Способ обнаружения и выделения горячих частиц

Изобретение относится к области контроля окружающей среды, а именно к способам обнаружения и выделения горячих частиц (ГЧ) с различных поверхностей и из воздушной среды, загрязненных радиоактивными веществами. Технический результат - повышение скорости (по времени более 7 раз) и эффективности (точности местоположения) обнаружения ГЧ, снижение трудоемкости способа обнаружения ГЧ, расширение функциональных возможностей исследований. Способ обнаружения и выделения горячих частиц (ГЧ) заключается в размещении пробы, содержащей радионуклиды, на подложку, определение наличия ГЧ по регистрации излучения от нее, и последующего анализа ГЧ с помощью микроскопа, при этом в качестве подложки используют пластиковый сцинтиллятор, а наличие и местоположение ГЧ определяют по регистрации бета-излучения с помощью электронно-оптического преобразователя с последующим перемещением пробы для ее анализа с помощью микроскопа и извлечением ГЧ с помощью иглы для дальнейшего определения ее физико-химических характеристик. 1 ил.

 

Изобретение относится к области контроля окружающей среды, а именно к способам обнаружения и выделения горячих частиц (ГЧ) с различных поверхностей и из воздушной среды, загрязненных радиоактивными веществами.

Горячая частица - есть материальное образование любого радионуклидного и химического состава размером до 50 мкм и удельной активностью >4 Бк (1.1x10-10 Ки).

На Чернобыльской АЭС и в зоне отчуждения ЧАЭС часто приходилось работать с твердыми, иногда композитными частицами, содержащими долгоживущие трансурановые материалы (U, Pu) с размерами более 5 мкм и суммарной активностью более чем 5 Бк.

Исследуя их физико-химические свойства: размеры, активность, состав, появляется возможность оценивать радиационную обстановку на территории, миграционные свойства радиоактивных продуктов в природной среде, и степень опасности внешнего и внутреннего облучения человека, а также уточнить механизмы формирования радиоактивных выпадений.

Актуальность нашего метода была вызвана уникальностью аварии на ЧАЭС - 26.04.86, когда загрязнению радионуклидами подверглись значительные территории. Необходимость мониторинга этих территорий в зависимости от степени их загрязнения осложнялась уникальным характером радиоактивного выброса - наличие в нем частиц диспергированного реакторного топлива - ГЧ. До этого частицы такого элементного состава в больших количествах не встречались, их радиобиологическое воздействие на окружающую среду (человека) не изучалось.

«…при радиохимическом анализе почв после аварии на Чернобыльской АЭС было определено наличие горячих топливных частиц, которые и «виновны» в загрязнении территории тугоплавкими радионуклидами-Zr-95, Nb-95, Ce-144 и т.д. По мере удаления от ЧАЭС доля топливной компоненты в выпадениях падает и меняется дисперсный состав горячих частиц. Так, на расстояниях более 10 км от реактора практически не встречаются топливные частицы размером более 10 мкм». (Радиохимия. -1992, N4, с.113-125.)

В работе (С.А. Богатое, А.А. Боровой и др. «О НЕКОТОРЫХ СВОЙСТВАХ ТОПЛИВОСОДЕРЖАЩИХ ЧАСТИЦ, ОБРАЗОВАВШИХСЯ ПРИ АВАРИИ НА ЧАЭС, И ОСОБЕННОСТЯХ ФОРМИРОВАНИЯ ТОПЛИВНОГО ВЫБРОСА» см. Препринт ИАЭ-5344/3, Москва, 1991 г., стр.10) описан способ разделения (а впоследствии и выделения) «ГЧ» по плотности путем осаждения частиц в «тяжелой жидкости Клеричи» (муравьино-малоново-кислый таллий р=4.2 г/см3). Опыты проводились с образцами выброшенной взрывом из шахты реактора графитовой крошки, содержащей, как показали исследования, кроме зерен окислов урана, и мелкодисперсные частицы других радионуклидов.

Путем разбавления «тяжелой жидкости Клеричи» водой происходит снижение ее плотности, что позволяет выделять ГЧ и меньшей плотности. Таким образом, были выделены частицы с размерами от 3.5 до 43.3 мкм и плотностью менее 4 г/см3.

Однако данный способ имеет ряд недостатков: например точность определения плотности оценивается как +/- 1,0 г/см3. Главным недостатком является огромная ядовитость «тяжелой жидкости Клеричи», что позволяет вести исследования только в «специальных» лабораторных условиях.

В 1987-1989 гг. путем сканирования дозиметром тонкого почвенного слоя УкрНИИСХР совместно с НЦ МО СССР и ВНИИТФА было выделено порядка 1200 «ГЧ» размером >10 мкм и активностью >100 Бк, образовавшихся в результате аварии на ЧАЭС. Пробы почвы отбирались кольцом диаметром 10 см на глубину 1.5 см на различных направлениях и на удалении (до 10 км) от разрушенного 4 блока. Для поиска горячих частиц использовался дозиметр ДП-5 со счетчиком СБМ-20 в свинцовом коллиматоре.

Для определения радионуклидного состава образцов почв, их фракций и выделения отдельных «ГЧ» были использованы гамма-спектрометрический и рентгенорадиометрический методы анализа, эти методы были специально разработаны для исследования «ГЧ» в зоне ЧАЭС. Для гамма-спектрометрического анализа был использован коаксиальный детектор из сверхчистого Ge модели GMX20 EG&G Ortec с относительной эффективностью 20% и разрешением 1.8 кэВ на 1332.5 кэВ. Измерение исходного образца занимало 2 часа, а каждой почвенной фракции и группы выделенных «горячих» частиц - 6 часов.

Таким образом, всем способам выделения горячих частиц присущ недостаток - это трудоемкие, длительные, а иногда и очень опасные способы к тому же осложняющие регистрацию «ГЧ» через бета - излучение.

За прототип данного метода выбран авторадиографический способ выделения горячих чернобыльских частиц (см., например, С.А.Богатов, Л.И.Лебедева, Л.А.Левинаи др. Физико-химические характеристики радиоактивных аэрозолей во внутренних помещениях «Саркофага». Препринт ИАЭ, Москва, 1991 г., стр.24). Авторадиографический способ - это способ изучения распределения ГЧ в пробе, нанесенной на подложку с фотоэмульсией, чувствительной к р/а излучению.

Этот способ заключается в следующем. Воздух помещения прокачивается через фильтр из ткани, после чего фильтр растворяется в ацетоне. После взмучивания осадка несколько капель раствора наносится на подложку из лавсановой фотопленки, высушивается и контактно экспонируется в течение 36 часов с рентгеновской пленкой (например, РТ-5). Регистрируется гамма-излучение от источников ГЧ. После проявления рентгеновской пленки центры пятен почернения, соответствующие месту нахождения «горячих частиц», прокалывались иглой. Степень разбавления фильтров подбирается таким образом, чтобы в проколотом отверстии (0,2-0,3 мм) оказывалась только одна частица. Рентгеновская пленка приклеивается к образцу по месту экспозиции и полученный таким образом препарат в местах проколов рассматривается в микроскоп.

Данный способ имеет ряд недостатков. Он позволяет исследовать частицы только визуально и занимает большое количество времени, более двух суток на образец. Техническим результатом, на который направлено наше изобретение, является

значительное повышение скорости (по времени более 7 раз) и эффективности (точности местоположения) «ГЧ» и, как следствие, снижение трудоемкости способа обнаружения «ГЧ»,

расширение функциональных возможностей исследований как по размерам, так и по активности «ГЧ», также предлагаемый способ возможен для исследования «ГЧ» любого компонентного состава, а следовательно, возможно исследование сложных по составу композитных проб.

Для достижения указанного результата предложен следующий способ обнаружения и выделения горячих частиц ГЧ. Любым способом подготовленная проба, содержащая радионуклиды, размещается на особую подложку, определение наличия и местоположения ГЧ - происходит по регистрации бета-излучения от нее. Последующий анализ ГЧ происходит с помощью микроскопа. При этом в предлагаемом методе в качестве особой подложки используют пластиковый сцинтиллятор, а наличие и местоположение ГЧ определяют по регистрации бета-излучения с помощью электронно-оптического преобразователя с последующим перемещением пробы для ее анализа с помощью микроскопа и извлечением ГЧ с помощью иглы для дальнейшего определения ее физико-химических характеристик.

На рисунке показана схема измерения,

где 1-проба

2 - подложка из сцинтилляционного материала

3 - электронно-оптический преобразователь

4 - микроскоп

5 - общий рабочий стол

6 - игла для отбора горячих частиц

Способ осуществляется следующим образом.

Тонкий слой пробы 1, в качестве которой может быть озоленая почва (или сожженный фильтр), наносится на подложку - пластиковый сцинцилятор 2.

Все ГЧ испускают бета-частицы, пробег которых в любом веществе составляет несколько млм (обычно 1-2 млм). В результате бета-излучения ГЧ, находящихся в пробе, и возникает свечение в сцинцилляторе, на подложку из которого она помещена в данном случае, причем непосредственно в месте нахождения ГЧ.

Наблюдая это свечение - как световое пятнышко на экране электронно-оптического преобразователя 3, можно выявлять положение «горячей частицы». Поскольку в представленном на рисунке приборе электронно-оптический преобразователь 3 и микроскоп 4 расположены рядом (одним блоком) и имеют общий рабочий стол 5, то, переместив выявленную «ГЧ» на оптическую ось микроскопа (совместив пятно со специальной меткой), можно начинать изучение выявленной «ГЧ». Изученные (и описанные визуально) частицы извлекаются с помощью специальной иглы 6 (предусмотренной в данном приборе), которая при выдвижении и попадает в упомянутую выше специальную метку.

После этого исследуются физико-химические характеристики извлеченной ГЧ, например, с помощью спектрометра и химического анализа с использованием общепринятых методик.

Метод позволяет извлекать для последующих исследований «горячие частицы», имеющие активность больше чем 5 Бк и размеры больше чем 5 мкм.

Способ обнаружения и выделения горячих частиц, заключающийся в размещении пробы, содержащей радионуклиды, на подложку, определение наличия ГЧ по регистрации излучения от нее, и последующего анализа ГЧ с помощью микроскопа, отличающийся тем, что в качестве подложки используют пластиковый сцинтиллятор, а наличие и местоположение ГЧ определяют по регистрации бета-излучения с помощью электронно-оптического преобразователя с последующим перемещением пробы для ее анализа с помощью микроскопа и извлечением ГЧ с помощью иглы для дальнейшего определения ее физико-химических характеристик.



 

Похожие патенты:

Изобретение относится к области радиационной экологии. Сущность изобретения заключается в том, что устройство для дистанционного обнаружения источников альфа-излучения содержит измерительный открытый на воздух детектор аэроионов, сопряженный с блоком переноса аэроионов и подключенный к источнику рабочего напряжения и к измерительному счетчику импульсов соответственно, калибровочный альфа-источник, калибровочный детектор аэроионов, аналогичный измерительному детектору, выполненному газоразрядным, подключенный к источнику рабочего напряжения, и компаратор, причем калибровочный детектор соединен с калибровочным счетчиком импульсов, выход которого соединен с первым входом компаратора, второй вход которого соединен с шиной наперед заданного числа, при этом дополнительно содержит двухпозиционный переключатель режима работы устройства, сумматор, причем управляющий вход двухпозиционного переключателя является входом выбора режима устройства, первый информационный вход соединен с шиной нулевого потенциала, а второй - с дополнительной шиной наперед заданного числа, первый вход сумматора подключен к выходу компаратора, второй - к выходу двухпозиционного переключателя режима работы, а выход сумматора подключен к управляющему входу источника рабочего напряжения.

Изобретение относится к средствам дистанционного контроля радиационного состояния объекта. .

Изобретение относится к области радиационной экологии и может быть использовано для дистанционного поиска остатков ядерного топлива, например плутония, загрязняющих поверхности в результате аварий или в ходе производственных процессов.

Изобретение относится к области ядерной и радиационной физики и может быть использовано для регистрации гамма- или тормозного излучения (ТИ) мощных импульсных источников.

Изобретение относится к ядерной технике, а именно к области радиационного мониторинга, и может быть использовано в машиностроении, медицине и других отраслях для контроля несанкционированного перемещения ядерных материалов и других радиоактивных веществ.
Изобретение относится к области охраны окружающей среды, в частности к охране недр нефтяных и газовых месторождений, расположенных в местах проведения мирных подземных ядерных взрывов для целей интенсификации добычи нефти и газа.

Изобретение относится к области охраны окружающей среды, более конкретно к способам выявления радиоактивных источников на обследуемой территории и в движущихся объектах.

Изобретение относится к автоматическому способу отбора трития из атмосферного водяного пара с помощью холодной ловушки и устройству для его осуществления. .
Изобретение относится к способу определения радиоактивного загрязнения акваторий на основе биоиндикации. .

Изобретение относится к области ядерной и радиационной физики и может быть использовано для регистрации гамма- или тормозного излучения (ТИ) мощных импульсных источников.

Изобретение относится к ядерной технике, а именно к области радиационного мониторинга, и может быть использовано в машиностроении, медицине и других отраслях для контроля несанкционированного перемещения ядерных материалов и других радиоактивных веществ. Технический результат изобретения - уменьшение порога обнаружения радиационного монитора и определение порога обнаружения монитора, содержащего различное число детекторов, иное число критериев обработки при другом фоне регистрируемого излучения без проведения дополнительных измерений. Технический результат достигается тем, что минимальный порог обнаружения радиационного монитора Пмин с числом детекторов d1, числом используемых критериев k1 при фоне регистрируемого излучения Nфон1 и квантили статистической обработки z1 определяют на основании измеренного порога П1 варьированием параметров z2 и k2 как П м и н = min [ П 1 z 2 ( d 1 − 2 / 3 + k 2 − 2 / 3 ) N ¯ ф о н 2 z 1 ( d 1 − 2 / 3 + k 1 − 2 / 3 ) N ¯ ф о н 1 ] z 2 , k 2 , а при других параметрах Nфон2, z2, d2 и k2 порог обнаружения определяют как П 2 = П 1 z 2 ( d 1 − 2 / 3 + k 2 − 2 / 3 ) N ¯ ф о н 2 z 1 ( d 1 − 2 / 3 + k 1 − 2 / 3 ) N ¯ ф о н 1 , где N ¯ ф о н = N ф о н ( k 1 + 2 k 2 + 3 k 3 + … + n k n ) / ∑ i = 1 n k i , ki - число сочетаний счета i детекторов, Nфон - фон одного детектора, n≤d. 1 з.п. ф-лы, 5 табл.

Использование: для точной идентификации по меньшей мере одного источника, в частности по меньшей мере одного нуклида, заключенного в теле человека и/или контейнере. Сущность изобретения заключается в том, что выполняют следующие этапы: обнаружение и измерение по меньшей мере одного источника с помощью гамма-спектроскопического прибора; идентификация на первом этапе оценивания по меньшей мере одного источника с помощью стандартной процедуры идентификации нуклида для оценивания измеренного первого спектра по меньшей мере одного источника; применение второго этапа оценивания на основании результата первого этапа оценивания, при этом результат первого этапа оценивания используют для получения множества вторых спектров по меньшей мере одного источника, обнаруженных в ходе стандартной процедуры идентификации нуклида, для множества сценариев поглощения и для множества сценариев рассеяния; и сравнение измеренного первого спектра со спектром рассеяния и поглощения, полученного из множества вторых спектров, образованных на втором этапе оценивания. Технический результат: обеспечение возможности получения высокоточных и надежных результатов при определении нуклидов, которые окружены или содержатся в другом материале любого вида. 2 н. и 22 з.п. ф-лы, 10 ил.

Изобретение относится к радиационному контролю помещений и промплощадки, а именно к измерению объемной активности радиоактивных аэрозолей. Способ основан на отборе проб аэрозолей путем прокачки воздуха с контролируемыми аэрозолями через фильтрующую ленту с заданной постоянной скоростью, установке над зоной фильтрации полупроводникового детектора и формировании с его помощью импульсов напряжения, амплитуды которых пропорциональны энергиям α- и β-частиц, испускаемых осевшими на фильтре частицами радиоактивного аэрозоля. Фильтрующую ленту передвигают в дискретном режиме, осуществляя отстой отобранной пробы в течение промежутка времени, достаточного для распада короткоживущих нуклидов. В месте отстоя пробы устанавливают второй полупроводниковый детектор и формируют с его помощью последовательность импульсов напряжения, амплитуды которых пропорциональны энергиям α- и β-частиц, испускаемых осевшими на фильтре частицами радиоактивного аэрозоля в месте отстоя пробы, сформированные на выходах каждого из полупроводниковых детекторов импульсы селектируют по амплитуде на соответствие излучению β-активного аэрозоля, по отселектированным импульсам определяют объемную активность β-активного аэрозоля в течение заданного интервала времени, полный заданный интервал времени Т разбивают на ℓ промежутков времени длительностью τ, равной заданному времени измерения текущей объемной активности, на каждом из этих следующих друг за другом промежутков времени для каждого из детекторов подсчитывают число Ni отселектированных импульсов, где i = 1, ℓ ¯ - номер текущего промежутка времени, определяют текущую частоту следования отселектированных импульсов (скорость счета) и текущую объемную активность, при этом места отбора и отстоя проб и детекторы располагают в свинцовой защите. Технический результат - повышение точности измерения.
Изобретение относится к области радиационных технологий, а именно к способам контроля герметичности капсулы с источником ионизирующего излучения (ИИИ). Технический результат - упрощение технологии контроля герметичности капсулы с источником ионизирующего излучения. Способ контроля герметичности капсулы с источником ионизирующего излучения (ИИИ) включает в себя погружение капсулы в раствор, отбор пробы раствора для радиоактивного контроля, отличающийся тем, что в первую очередь капсулу, прошедшую дезактивацию, помещенную в емкость с 7-10 % раствором азотной кислоты, нагревают и кипятят в течение 10 минут, во вторую очередь емкость с капсулой охлаждают в течение 15-20 минут, затем проводят нагрев емкости до режима кипячения еще два раза с последующим охлаждением емкости, в-третьих, после третьего охлаждения из емкости отбирают пробу раствора азотной кислоты в количестве 50 мл и проводят измерение её радиоактивности, причем если радиоактивность пробы не превышает 0,2 кБк, то капсулу считают герметичной. 1 з.п. ф-лы.

Изобретение относится к области метрологического обеспечения дозиметрического контроля облучения личного состава, действующего в условиях воздействия смешанного нейтронного и гамма-излучения, и может быть использовано для испытаний и поверки индивидуальных дозиметров. Сущность изобретения заключается в том, что комплекс состоит из источников ионизирующих излучений, в качестве которых выбраны ядерно-физические установки (ЯФУ): ядерный реактор и генератор термоядерных нейтронов, трансформаторов ионизирующих излучений, расположенных на стойках между источниками ионизирующих излучений и испытываемыми объектами и предназначенных для формирования модельных полей гамма- и нейтронного излучения (ПГНИМ), близких по энергетическому спектру нейтронов и соотношению поглощенных доз нейтронного и гамма-излучения (Дn/Дγ) к полям проникающей радиации в равновесной зоне взрыва атомного и нейтронного боеприпасов на открытой местности и в среднезащищенном объекте, в которых применяются войсковые индивидуальные дозиметры, и входящих в состав ЯФУ каналов мониторирования, на показания которых приведены результаты метрологической аттестации полей ПГНИМ по поглощенным дозам нейтронного и гамма-излучения. Технический результат - повышение точности дозиметрического контроля облучения личного состава при ведении боевых действий в условиях применения ядерного оружия. 1 ил., 1 табл.
Изобретение относится к области аналитической радиохимии и может использоваться для контроля содержания плутония в технологических средах ядерных энергетических установок (ЯЭУ). Способ определения объемной альфа-активности плутония в технологических средах ядерных энергетических установок, включающий отбор пробы, фильтрацию пробы с расходом 0,1-4 л/ч через ацетатцеллюлозную мембрану с диаметром пор 0,1-1,3 мкм, импрегнированную гидратированным оксидом марганца, с последующим высушиванием потоком воздуха, создаваемым разрежением, и радиометрическим измерением альфа-активности, при этом анализируемую пробу предварительно обрабатывают азотной кислотой и упаривают досуха, а затем растворяют в 7,5 M растворе азотной кислоты с добавкой 2,5-3,0 г/л азотистокислого натрия и выдерживают при температуре 40-45°C до прекращения выделения окислов азота в виде бурого газа, охлажденный раствор фильтруют через сильноосновной анионит, например, типа AB-17 со скоростью (7-10)·10-3 л/ч, после чего плутоний элюируют со смолы раствором 14-15 г/л йодида аммония в 10 M соляной кислоте со скоростью в два раза ниже скорости фильтрации, нейтрализуют аммиаком до pH=6-10 и направляют на фильтрацию через мембрану. Технический результат - повышение точности определения объемной альфа-активности плутония в технологических средах ЯЭУ на 40%. 1 з.п. ф-лы.

Изобретение относится к области радиационной экологии. Устройство содержит два идентичных газоразрядных детектора, открытых на воздух: измерительный и калибровочный. Измерительный детектор регистрирует аэроионы, возникающие на следах альфа-частиц и доставляемые от исследуемой поверхности в рабочую область детектора с помощью воздушного потока. Калибровочный детектор регистрирует только ионы, поступающие от калибровочного источника альфа-излучения, так как аэроионы от исследуемой поверхности не поступают в рабочую область детектора из-за наличия электростатического фильтра, через который воздушный поток проходит к калибровочному детектору. Использование калибровочного детектора, калибровочного источника альфа-излучения, источника отрицательного напряжения, электростатического фильтра, постоянного резистора и переменного резистора позволяет отслеживать и компенсировать потерю чувствительности устройства из-за налипания на тонкие анодные проволочки газоразрядных детекторов и, работающих при высоком напряжении, мельчайших пылинок, переносимых воздушным потоком. Технический результат - обеспечение стабильной высокой чувствительности устройства при его длительной непрерывной работе. 1 ил.

Изобретение относится к области выявления радиационной обстановки в окрестностях объектов атомной энергетики после аварийного выброса в атмосферу радиоактивных веществ. Сущность изобретения заключается в том, что осуществляют воздушную радиационную разведку местности с помощью неспециализированного прибора, например носимого измерителя мощности дозы гамма-излучения, обладающего только одним детектором излучения, размещенного на борту летательного аппарата. При ведении радиационной разведки по заданному маршруту на каждом прямолинейном участке необходимо два раза произвести изменение высоты полета. Это позволяет получить данные, которые в неявном виде содержат информацию о величине ослабления гамма-излучения в зависимости от высоты над поверхностью земли. Путем обработки данных определяют коэффициенты для пересчета уровней радиации, измеренных на высоте полета летательного аппарата, к высоте 1 м над поверхностью земли. Технический результат - повышение точности определения радиационной обстановки. 4 табл., 4 ил.

Изобретение относится к способам контроля радиационной обстановки и может быть использовано для контроля фонового уровня радиации вокруг АЭС. Сущность: осуществляют зондирование территорий АЭС, содержащих эталонные площадки с известным уровнем радиации. Причем для зондирования используют космические средства на теневом участке орбиты в ультрафиолетовом и ближнем инфракрасном диапазонах. Формируют синтезированную матрицу из попиксельных отношений ультрафиолетового изображения к инфракрасному изображению. Нормируют функцию сигнала синтезированной матрицы в стандартной шкале 0…255 уровней квантования. Посредством программы выделяют контуры на синтезированном изображении. Рассчитывают площади контуров и фрактальную размерность изображения внутри выделенных контуров. Определяют эквивалентную площадь радиационного загрязнения вокруг АЭС. Оценивают динамику изменения радиационного фона. Технический результат: повышение достоверности и оперативности контроля. 5 ил.

Изобретение относится к способу измерения уровня безопасности содержащего радионуклиды сыпучего материала. Сыпучий материал засыпается на ленточный транспортер и подается на приемное устройство, причем сыпучий материал во время транспортировки проводится мимо первых датчиков, которые по ширине ленточного транспортера спектрометрически измеряют гамма-излучение. Для того чтобы при высокой пропускной способности иметь возможность выполнять точное определение радиоактивности, предусмотрены следующие шаги способа: определение соотношения радионуклидов в сыпучем материале перед засыпкой на ленточный конвейер, учитывая по меньшей мере один эталонный нуклид, вычисление радиоактивности сыпучего материала на основе измеренных при помощи первых датчиков гамма-лучей и их интенсивностей, учитывая один или несколько эталонных нуклидов, имеющихся в радионуклидах, проверка определенного ранее соотношения радионуклидов и/или измеренной радиоактивности при помощи измеряющих α- и/или β-излучение вторых датчиков, которые расположены над ленточным транспортером. 16 з.п. ф-лы, 6 ил.
Наверх