Устройство установки агрегатов на изделии

Изобретение относится к средствам установки оборудования на летательном, преимущественно космическом, аппарате (КА), где требуется точная угловая и линейная регулировка положения агрегатов на изделии (в т.ч. при летно-конструкторских испытаниях). Устройство установки агрегатов (1) на изделии (9) содержит треугольную (в поперечном сечении) силовую призму (2). Агрегаты (1) установлены в призму (2) с помощью болтового соединения (3) с контровкой при помощи проволоки (4) и пломбы (5) в четырех точках для каждого агрегата. Призма (2) установлена с помощью болтового соединения (7, 8) на регулируемом основании (6). Конструкция устройства обеспечивает возможность линейного регулирования положения агрегатов (1) вдоль продольной оси, а также перпендикулярно продольной оси: ΔZ, ΔY (с запасами Δ1 - по диапазону ΔZ и Δ2 - по зазору ΔY). Возможно точное регулирование положения агрегатов в небольшом диапазоне углов α°± n' относительно изделия (9). Имеется возможность автономной сборки и испытаний агрегатов (1) на силовой призме (2). При необходимости возможен демонтаж призмы (2) с агрегатами с основания (6) без потери точности углового положения агрегатов (1). Техническим результатом данного изобретения является возможность линейного регулирования агрегатов по двум взаимно перпендикулярным направлениям на требуемую величину, а также углового регулирования агрегатов с высокой точностью в небольшом диапазоне углов. 7 ил.

 

Изобретение относится к средствам установки оборудования на летательном, преимущественно космическом, аппарате (КА), где требуется точная угловая и линейная регулировка положения агрегатов на изделии (в т.ч. при летно-конструкторских испытаниях).

Устройство установки агрегатов на изделии (в т.ч. КА) предназначено для линейного регулирования агрегатов по двум взаимно перпендикулярным направлениям на требуемую величину, а также для углового регулирования агрегатов с высокой точностью в небольшом диапазоне углов.

Из патентной литературы известен транспортно-технологический агрегат, состоящий из регулируемой по углу опорной платформы относительно рамы, для сборки и подготовки блоков КА (см. патент РФ 2252179, МПК B64G 5/00, 04.02.2003).

Недостатками данного устройства являются невозможность линейного регулирования положения устанавливаемых агрегатов относительно опорной платформы и невозможность применения указанных конструктивных решений на изделиях, подвергающихся летно-конструкторским испытаниям.

Техническим результатом данного устройства является:

- обеспечение требуемого линейного регулирования агрегатов (на ±45 мм) вдоль одной оси и (на ±30 мм) вдоль оси, перпендикулярной данной;

- обеспечение требуемой точности линейного регулирования агрегатов (±0,5 мм);

- обеспечение требуемого углового регулирования совместно всех агрегатов (до ±1°) вокруг двух взаимно перпендикулярных осей;

- обеспечение требуемой точности углового регулирования агрегатов (±5°);

- обеспечение возможности автономной сборки и испытаний агрегатов на силовой призме, установленной на регулируемом основании;

- обеспечение жесткости конструкции при инерционном нагружении агрегатов при выведении КА (nх=6,5; nу=4,5);

- обеспечение требуемой собственной частоты конструкции (не ниже 15 Гц);

- обеспечение требуемой величины зазора между регулирующим основанием и плоскостью крепления данного основания на изделии (не менее 50 мм);

- обеспечение возможности работоспособности конструкции в широком диапазоне температур (-50°С…+50°С);

- обеспечение технологичности и собираемости конструкции в цеховых условиях;

- обеспечение минимального габарита конструкции регулируемого основания;

- обеспечение минимального количества узлов и их минимальная масса;

- обеспечение ремонтопригодности конструкции.

Указанный технический результат достигается тем, что устройство установки агрегатов на изделии содержит сборку силовой конструкции с узлами крепления агрегатов и регулируемое основание с установленной на нем сборкой, закрепляемое на изделии. В соответствии с изобретением силовая конструкция выполнена в виде треугольной (в поперечном сечении) призмы. Узлы крепления агрегатов выполнены с возможностью линейного регулирования положения каждого агрегата, для чего вдоль треугольной призмы выполнено четыре паза и две риски с функцией возможности линейного регулирования с требуемым диапазоном места расположения каждого агрегата вдоль призмы. Регулируемое основание имеет регулировочную плиту, три регулирующих узла, размещенных по треугольнику углового регулирования, и фиксирующий узел, а также шесть пазов на плите регулировочной перпендикулярно продольному направлению треугольной призмы, соответствующих шести ответным пазам на треугольной призме, и посадочные места под элементы контрольные для косвенного и прямого метода угловых измерений положения агрегатов. Конструкция регулируемого основания выполнена по схеме расположения двух из трех регулирующих узлов внутри контура треугольной призмы, а третий узел расположен напротив агрегатов на максимально возможном расстоянии за контуром треугольной призмы в пределах предназначенного места для устройства установки агрегатов на изделии для снижения влияния рабочего тела агрегатов на регулирующий узел.

Далее устройство установки агрегатов на изделии поясняется более подробно с использованием фигур 1, 2, 3, 4, 5, 6а, 6б в декартовой системе координат {0,X,Y,Z}.

На фиг.1 показан вид сбоку на устройство установки агрегатов на изделии, где два агрегата 1 установлены в треугольную призму 2 с помощью болтового соединения 3 с контровкой с помощью проволоки 4 и пломбы 5 в четырех точках для каждого агрегата 1, а треугольная призма 2 крепится к регулируемому основанию 6 с помощью болтового соединения 7 с контровкой с помощью самоконтрящейся гайки 8, при этом агрегаты 1 в треугольной призме 2 на регулируемом основании 6 крепятся к изделию 9, куда устанавливается сборка. Декартова система координат {0,X,Y,Z} является базовой для изделия 9. YН - номинальная координата регулируемого основания 6; ZН - номинальная координата треугольной призмы 2; ΔY - зазор между регулируемым основанием 6 и изделием 9; ΔZ - диапазон линейного регулирования агрегатов 1 с треугольной призмой 2 вдоль оси Z; Δ1 - запас по диапазону ΔZ; Δ2 - запас по зазору ΔY; α°- угол установки агрегатов 1 (номинал); ±n' - допуск угла α°.

На фиг.2 показаны риски 10, 11 для линейного регулирования агрегатов 1 совместно с треугольной призмой 2 вдоль оси Z (см. фиг.1).

На фиг.3 показано устройство установки агрегатов на изделии в горизонтальной проекции, где два агрегата 1 установлены в треугольную призму 2 и на регулируемое основание 6, которое крепится к изделию 9, где, кроме того, устанавливаются элементы контрольные (КЭ) 12 для косвенного метода угловых измерений или КЭ 13 для прямого метода угловых измерений положения агрегатов 1, при этом количество и место установки КЭ 12, 13 определяется схемой угловых измерений для изделия 9 и агрегатов 1. Декартова система координат {0,X,Y,Z} является базовой для изделия 9. Хн1 - номинальная координата болтового соединения крепления первого агрегата 1 к треугольной призме 2; Хн2 - номинальная координата болтового соединения крепления второго агрегата 1 к треугольной призме 2, ΔХ - диапазон линейного регулирования агрегатов 1 вдоль оси X; Δ3 - запас по диапазону ΔХ; β1° - угол установки посадочной поверхности 14 на треугольной призме 2 первого агрегата 1 (номинал); β2° - угол установки посадочной поверхности 15 второго агрегата 1 (номинал); γ1° - угол установки первого агрегата 1 (номинал); γ2° - угол установки второго агрегата 1 (номинал); ±n' - допуск углов β1°, β2°, γ1°, γ2°. При этом углы β1°, β2° измеряются в косвенном методе измерений углового положения агрегатов 1, а углы γ1°, γ2° - в прямом методе измерений.

На фиг.4 показан разрез устройства установки агрегатов на изделии по треугольной призме 2, где указаны треугольник углового регулирования 16 и конструкция регулируемого основания 6, это плита регулировочная 17, регулирующий узел 18 (три штуки), фиксирующий узел 19. Кроме того, указаны пазы (шесть штук) 20 на треугольной призме 2 и ответные пазы (шесть штук) 21 на плите регулировочной 17. А также указана ΔХрег - база треугольника регулирования 16 вдоль оси Х (см. фиг.1, 3) и ΔZрег - база треугольника регулирования 16 вдоль оси Z (см. фиг.1, 3). ΔХрег, ΔZрег совместно с конструкцией регулирующего узла 18 определяют шаг углового регулирования Ррег. При этом Ррег<n, где n - допуск для углов α°, γ1°(β1°), γ2°(β2°) установки агрегатов 1 (см. фиг.1, 3). При необходимости n может быть различным для указанных углов (определяется требованиями по установке агрегатов 1). Также ΔZпр - диапазон линейного регулирования агрегатов 1 с треугольной призмой 2, определяется длиной паза 20; ΔZпл - диапазон линейного регулирования агрегатов 1 с треугольной призмой 2, определяется длиной паза 21. При этом соотношение длин пазов 20, 21 определяется конструкцией треугольной призмы 2 и плиты регулировочной 17, а диапазон ΔZ=ΔZпр+ΔZпл. Полный диапазон линейного регулирования агрегатов 1 вдоль оси Z: ±(ΔZ+Δ1).

На фиг.5 показана треугольная призма 2 с посадочной поверхностью 14 для первого агрегата 1 и 15 для второго агрегата 1, где на поверхности 14 выполнены прямоугольное отверстие 22 для возможности установки первого агрегата 1 и четыре паза 23 для линейного регулирования первого агрегата 1 вдоль оси Х в пределах диапазона регулирования, а для возможности измерения номинального и конечного линейного положения первого агрегата 1 выполнены риски 24; также на поверхности 15 выполнены прямоугольное отверстие 25 для возможности установки второго агрегата 1 и четыре паза 26 для линейного регулирования второго агрегата 1 вдоль оси Х в пределах диапазона регулирования, а для возможности измерения номинального и конечного линейного положения первого агрегата 1 выполнены риски 27. Кроме того, указано ΔХагр - расстояние между соответствующими координатами Хн1, Хн2 и основанием агрегатов 1, определяемое конструкцией агрегатов 1. Полный диапазон линейного регулирования агрегатов 1 вдоль оси X:±(ΔХ+Δ3).

На фиг.6а и 6б показаны агрегаты 1 на треугольной призме 2, где первый и второй агрегаты 1 установлены на соответствующие посадочные поверхности 14 и 15 треугольной призмы 2, и указаны КЭ 12 и 13 (см. фиг.1, 3) для косвенного и прямого метода угловых измерений положения агрегатов 1 соответственно.

При монтаже агрегатов 1 на изделие 9 агрегаты 1 устанавливают на треугольную призму 2 в номинальное линейное положение, совмещая риски линейного регулирования 24, 27 с торцом соответствующего агрегата 1, а треугольную призму 2 с агрегатами 1 устанавливают в номинальное линейное положение на регулируемое основание 6, установленное в номинальное угловое положение относительно изделия 9, совмещая риски линейного регулирования 10, 11; затем устанавливают, в случае необходимости, в требуемое линейное положение, перемещая на требуемую в пределах диапазона линейного регулирования величину агрегаты 1 относительно рисок 24, 27 и 10, 11 (вместе с треугольной призмой 2); и регулируют, в случае необходимости, угловое положение агрегатов 1 на регулируемом основании 6 в пределах диапазона углового регулирования, измеряя косвенным или прямым методом фактическое угловое положение агрегатов 1 относительно изделия 9.

Кроме того, принципиально конструкция устройства установки агрегатов на изделии состоит из двух составных частей: это сборка силовой конструкции с агрегатами и регулируемое основание 6. Конструкция сборки силовой конструкции с агрегатами определяется конструкцией агрегатов 1 и требованиями по их установке. В разработанное устройство устанавливаются два агрегата 1 в общей в форме прямоугольной призмы, что определяет силовую конструкцию в виде треугольной призмы 2, в которой выполнены отверстия 22, 25 для возможности установки агрегатов 1. Крепление каждого агрегата 1 к треугольной призме 2 осуществления болтовым соединением с контровкой с помощью проволоки 4 и пломбы 5 в четырех точках. При этом треугольная призма 2 может быть выполнена из металла или неметалла с требуемым силовым набором или без него. Для возможности линейного регулирования каждого агрегата 1 вдоль треугольной призмы 2 с требуемым диапазоном предусмотрены четыре паза 23 (26) и две риски 24 (27) на треугольной призме 2 для установки одного агрегата 1 в номинальное положение, а затем и в требуемое, где изменение линейного положения измеряется расстоянием от риски 24 (27) до кромки агрегата 1, от которой происходит установка в номинальное положение. Пазы 23 (26) в треугольной призме 2 выполняются в случае, когда на агрегате 1 предусмотрены отверстия (а не самостоятельные пазы) для крепления его к треугольной призме 2. При этом помимо требуемой длины паза 23 (26), включающей диапазон линейного регулирования вдоль треугольной призмы 2, предусматривается соответствующий размер и форма отверстий 22, 25 в треугольной призме 2, куда устанавливаются агрегаты 1, чтобы обеспечить требуемое линейное перемещение. А также при линейном регулировании в номинальном и конечном положении агрегатов 1 их крепление осуществляется указанным способом (на четырех болтовых соединениях с контровкой для каждого из агрегатов 1). Регулируемое основание, состоящее из плиты регулировочной 17 и трех регулирующих по углу узлов 18 с фиксирующим узлом 19 (при необходимости), необходимо для возможности автономной сборки треугольной призмы 2 с агрегатами 1, а также для линейного регулирования положения агрегатов 1 совместно с треугольной призмой 2 в направлении, перпендикулярном долевому направлению треугольной призмы 2, в пределах требуемого диапазона с угловым регулированием положения агрегатов 1 совместно с треугольной призмой 2 в диапазоне единиц градусов. При этом для возможности линейного регулирования положения агрегатов 1 совместно с треугольной призмой 2 в направлении, перпендикулярном долевому направлению треугольной призмы 2, с требуемым диапазоном предусмотрены по шесть пазов 20, 21 и две риски 10, 11 на треугольной призме 2 и плите регулировочной 17 соответственно. Треугольная призма 2 крепится на плите регулировочной 17 с помощью болтовых соединений в шести точках (по числу пазов) с контровкой с помощью самоконтрящейся гайки. Выбранная комбинация выполнения пазов в треугольной призме и плите регулировочной (вместо комбинации отверстие-паз) позволяет увеличить жесткость плиты за счет уменьшения жесткости призмы вблизи мест крепления. Установка агрегатов 1 совместно с треугольной призмой 2 при линейном регулировании в направлении, перпендикулярном долевому направлению треугольной призмы 2, в номинальном положении осуществляется за счет совпадения рисок на треугольной призме 2 и плите регулировочной 17, а установка в требуемое линейное положение определяется величиной расстояния между рисками в пределах требуемого диапазона. При этом само линейное регулирование агрегатов 1 в двух взаимно перпендикулярных направлениях необходимо, например, для ориентирования агрегатов 1 относительно центра масс (ЦМ) изделия 9, куда эти агрегаты 1 устанавливаются (после определения фактического положения ЦМ). Кроме того, три регулирующих узла 18 обеспечивают угловое регулирование агрегатов 1 совместно с треугольной призмой 2 и плитой регулировочной 17 на единицы градусов с точностью единиц угловых минут по двум направлениям: вокруг оси, параллельной долевому направлению треугольной призмы 2, а также оси, перпендикулярной долевому направлению треугольной призмы 2 и параллельной основанию изделия 9, куда устанавливается вся сборка. Конструкция регулирующих узлов 18 содержит втулку сферическую с цилиндрическим участком для возможности соединения узла резьбовым соединением с плитой регулировочной 17 и другие ответные элементы, позволяющие осуществить угловой поворот плиты. Плита регулировочная 17 может быть изготовлена из металла или неметалла. Ее конструкция определяется требованиями по жесткости и собственной частоте. При этом из-за большой жесткости треугольной призмы 2 требования по жесткости плиты регулировочной 17 существенно снижаются. Для обеспечения минимального габарита конструкции регулируемого основания 6 выбрана схема расположения двух из трех регулирующих узлов 18 внутри контура треугольной призмы 2, а третий узел 18 расположен напротив агрегатов 1 на минимально возможном расстоянии за контуром треугольной призмы 2 для снижения влияния рабочего тела агрегатов 1 на регулирующий узел 18. При этом уменьшение базы треугольника в схеме углового регулирования отвечает требованию регулирования на единицы градусов. Также для увеличения собственной частоты конструкции допускается введение в схему углового регулирования дополнительного фиксирующего узла 19 (определяется требованиями по частоте). Конструкция фиксирующего узла 19 обеспечивает его закрепление на плите регулировочной 17 с помощью резьбового соединения в номинальном и конечном угловом положении плиты регулировочной 17 при регулировании тремя регулирующими узлами 18. Кроме того, требуемый зазор между плитой регулировочной 17 и изделием 9, куда устанавливается регулируемое основание 6, определяется конструкцией плиты регулировочной 17 и регулирующих и фиксирующего узлов 18, 19. Определение фактического углового положения агрегатов 1 осуществляется оптическим способом относительно требуемых баз с требуемой точностью. При этом оптический контрольный элемент (КЭ) устанавливается на время измерений или непосредственно на агрегаты 1 (прямой метод) или на поверхность треугольной призмы 2, куда агрегаты 1 установлены (косвенный метод).

К достоинствам изобретенного устройства установки агрегатов на изделии можно отнести обеспечение возможности автономной сборки и испытаний агрегатов на силовой призме, установленной на регулируемом основании; обеспечение линейного регулирования агрегатов в двух взаимно перпендикулярных направлениях в требуемом диапазоне с точным угловым регулированием агрегатов по двум углам в небольшом диапазоне; а также реализуемость в стандартных цеховых условиях, технологичность и, как следствие, надежность, и, кроме того, в случае необходимости имеется возможность производить демонтаж силовой призмы с агрегатами с регулируемого основания без потери точности углового положения агрегатов, что обеспечивает ремонтопригодность конструкции, а также возможность независимо производить угловое регулирование регулируемого основания при необходимости.

Устройство установки агрегатов на изделии, содержащее сборку силовой конструкции с узлами крепления агрегатов и регулируемое основание с установленной на нем сборкой, закрепляемое на изделии, отличающееся тем, что силовая конструкция выполнена в виде треугольной призмы, узлы крепления агрегатов выполнены с возможностью линейного регулирования положения каждого агрегата, для чего вдоль треугольной призмы выполнено по четыре паза и по две риски с функцией возможности линейного регулирования с требуемым диапазоном места расположения каждого агрегата вдоль призмы, регулируемое основание имеет регулировочную плиту, три регулирующих узла, размещенных по треугольнику углового регулирования, и фиксирующий узел, а также шесть пазов на регулировочной плите перпендикулярно продольному направлению треугольной призмы, соответствующих шести ответным пазам на треугольной призме, и посадочные места под элементы контрольные для косвенного и прямого метода угловых измерений положения агрегатов, причем конструкция регулируемого основания выполнена по схеме расположения двух из трех регулирующих узлов внутри контура треугольной призмы, а третий узел расположен напротив агрегатов на максимально возможном расстоянии за контуром треугольной призмы в пределах предназначенного для устройства места на изделии для снижения влияния рабочего тела агрегатов на регулирующий узел.



 

Похожие патенты:

Изобретение относится к воздушно-космической технике. Соединительная конструкция, содержащая соединительный элемент и соединительные секции двух криволинейных шпангоутов воздушного или космического судна, причем соединительный элемент выполнен с возможностью прикрепления посредством предопределенных соединительных участков к соответствующим соединительным секциям двух шпангоутов.

Изобретение относится к области космических телескопов (КТ) и может быть использовано для различных ферменных и корпусных конструкций, к которым предъявляются высокие требования по геометрической стабильности размеров от действия температур.

Изобретение относится к ракетно-космической технике. Люк обслуживания космической головной части включает головной обтекатель со створками, на которых размещены блистеры под полезный груз, а сам люк имеет крышку.

Изобретение относится к космической головной части и к способу ее сборки. Космическая головная часть содержит космический аппарат, головной обтекатель и переходную систему, которая обеспечивает стыковку ракеты-носителя с космическим аппаратом.

Изобретение относится к конструкции космического аппарата (КЛ) и его бортовым, главным образом, терморегулирующим системам. КЛ конструктивно объединяет модули целевой аппаратуры и служебных систем и снабжен термостабилизирующим кожухом, выполненным в виде прямоугольного параллелепипеда.

Изобретение относится к конструкциям из композиционных материалов, предназначенных для использования в авиакосмической отрасли. .

Изобретение относится к оболочечным конструкциям корпусных деталей из полимерных композиционных материалов, применяемых в ракетной и авиационной технике, работающих в условиях повышенных нагрузок.

Изобретение относится к космической технике. .

Изобретение относится к космической технике и касается открытия и закрытия отверстия в бленде, которая обеспечивает защиту оптико-электронной аппаратуры космических аппаратов (КА) от воздействия внешних тепловых и световых факторов. Узел крышки светозащитного устройства КА содержит основание с электроприводом и механизм аварийного открытия крышки с пирочекой. Узел также снабжен подпружиненным цилиндрическим стаканом, который установлен на корпусе электропривода с возможностью вертикального перемещения. Подпружиненный стакан взаимодействует со штоком пирочеки механизма аварийного открытия крышки, установленной неподвижно на основании. На выходной вал электропривода установлен кронштейн с вилкой для связи крышки с выходным валом электропривода. В вилке кронштейна смонтирована вращающаяся подпружиненная защелка, имеющая рычаг, который с одной стороны взаимодействует с подпружиненным стаканом, а с другой стороны своей цилиндрической контактной поверхностью, расположенной соосно оси вращения защелки, - с плоской контактной поверхностью подпружиненного штока фиксатора, установленного на крышке. Усилие, развиваемое пружиной защелки, направлено в сторону запирания защелки. Достигается расширение эксплуатационных возможностей узла крышки светозащитного устройства космического аппарата. 8 ил.

Изобретение относится к ракетно-космической технике, криогенной технике и касается пневмогидравлического соединения стыкуемых объектов. Устройство защиты пневмогидравлического соединения содержит кожух, который установлен на соединение и снабжен штуцером с заглушкой. Кожух герметично установлен на стыкуемые объекты. В кожух вварен биметаллический переходник. Заглушка также приварена к штуцеру кожуха. Во время испытания устройства защиты пневмогидравлического соединения фиксируют герметичность пневмогидравлического соединения стыкуемых космических объектов в результате контроля его герметичности. При этом заполняют через штуцер полость кожуха избыточным давлением гелиево-воздушной смеси, проверяют герметичность кожуха. Устанавливают герметичную заглушку на штуцер и проверяют на герметичность соединение заглушки со штуцером, используя остаточную гелиево-воздушную смесь в полости кожуха. Достигается увеличение надежности функционирования стыкуемых объектов при разгерметизации соединения, например, вследствие вибрации, ударных, температурных и прочих воздействий. 2 н.п. ф-лы, 2 ил.

Группа изобретений относится к конструкции частей и элементов летательного аппарата, преимущественно к устройству кормовой части космического самолета (КС), а также к способам коррекции траектории и оптимизации тяги ракетного двигателя КС. Фюзеляж КС (11) в кормовой части снабжен коническим кольцевым обтекателем (10), в котором размещено сопло (4) ракетного двигателя (2). К обтекателю (10) шарнирно присоединены панели или лепестки (3а, 3b, 3с, 3d). Эти лепестки приводятся в движение и могут занимать, во-первых, положение маскирования (защиты) сопла (4) и снижения донного сопротивления КС. В данном положении лепестки (3а, 3b, 3с, 3d) продолжают фюзеляж КС (11). Во-вторых, лепестки могут быть полностью развернуты в положение увеличения аэродинамического сопротивления КС. В обоих случаях ракетный двигатель (2) выключен. Наконец, лепестки (3а, 3b, 3с, 3d) могут занимать множество промежуточных положений между указанными первым и вторым положениями. В этих положениях при включенном двигателе (2) достигается оптимизация его тяги путем контроля с помощью лепестков степени расширения реактивной струи. Несимметричным отклонением лепестков достигается изменение направления движения КС по траектории. Это возможно как при включенном двигателе (2), так и выключенном (когда КС совершает полет в атмосфере). Техническим результатом изобретений является придание устройству кормовой части фюзеляжа активных функций управления движением летательного аппарата (КС) практически во всех фазах полета и снижение тем самым общей массы вспомогательных систем аппарата. 9 н. и 10 з.п. ф-лы, 9 ил.

Изобретение относится к ракетной технике, а именно к одноступенчатым ракетам-носителям. Одноступенчатая ракета-носитель содержит один или несколько жидкостных ракетных двигателей, топливный бак с баками горючего и окислителя, одну или несколько пар навесных топливных баков горючего и окислителя, соединенных соответственно с баками горючего и окислителя топливного бака. Диаметрально расположенные относительно друг друга навесные топливные баки соединены с топливным баком двигательной установки с возможностью отделения после выработки топлива. Изобретение позволяет производить запуск с любой местности, исключает район падения отработанных частей ракеты-носителя. 6 ил.

Изобретение относится к конструкции космических транспортных средств для доставки в составе космической головной части крупногабаритных полезных грузов (ПГ) на заданные орбиты выведения. Переходной отсек (ПО) сборочно-защитного блока ракеты содержит внешнюю для крепления головного обтекателя (ГО) и внутреннюю с промежуточным шпангоутом и продольно-поперечным силовым набором для крепления ПГ конические оболочки с нижними и верхними торцевыми шпангоутами, жестко соединенные между собой. Верхние шпангоуты соединены между собой силовыми стержнями и содержат замки крепления и толкатели отделения ПГ. Верхний шпангоут внутренней конической оболочки крепления ПГ выполнен в поперечной плоскости переменного сечения, образуя смещение продольной оси ПО относительно продольной оси ПГ. Верхний шпангоут имеет выемки под толкатели, охваченные хомутами, жестко закрепленными на внутренней конической оболочке. Замки крепления ПГ посредством фитингов закреплены в верхнем шпангоуте внутренней конической оболочки, которые, как и толкатели, размещены концентрично его внутреннему контуру. Продольно-поперечный силовой набор внутренней конической оболочки для обеспечения жесткости ПО между верхним и промежуточным шпангоутами в местах крепления толкателей подкреплен косынками, в местах крепления замков - балками, выполненными переменного сечения. Под одной из выемок в месте меньшего поперечного сечения верхнего шпангоута на внутренней конической оболочке выполнен вырез под толкатель. Силовые стержни выполнены регулируемыми по своей длине. Достигается расширение эксплуатационных возможностей и эффективности использования ПО для смещенного относительно центра масс крупногабаритного полезного груза с сохранением устойчивости и управляемости РКН а полете. 8 ил.

Изобретение относится к крылатым летательным аппаратам, в которых используется криогенное топливо, и касается ракетных блоков многоразового использования. Планер летательного аппарата включает корпус с криогенным цилиндрическим баком, крыло, элементы крепления крыла. Крыло закреплено непосредственно на криогенном баке вдоль бортов планера посредством ряда вертикальных стержней одинаковой длины и двух узлов. Концы каждого из стержней закреплены шарнирно на крыле и криогенном баке касательно к его обводу. Узлы крепления расположены в зазоре между баком и крылом удаленно друг от друга вдоль его продольной оси. Один узел выполнен по типу штырь-отверстие, а другой по типу выступ-паз, паз которого расположен вдоль оси бака. Достигается снижение веса корпуса летательного аппарата и исключение температурных напряжений в конструкции. 5 ил.

Изобретение относится к измерительным приборам космического аппарата (КА) и может использоваться для высокоточного определения малого приращения скорости поступательного движения КА. Измеритель имеет полый шарообразный корпус (1), на внешней поверхности которого находятся электромагниты (2). На внутренней поверхности корпуса (1) расположена сеть адресных фотоприемников, а внутри корпуса - инерционная масса (5). Электромагнитный подвес массы (5) выполнен в виде встроенных электромагнитов (6), взаимодействующих с электромагнитами (2). Датчик положения массы (5) представляет собой оптрон из трех оптопар. В оптопарах излучателями служат светодиоды внутри массы (5) с оптическими осями (27). Излучение вдоль этих осей попадает на указанные фотоприемники корпуса. Светодиоды питаются от аккумулятора гелиевого типа, встроенного в массу (5). Он заряжается от токов в обмотках электромагнитов (6). Режимы работы устройства задаются оператором (10) через блок контроля и управления (7) с программным обеспечением (9). Питание осуществляется от источника (8). Технический результат изобретения состоит в создании высокоточного (погрешность менее 6 %) прибора для измерения приращений скорости при действии ускорений негравитационной природы порядка (10-6-10-10) м/с2. 1 з.п. ф-лы, 6 ил.

Изобретение относится к оборудованию космических аппаратов (КА) и, в частности, к их энергодвигательным системам. Электролизная установка КА включает в себя твердополимерный электролизер, подключенный к системе электропитания КА, и систему водоснабжения. Последняя содержит циркуляционный насос, кислородный и водородный контуры циркуляции воды. Каждый из контуров включает в себя соответствующую полость электролизера и газоотделитель в виде центробежного сепаратора. Сепараторы соединены с общим электроприводом постоянного тока циркуляционного насоса. Этот электропривод подключен к системе электропитания КА последовательно с электролизером. Кислородный контур снабжен входной водяной магистралью с клапаном и в нем установлен теплообменник, подключенный к системе терморегулирования КА. Техническим результатом изобретения является стабилизация режима работы электролизера и повышение надежности бортовой электролизной установки. 1 ил.

Изобретение относится к космической технике, а именно к компоновке космических аппаратов. Ёмкость изготавливают с тремя отверстиями для отвода пара, основное отверстие выполняют с центром, через который проходит центральная ось емкости, параллельная продольной оси спутника, направленная в сторону центра масс спутника, два дополнительных отверстия выполняют с центрами, через которые проходит другая параллельная ось емкости, параллельная оси спутника, направленная по направлению полета его. Ёмкость устанавливают на максимально возможном удалении от центра масс спутника по направлению, параллельному указанной продольной оси спутника, при этом центральную ось емкости, параллельную продольной оси спутника, располагают с минимально возможным отклонением от нее, одновременно обеспечивая, чтобы вторая центральная ось емкости, перпендикулярная ей, была параллельна оси аппарата, направленной по направлению полета спутника по орбите. Три отверстия для отвода паров установленной на борту ёмкости через электроклапаны соединяют с редуктором. Изобретение позволяет снизить массу и энергопотребление КА. 3 ил.

Изобретение относится к композитным материалам, предназначенным для применения в космосе. Использование, по меньшей мере, одной полимеризуемой смолы R1, выбираемой из группы, состоящей из эпоксидированных полибутадиеновых смол и характеризующейся в неполимеризованном состоянии: - величиной общей потери массы (ОПМ), меньшей чем 10%, величиной восстановленной потери массы (ВПМ), меньшей чем 10%, и величиной собранного летучего конденсируемого материала (СЛКМ). меньшей чем 1%, согласно определению в соответствии со стандартом ECSS-Q-70-02A Европейского космического агентства; - эпоксидной эквивалентной массой (ЭЭМ) в диапазоне от 100 до 600 г/моль; для изготовления композитного материала, свойства которого в отношении газовыделения и механической прочности приемлемы для применения в космосе, в частности, для использования в паутинной конструкции. 3 н. и 18 з.п. ф-лы, 3 табл.
Наверх