой поляризацией измеряется на стабильной частоте wr гетеродина. Поэтому процесс измерения фазового сдвига Δφ инвариантен к нестабильности несущей частоты отраженного сигнала, возникающей при некогерентном отражении сигнала от наркотического средства и других дестабилизирующих факторах, что позволяет повысить точность измерения фазового сдвига Δφ, а следовательно, и точность определения местоположения наркотического средства.

Таким образом, предлагаемая система по сравнению с прототипом и другими техническими решениями аналогичного назначения обеспечивает повышение чувствительности при измерении малых фазовых сдвигов, соответствующих малоконтрастным наркотическим веществам. Это достигается за счет «усиления» малых фазовых сдвигов в соответствии с выражением:

Cos4Δφ-6Cos2Δφ·Sin2Δφ+Sin4Δφ=Cos4Δφ,

в четыре раза.

Система дистанционного обнаружения вещества, содержащая исследуемое вещество, наркотическое средство, помещенное в укрывающую среду, последовательно включенные синхронизатор, генератор импульсов, передатчик, второй вход которого соединен с вторым выходом синхронизатора, и передающую антенну, последовательно включенные первую приемную антенну, первый приемник, второй вход которого соединен с третьим выходом синхронизатора, накопитель, второй вход которого соединен с третьим выходом синхронизатора, и блок регистрации, второй вход которого соединен с выходом блока сравнения, последовательно включенные вторую приемную антенну, второй приемник, второй вход которого соединен с третьим выходом синхронизатора, смеситель, второй вход которого соединен с выходом гетеродина, усилитель промежуточной частоты, первый перемножитель, узкополосный фильтр и фазовый детектор, второй вход которого соединен с выходом гетеродина, последовательно подключенные к четвертому выходу синхронизатора блок временной задержки и ключ, второй вход которого соединен с выходом первого приемника, а выход подключен к второму входу первого перемножителя, при этом передающая антенна, первая и вторая приемные антенны снабжены поляризаторами и объединены в антенный блок, отличающаяся тем, что она снабжена вторым, третьим, четвертым и пятым перемножителями, фазовращателем на 90°, масштабирующим перемножителем, блоком вычитания и сумматором, причем к выходу фазового детектора последовательно подключены второй перемножитель, второй вход которого соединен с выходом фазового детектора, третий перемножитель, второй вход которого соединен с выходом второго перемножителя, блок вычитания и сумматор, выход которого соединен с входом блока сравнения, к выходу фазового детектора последовательно подключены фазовращатель на 90°, четвертый перемножитель, второй вход которого соединен с выходом фазовращателя на 90°, и пятый перемножитель, второй вход которого соединен с выходом четвертого перемножителя, а выход подключен к второму входу сумматора, второй вход блока вычитания через масштабирующий перемножитель соединен с выходами второго и четвертого перемножителей.



 

Похожие патенты:

Использование: для измерения показателей качества нефтепродуктов. Сущность изобретения заключается в том, что в процессе измерения снимаются ЯМР-спектры нескольких эталонных нефтепродуктов с известными значениями показателей качества, охватывающими полный диапазон возможных изменений, фиксируется основной химический сдвиг, определяемый положением абсолютного максимума ЯМР-спектра каждого нефтепродукта, отличающийся тем, что на основе снятых спектров определяют аналитические зависимости, связывающие нормированные значения каждого показателя качества с основным химическим сдвигом эталонных нефтепродуктов, которые запоминают в устройстве обработки, измеряют ЯМР-спектр контролируемого продукта, для которого фиксируют основной химических сдвиг qX.
Изобретение относится к анализу в масложировой промышленности. .

Изобретение относится к области эксплуатации нефтяных месторождений, конкретно к оптимизации разработки залежей вязких и высоковязких нефтей на основе систематических промыслово-геофизических исследований пластовой продукции посредством импульсной методики и техники ядерного магнитного резонанса (ЯМР) в сильном магнитном поле [1].

Изобретение относится к радиотехническим средствам, использующим магнитный резонанс для поиска и обнаружения преимущественно наркотиков и взрывчатых веществ в составе предъявленных для исследования предметов, а также поляризационную селекцию и фазовый анализ для поиска и обнаружения наркотиков, упакованных в неметаллическую оболочку и находящихся в укрывающих средах, например в брюшной полости человека, используемого для транспортировки наркотических средств, багаже, чемоданах, дипломатах, сумках и т.п., и может найти применение в аэропортах, таможенных терминалах, блокпостах, автопарковках и т.п.

Изобретение относится к области практического применения импульсных ЯМР-спектрометров для эскпрессного определения показателей качества семян масличных культур.

Изобретение относится к области применения ядерного квадрупольного резонанса (ЯКР) для обнаружения веществ, содержащих атомы, ядра которых обладают квадрупольным моментом.

Изобретение относится к физическим измерениям, а именно к радиотехническим средствам, использующим магнитный резонанс, для поиска и обнаружения преимущественно наркотиков и взрывчатых веществ в составе предъявленных для исследования веществ.

Использование: для выполнения исследований посредством магнитно-резонансной системы, в которой предусмотрено гиперполяризационное устройство на фотонной основе. Сущность изобретения заключается в том, что в магнитно-резонансной системе используется гиперполяризационное устройство на фотонной основе с электромагнитным источником для испускания фотонного излучения, которое имеет существенную глубину проникновения в вещество объекта, в частности в ткань, подлежащую исследованию. Применяют мягкие или ультрамягкие рентгеновские лучи. Технический результат: обеспечение возможности создания магнитно-резонансной системы для исследования на фотонной основе, которая обладает большей гибкостью в отношении визуализации внутренней части объекта, подлежащего исследованию. 5 з.п. ф-лы, 2 ил.

Изобретение относится к области медицины и касается устройства для воздействия инфракрасным излучением на кожу человека. Устройство выполнено в виде магнитно-резонансного томографа, и содержит приемо-передающий канал, блок пространственной локализации, микропроцессорный контроллер и дисплей. Устройство также оснащено блоком локального воздействия, выполненным в виде манипулятора с ИК лазером, линзой и маркером для привязки луча лазера к системе координат исследуемой области. Технический результат заключается в повышении точности и мощности локального воздействия, а также в обеспечении возможности отслеживания происходящих изменений в ткани объекта. 2 з.п. ф-лы, 1 ил.

Использование: для магнитно-резонансного обследования. Сущность изобретения заключается в том, что система для магнитно-резонансного обследования содержит радиочастотную систему для индуцирования резонанса в поляризованных ядерных магнитных диполях и приема сигналов магнитного резонанса от объекта, подлежащего обследованию, модуль термометрии для получения распределения температуры объекта, подлежащего обследованию, из сигналов магнитного резонанса, и при этом система для магнитно-резонансного обследования дополнительно содержит устройство гиперполяризации на фотонной основе, с фотонным источником для испускания электромагнитного излучения, преобразователем мод, содержащим фазовую голограмму для придания орбитального углового момента электромагнитному излучению, пространственным фильтром для выбора из фазовой голограммы дифрагированного фотонного луча, получившего орбитальный угловой момент для поляризации ядерных магнитных диполей посредством переданного орбитального углового момента. Технический результат: обеспечение возможности выполнения системы для магнитно-резонансного обследования, основанной на гиперполяризации посредством орбитального углового момента, которая способна измерять температуру способом пространственного разложения. 2 н. и 1 з.п. ф-лы, 2 ил.

Изобретение относится к области радиосвязи и может быть использовано в устройствах радиосвязи для совместимости радиоэлектронных средств, а также для исследования параметров вторичного излучения различных сред. Технический результат - расширение функциональных возможностей за счет определения параметров вторичного излучения. Для этого устройство дополнительно содержит коммутатор антенн, приемо-передающую антенную систему, формирователь информации излучения вторичных излучателей, преобразователь частотного спектра, блок фильтров, блок анализа спектра излучения и блок индикаторов. Возбужденное антенными системами электромагнитное поле (ЭМП) приводит в возбужденное состояние исследуемые среды: электрические платы, электрические схемы, блочные конструкции, диэлектрические и слабо проводящие материалы и прочее. Эти исследуемые среды могут излучать вторичное поле, причем уровень его зависит от блочных или конструктивных особенностей, от материала и достоинств и недостатков. Излученное вторичное ЭМП фиксируется антенной системой. 12 з.п.ф-лы,16 ил.

Изобретение относится к маркированным изделиям из бумаги. Описывается способ изготовления маркированного изделия из бумаги с использованием облучения области изделия из бумаги электронным пучком с дозой от 0,10 Мрад до около 5 Мрад, где электроны имеют энергию от около 0,25 МэВ до 10 МэВ. Облучение осуществляют в условиях, выбранных для изменения функционализации указанной области изделия из бумаги. Указанная область может быть образована в форме «водяного знака» или символа. Изобретение обеспечивает на изделиях из бумаги маркировку, невидимую невооруженным глазом, которую трудно копировать без достаточно сложного оборудования, что затрудняет ее подделку. 6 з.п. ф-лы, 5 ил.

Изобретение относится к области радиосвязи. Отличительной особенностью заявленного устройства исследования электромагнитного поля вторичных излучателей является введение коммутатора передающих антенн, коммутатора приемо-передающих антенн, приемо-передающей антенной системы, двух передающих антенн для создания вертикальной составляющей, двух передающих антенн для создания горизонтальной составляющей, адаптивного преобразователя, формирователя информации излучения вторичных излучателей, преобразователя частотного спектра, блока фильтров, блока анализа спектра излучения, блока исследования спектра вторичного излучения. Техническим результатом является автоматизация анализа частотных свойств поля вторичного излучения исследуемых объектов и их уровней, увеличение чувствительности устройства введением адаптивной обработки сигналов вторичных излучателей. 17 з.п. ф-лы, 22 ил.

Изобретение относится к области измерения магнитных полей и касается оптического магнитометра. Магнитометр включает генератор низкой частоты, конденсатор, по меньшей мере одну катушку электромагнита, активный материал виде кристалла карбида кремния, содержащий по меньшей мере один спиновый центр на основе вакансия кремния с основным квадрупольным состоянием, помещенный внутрь катушки, источник постоянного тока, синхронный детектор, блок управления, оптическую систему из полупрозрачного зеркала, зеркала, светофильтра, линзы и объектива, лазер, излучающий в ближней инфракрасной области, и фотоприемник. Технический результат заключается в упрощении устройства и обеспечении возможности работы в полосе прозрачности биологических объектов. 4 з.п. ф-лы, 3 ил.
Наверх