Способ фильтрации фонового излучения инфракрасного диапазона

Изобретение относится к способам уменьшения интенсивности фонового излучения инфракрасного диапазона. Способ фильтрации фонового излучения инфракрасного диапазона, падающего на сверхпроводниковый однофотонный детектор, включает передачу излучения инфракрасного диапазона с длиной волны 0,4-1,8 микрометров на сверхпроводниковый однофотонный детектор при помощи одномодового волокна, частично находящегося при температуре 4,0-4,4 К. При этом длина охлаждаемого участка одномодового волокна составляет 0,2-3,5 м. Технический результат заключается в повышении надежности работы фотонных детекторов. 2 з.п. ф-лы.

 

Изобретение относится к способам уменьшения интенсивности излучения инфракрасного диапазона и может быть использовано в системах оптической волоконной связи на больших расстояниях, в телекоммуникационных технологиях, в системах защиты передаваемой информации с помощью систем квантовой криптографии, диагностике и тестировании больших интегральных схем, в электронике, в спектроскопии одиночных молекул, анализе излучения квантовых точек в полупроводниковых наноструктурах, астрономии и медицине.

При реализации изобретения по патенту RU 2300825, публ. 10.06.2007, наблюдается чрезмерный нагрев оптоволокна, который приводит к непредвиденным срабатываниям сверхпроводникового однофотонного детектора, вплоть до 10 раз, что негативно сказывается на надежности работы устройства.

Известен криостат Cryo-Cycle компании Canberra (см. ). Устройство предназначено для охлаждения детекторов, ионизирующих излучение. В системе используется технология охлаждения жидким азотом и с помощью электрического охлаждения. У данного устройства ограниченные возможности, устройство не позволяет охладить оптоволокно до температуры менее 10 К.

Задачей изобретения является повышение надежности работы фотонных детекторов.

Техническим результатом изобретения при его выполнении является уменьшение количества срабатываний фотонного детектора на фоновое излучение объектов, находящихся в условиях температуры окружающей среды 20-28°С.

Указанная задача и технический результат достигаются тем, что способ фильтрации фонового излучения инфракрасного диапазона, падающего на сверхпроводниковый однофотонный детектор, включает передачу излучения с длиной волны 0,8-1,8 микрометров на сверхпроводниковый однофотонный детектор при помощи одномодового волокна, частично находящегося при температуре 4,0-4,4 К, при этом длина охлаждаемого участка одномодового волокна составляет 0,2-3,5 м.

Охлаждение участка одномодового волокна производят путем погружения его в жидкий гелий.

Предпочтительно, если одномодовое волокно устанавливают вплотную к детектору, что способствует минимизации потерь падающего излучения.

Экспериментальным путем установлено, что для уменьшения количества срабатываний сверхпроводникового однофотонного детектора до 5-7 раз в секунду на фоновое излучение объектов, находящихся при температуре 300 К, необходимо увеличение длины охлажденного волокна до 2,5 м и более, а для уменьшения количества срабатываний однофотонного детектора до 1 раза в секунду необходимо увеличение длины охлажденного волокна до 3,5 метров.

Для уменьшения длины охлаждаемого волокна и при сохранении допустимого уровня фонового излучения, попадающего на детектор, возможно изменение пространственного расположения охлаждаемой части одномодового волокна для создания условий, повышающих потери в волокне вне полосы его пропускания.

Одномодовое волокно по своей природе является полосно-пропускающим фильтром с длинноволновой границей приблизительно 1,8 микрометров. Кроме этого, известно, что максимум фонового излучения объектов, находящихся при температуре, близкой к комнатной, приходится на диапазон длин волн 8-10 микрометров. Увеличение длины волокна приводит к большей величине затухания (аттенюации) излучения вне полосы пропускания волокна, а охлаждение волокна уменьшает уровень мощности, излучаемой волокном, также вне полосы пропускания волокна. Таким образом, увеличение длины волокна, находящегося при низкой температуре, приводит к значительному уменьшению величины спектральной мощности излучения вне полосы пропускания и тем самым к значительному уменьшению интегральной мощности фонового излучения, передаваемой по волокну.

Предлагаемый способ фильтрует как фоновое излучение самого волокна методом его максимального охлаждения, так и фильтрует всевозможные излучения из помещения (дневной свет, приборы) методом увеличения длины охлажденного волокна.

Выбор диапазона длины излучения инфракрасного диапазона от 0,4 до 1,8 микрометров обусловлен тем, что использование волокон на других длинах волн приводит к сильному затуханию в них. В диапазоне длин охлаждаемых участков одномодового волокна 0,2-3,5 м возможно эффективное изменение уровня фоновой засветки в зависимости от поставленных задач. Неиспользование волокна длиной менее 0,2 м связано с особенностями измерительных установок, волокно может не дотянуться от детектора до выхода, где заводится свет. При длине волокна более 3,5 может происходить спад фоновой засветки. При охлаждении детектора до температуры менее 4,0 К растет фоновая засветка, охлаждение более 4,4 К не дает ощутимого эффекта.

Работает предлагаемый способ фильтрации фонового излучения инфракрасного диапазона, падающего на сверхпроводниковый однофотонный детектор следующим образом.

Рабочий элемент сверхпроводникового однофотонного детектора совмещается с одним концом одномодового волокна таким образом, чтобы завести на него максимум падающего излучения. Как правило, сам детектор со схемой съема электрического сигнала и оптическим волокном расположены в специальном металлическом держателе, который позволяет надежно закрепить все узлы с возможностью последующего его размещения в сосуде Дьюара с жидким гелием при температуре, приблизительно равной 4.2 К. Таким образом, происходит охлаждение всех узлов до температуры жидкого гелия. На другой конец одномодового волокна, расположенного вне сосуда Дьюара где поддерживается комнатная температура 300 К, подается исследуемое оптическое излучение. В зависимости от того, на какой длине волны проводятся измерения (0,4-1,8 микрометров), подбирается специальный тип одномодового волокна, в котором минимизированы потери на данной длине волны. Как правило, они различаются размером сердцевины, по которой распространяется излучение, и типом его материала. Таким образом, вдоль волокна образуется градиент температуры от 4.2 К до 300 К. Через ту часть волокна, температура которого лежит вблизи 300 К, неизбежно заходит помимо исследуемого сигнала еще и фоновая засветка, обусловленная тем, что все нагретые тела излучают электромагнитные волны, длина волны которых определяется через температуру излучающего тела через закон смещения Вина

λ max = 0,29 1 T

где Т - температура черного тела, выраженная в градусах Кельвина, λmax - длина волны (в сантиметрах), при которой излучательная способность черного тела максимальна. В нашем случае все излучающие тела не относятся к абсолютно черным, а являются серыми, однако закон Вина можно использовать для приближенных оценок. Расчет показывает, что диапазон длин волн при фоновой засветке составляет 8-10 микрометров при температурах тел в диапазоне 290-360 К. Поскольку одномодовое волокно оптимизировано на длины волн 0,4-1,8 мкм, то излучение вне этого диапазона будет ослабляться при прохождении через него. С другой стороны величина затухания излучения зависит от толщины слоя, через который оно проходит. Поэтому увеличение длины волокна (толщины слоя) приводит к большему затуханию излучения в диапазоне 8-10 мкм, тогда как затухание на рабочих длинах волн 0,4-1,8 мкм очень слабо зависит от длины волокна. Для того чтобы исключить фоновую засветку, обусловленную самим волокном, целесообразно его охладить до наименьшей температуры, поскольку спектральная мощность излучения тела падает при понижении eго температуры. Таким образом, предлагается большую часть длинного волокна разместить в наиболее холодном месте сосуда Дьюара: частично в самом гелии, частично у его поверхности.

Изобретение может найти широкое применение в промышленности, а именно может быть использовано в системах оптической волоконной связи, в телекоммуникационных технологиях, в системах защиты передаваемой информации с помощью систем квантовой криптографии, диагностике и тестировании больших интегральных схем, в электронике, в спектроскопии одиночных молекул, анализе излучения квантовых точек в полупроводниковых наноструктурах, астрономии и медицине.

1. Способ фильтрации фонового излучения инфракрасного диапазона, падающего на сверхпроводниковый однофотонный детектор, включает передачу излучения инфракрасного диапазона с длиной волны 0,4-1,8 микрометров на сверхпроводниковый однофотонный детектор при помощи одномодового волокна, частично находящегося при температуре 4,0-4,4 К, при этом длина охлаждаемого участка одномодового волокна составляет 0,2-3,5 м.

2. Способ фильтрации фонового излучения по п.1, отличающийся тем, что охлаждение участка одномодового волокна производят путем погружения его в жидкий гелий.

3. Способ фильтрации фонового излучения по п.1, отличающийся тем, что одномодовое волокно устанавливают вплотную к детектору.



 

Похожие патенты:

Изобретение относится к технике сверхвысоких частот (СВЧ) и может быть использовано для коммутации СВЧ сигналов в фидерных трактах различного назначения, в частности при создании переключателя фидерных трактов.

Изобретение относится к электронной технике СВЧ. Достигаемый технический результат - расширение рабочей полосы частот и снижение прямых потерь СВЧ при сохранении допустимой входной мощности.

Изобретение относятся к технике сверхвысоких частот и предназначено для частотной селекции сигналов. Технический результат заключается в расширении высокочастотной полосы заграждения полосно-пропускающего микрополоскового фильтра и уменьшении его размеров.

Изобретение относится к области радиотехники, а именно к СВЧ переключателям на PIN-диодах. СВЧ переключатели применяются в приемопередающих системах для работы приемников и передатчиков в дуплексном режиме на одну антенну на одной частоте.

Изобретение относится к технике сверхвысоких частот и предназначено для селекции СВЧ-сигнала. Техническим результатом является получение высокой крутизны склонов полосы заграждения на частоте F0 и сдвиг паразитной полосы заграждения дальше чем 3F0.

Изобретение относится к многополосному соединительному устройству излучения и приема с очень широкой частотной полосой пропускания типа ортомодового соединительного устройства (ОМТ), предназначенному для сверхвысокочастотных телекоммуникационных антенн.

Модуль свч // 2497241
Изобретение относится к технике сверхвысоких частот (СВЧ), а именно к конструкции корпусов интегральных модулей СВЧ-диапазона, используемых в радиоэлектронной аппаратуре.

Настоящее изобретение относится к области радиосвязи и может быть использовано для создания устройств генерации высокочастотных сигналов на заданном количестве частот, что позволяет формировать сложные сигналы и создавать эффективные компактные средства радиосвязи с заданным количеством радиоканалов.

Изобретение относится к области радиотехники сверхвысоких частот (СВЧ), а более конкретно к волноводным фазовращателям и предназначено, главным образом, для построения антенных решеток с электронным сканированием луча, например, миллиметрового диапазона длин волн.

Изобретение относится к области электроники сверхвысоких частот, а именно к дискретным фазовращателям проходного типа, и может быть использовано в качестве электронно-управляемых устройств в проходной фазированной антенной решетке.

Изобретение относится к способам, позволяющим производить совмещение фотонных детекторов относительно оптического излучения. Способ прецизионного позиционирования чувствительного элемента фотонного детектора относительно амплитудно-модулированного оптического излучения включает смещение чувствительного элемента фотонного детектора постоянным током с последующей регистрацией электрического сигнала, возникающего на контактах детектора на частоте модуляции излучения.

Изобретение относится к области высокотемпературных сверхпроводников. .

Изобретение относится к области криоэлектроники и может быть использовано в высокотемпературных сверхпроводниковых (ВТСП) схемах. .

Изобретение относится к устройствам для регистрации излучения видимого и инфракрасного диапазонов излучения в режиме счета отдельных фотонов. .

Изобретение относится к устройствам для регистрации отдельных фотонов и может быть использовано в системах оптической волоконной связи, для телекоммуникационных технологий в системах защиты передаваемой информации, диагностике и тестировании больших интегральных схем, в спектроскопии одиночных молекул, астрономии, медицине.

Криостат // 1217214
Изобретение относится к электротехнике и может быть использовано при конструировании сверхпроводящих магнитных систем. .

Способ включает определение поверхностей остекленной конструкции, которые необходимо изготовить в виде чередующихся параллельных и/или криволинейных полос, при этом определяют коэффициенты отражения, пропускания и поглощения, показатели преломления, геометрические формы, размеры полос и необходимое изменение указанных параметров как вдоль полос, так и поперек них, а также необходимость распределения полос по зонам с разными характеристиками светопропускания так, чтобы при данных углах или диапазонах углов падения лучей через всю остекленную площадь направленно проходила только требуемая часть лучей требуемого диапазона длин волн.
Наверх