Способ получения жидких комплексных удобрений

Изобретение относится к сельскому хозяйству. Способ получения жидких комплексных удобрений включает нейтрализацию экстракционной фосфорной кислоты азотсодержащим реагентом, отделение осадка нерастворимых примесей из полученного раствора, введение раствора солей микроэлементов в присутствии комплексообразователя, причем в качестве азотсодержащего реагента используют карбамид в виде водного раствора, взятого в мольном отношении карбамид: H3PO4, равном (1,5-2,5):1; процесс нейтрализации ведут при температуре 95-99°С и плотности реакционной массы 1,22-1,28 г/см3 до достижения показателя рН реакционной среды 6,5-7,2 в присутствии кальцийсодержащего агента, взятого в мольном отношении кальций:фтор, равном 1:2, а отделение осадка нерастворимых примесей проводят при достижении рН реакционной среды 5,0-5,9. Изобретение позволяет получить жидкое комплексное удобрение с уравновешенным составом и малым содержанием примесей фтора и полуторных оксидов. 1 з.п. ф-лы, 2 табл., 2 пр.

 

Изобретение относится к получению жидких комплексных удобрений, содержащих азот, фосфор и микроэлементы, используемых в сельском хозяйстве для выращивания продукции как в открытом, так и закрытом грунтах.

Известен способ получения жидких комплексных удобрений [А.с. СССР №298575, кл. С05В 11/00, опубл. 16.03.1971] нейтрализацией экстракционной фосфорной кислоты аммиачной водой при поддержании соотношения жидкой и твердой фаз реакционной массы от 10:1 до 24:1, с последующим смешением реакционной массы с твердыми минеральными компонентами. В качестве твердых минеральных компонентов используют карбамид и хлористый калий. Способ позволяет получить комплексные азотнофосфорные и азотнофосфорнокалийные жидкие удобрения без добавления суспензирующих добавок.

Недостатком известного способа является получение жидкого удобрения в виде суспензии и содержащего балластные примеси, а также непригодного для долгого хранения.

Известен способ получения прозрачных жидких комплексных удобрений [патент РФ №2167133, кл. С05В 7/00, С05D 1/00, C05G 1/00, опубл. 20.05.2001] путем введения в экстракционную фосфорную кислоту (ЭФК) секвестрирующего агента в количестве до 5,0% от массы жидкого удобрения и нейтрализации кислоты калийсодержащим реагентом и последующего введения дополнительных макро- и микроэлементов в виде комплексонатов. В качестве секвестрирующего агента используют органическое соединение, выбранное из группы комплексообразователей, как оксиэтилендифосфоновую кислоту ОЭДФК, нитрилтриметиленфосфоновую кислоту НТФ, диэтилентриаминпентауксусную кислоту ДТПА, этилендиаминдиянтарную кислоту ЭДДЯК, этилендиаминтетрауксусную кислоту ЭДТЛ. К полученному раствору фосфата калия вводят карбамид или аммиачную селитру в качестве азотсодержащего компонента. Введение комплексообразователей обеспечивает перевод балластных примесей экстракционной фосфорной кислоты, как полуторные оксиды железа и алюминия в растворимые формы.

Недостатком способа является значительный расход комплексообразователя и низкое качество удобрения из-за содержания балластных примесей.

Известен способ получения жидких комплексных удобрений «Согеда» [а.с. СССР №1549941, кл. C05G 1/06, опубл. 29.02. 1988], включающий нейтрализацию фосфорной кислоты азотсодержащим реагентом с получением раствора фосфата аммония, смешение водных растворов фосфата аммония, нитрата калия, нитрата аммония и введение солей микроэлементов в присутствии комплексообразователя. В качестве азотсодержащего реагента используют аммиачную воду; солей микроэлементов - нитраты или сульфаты цинка, меди, марганца, кобальта, магния, молибдат аммония и борную кислоту; комплексообразователя - оксиэтилидендифосфоновую кислоту. Раствор нитрата аммония применяется для выравнивания состава ЖКУ по содержанию азота. Для достижения pH до 5,5 дополнительно используют аммиачную воду. Получают жидкое удобрение с массовым соотношением N:P2O52О=(5-10):7,5:(5-7,5) с микроэлементами. Введение микроэлементов в виде комплексонатов обеспечивает стабильность жидкого удобрения. Температура кристаллизации ЖКУ около 0°С, раствор стабилен, не происходит выпадение осадка.

Недостатком известного способа является многостадийность технологического процесса, низкое качество жидкого удобрения из-за присутствия примесей фтора и полуторных оксидов, а также использование нескольких видов азотсодержащих реагентов, таких как аммиак, нитрат аммония, нитрат калия, для уравновешения состава удобрения по азоту.

Наиболее близким к предлагаемому по технической сущности и достигаемому результату является способ получения жидких комплексных удобрений [патент РФ №2142928, кл. С05В 7/00, опубл. 20.12.1999], включающий нейтрализацию экстракционной фосфорной кислоты азотсодержащим реагентом, отделение нерастворимых примесей из полученного раствора, причем используют полифосфорную экстракционную фосфорную кислоту, в качестве азотсодержащего реагента - газообразный аммиак, а отделение нерастворимых примесей проводят фильтрацией на фильтре со вспомогательным материалом, в качестве которого берут отход производства фторида алюминия. В результате получают жидкое комплексное удобрение, содержащее 10% азота и 34% фосфора в пересчете на P2O5.

Недостатком известного способа является использование полифосфорной кислоты и отхода производства фтористого алюминия и высокое содержание примесей, в частности фтора, а также несбалансированность состава удобрения по содержанию азота и фосфора.

Цель изобретения - получение жидкого комплексного удобрения с уравновешенным составом и малым содержанием примесей фтора и полуторных оксидов.

Поставленная цель достигается в предлагаемом способе получения жидких комплексных удобрений, включающем нейтрализацию экстракционной фосфорной кислоты азотсодержащим реагентом, отделение нерастворимых примесей из полученного раствора, введение раствора солей микроэлементов в присутствии комплексообразователя, причем в качестве азотсодержащего реагента используют карбамид в виде водного раствора, взятого в мольном отношении карбамид:H3PO4, равном 1,5-2,5:1; процесс нейтрализации ведут при температуре 95-99°С в присутствии кальцийсодержащего агента, взятого в мольном отношении кальций:фтор, равном 1:2, и плотности реакционной массы 1,22-1,28 г/см3 до достижения показателя pH реакционной среды 6,5-7,2. Отделение осадка нерастворимых примесей проводят при достижении pH реакционной среды 5,0-5,9. В качестве кальцийсодержащего агента применяют известняк, фосфогипс, дикальцийфосфат.

В качестве солей микроэлементов используют сульфаты цинка, меди, марганца, кобальта и магния, молибдат аммония, иодид калия и борную кислоту, а комплексообразователя - оксиэтилидендифосфоновую кислоту или этилендиаминтетрацетат натрия (трилон Б).

Сущность изобретения заключается в следующем.

В кислой водной среде при повышенной температуре происходит разложение карбамида с образованием аммиака и выделением углекислого газа:

NH2CONH2+H2O=2NH3+CO2

Аммиак нейтрализует фосфорную кислоту с образованием моноаммонийфосфата и диаммонийфосфата. При этом имеет место увеличение показателя pH реакционной среды от начального кислого (pH 1) до нейтрального (pH 6,5-7,2).

H3PO4+NH3=NH4H2PO4

NH4H2PO4+NH3=(NH4)2HPO4

Экстракционная фосфорная кислота характеризуется значительным содержанием балластных примесей, таких как полуторные оксиды (R2O3, включает оксиды железа Fe2O3 и алюминия Al2O3) и фтористые соединения. Содержание примеси фтора в ЭФК находится в пределах 0,5-1,0%, а суммарное содержание оксидов железа и алюминия - 1,8-2,2%. Нейтрализация экстракционной фосфорной кислоты сопровождается выделением осадка нерастворимых соединений полуторных оксидов и фтора. Выделение осадка начинается при достижении pH реакционной среды 3,5-4,0 и заканчивается при достижении нейтральности среды.

Оптимальным является расход карбамида, взятого в мольном отношении карбамид:H3PO4, равном 1,5-2,5:1. При снижении расхода карбамида ниже мольного отношения, чем 1,5:1, не обеспечивается нейтральность удобрения из-за нехватки реагента. Увеличение расхода карбамида выше мольного отношения, чем 2,5:1, нежелательно из-за перерасхода реагента. Избыток карбамида также приводит к повышению температуры застывания полученного жидкого удобрения, т.е к снижению стабильности раствора ЖКУ.

Ведение процесса нейтрализации экстракционной фосфорной кислоты в присутствии кальцийсодержащего агента обеспечивает минимальное содержание примеси фтора в целевом продукте (см. таблицу 1). При этом протекает реакция связывания фтора ионом кальция с образованием и выделением в осадок нерастворимого фторида кальция CaF2, что обеспечивает высокую степень очистки целевого продукта от примеси фтора.

Са2 + 2F-=CaF2

Кальцийсодержащий агент берут в мольном отношении кальций:фтор, равном 1:2, что обеспечивает полное связывание фтора в CaF2 и минимальное остаточное содержание фтора в целевом продукте. При уменьшении расхода кальцийсодержащего агента от заданного количества обеспечиваются условия для полного перевода фтора в осадок (опыт 2, табл.1), а увеличение - к перерасходу агента, а также к потерям части фосфатов из-за перевода их в осадок (опыт 4, табл.1). В качестве кальцийсодержащего агента используют известняк СаСО3, дикальцийфосфат СаНРО4, фосфогипс - отход производства экстракционной фосфорной кислоты, состоящий в основном из сульфата кальция CaSO4.

Максимальное выделение соединений полуторных оксидов и фтора в осадок из реакционной смеси имеет место при pH реакционной среды в пределах 5,0-5,9 в присутствии кальцийсодержащего агента (см. табл.1). При показателях pH реакционной среды менее 5,0 не обеспечивается полнота осаждения примесей фтора и полуторных оксидов. При повышении рH более 5,9 наблюдается переход фтора и полуторных оксидов из полученного осадка в раствор. Поэтому минимальное остаточное содержание примеси фтора, железа и алюминия в целевом продукте обеспечивается путем выделения осадка нерастворимых соединений при pH реакционной среды в пределах 5,0-5,9.

Поддержание плотности реакционной массы в ходе процесса в пределах 1,22-1,28 г/см3 обеспечивает оптимальную вязкость реакционной среды и высокую скорость осаждения и фильтрации полученного осадка. После добавления раствора микроэлементов плотность удобрения составляет 1,20-1,25 г/см3. Целевой продукт с плотностью 1,20-1,25 г/см3 характеризуется низкой температурой кристаллизации не выше минус 20°С, что обеспечивает стабильность продукта при хранении в зимнее время без образования осадка. Снижение плотности реакционной массы ниже 1,22 г/см3 приводит к уменьшению содержания азота и фосфора в продукте, что нецелесообразно. Снижение плотности реакционной массы ниже 1,22 г/см3 также приводит к повышению температуры кристаллизации до минус 10°С, что требует поддержания специальных условий хранения удобрения в зимнее время. При повышении плотности реакционной массы выше 1,28 г/см3 ухудшаются условия осаждения и фильтрации полученной реакционной массы.

Оптимальной температурой процесса нейтрализации экстракционной фосфорной кислоты раствором карбамида является 95-99°С. При ведении процесса ниже температуры 95°С замедляется скорость разложения карбамида с образованием аммиака и не достигается нейтральность реакционной среды (опыт 12, табл.2). Ведение процесса нейтрализации при температуре выше 99°С приводит к усиленному испарению воды и повышению плотности более 1,28 г/см3, ухудшению отделения осадка (опыт 13, табл.2). Высокая температура процесса также требует дополнительного расхода воды для поддержания требуемой плотности, а также приводит к перерасходу энергоресурсов.

Применение в качестве азотсодержащего нейтрализующего реагента карбамида в виде водного раствора обеспечивает получение комплексного удобрения уравновешенного состава по азоту и фосфору. При использовании в качестве исходного сырья ЭФК концентрации 50-52% Р2О5 и 34-36%-ного раствора карбамида обеспечивается получение реакционной массы с плотностью 1,22-1,28 г/см3. В случае использования ЭФК с содержанием 36-38% P2O5, требуемая плотность реакционной массы достигается при концентрации 40-42% раствора карбамида. При использовании более концентрированных растворов карбамида проводится корректировка плотности реакционной массы путем дополнительного ввода воды.

После достижения нейтральности среды (pH 6,5-7,2) в реакционную массу вводят раствор соли микроэлементов в виде комплексонатов. В качестве солей микроэлементов используют сульфаты цинка, меди, марганца, кобальта, иодид калия и борную кислоту, а в качестве комплексообразователя - ОЭДФК или трилон Б. Введение солей микроэлементов в виде комплексонатов обеспечивает стабильность получаемого жидкого удобрения, исключает выпадение осадка.

Использование в качестве азотсодержащего реагента карбамида позволяет получать уравновешенные комплексные жидкие удобрения, у которых соотношение питательных элементов М:P2O5 составляет 0,65-1:1.

Целесообразность выбранных интервалов показателей процесса приведена в примерах 1, 2 и в таблицах 1, 2.

Пример 1. В реактор загружают 497,6 кг воды, добавляют 265,7 кг карбамида (4,43 кмоля), растворяют путем перемешивания при температуре 50-60°С. Получают 763,3 кг 35%-ного раствора карбамида. Далее в реактор вводят 250 кг экстракционной фосфорной кислоты состава, %: 72 H3PO4 (или 52,0 P2O5), 4,9 H2SO4, 0,62 F и 1,8 R2O3 и 4,1 кг известняка СаСО3. С кислотой вводится 180 кг H3PO4 (1,83 кмоля) и 1,55 кг фтора (81,6 моля), а с известняком 1,63 кг кальция (40,8 моля). Мольное отношение карбамид:H3PO4=2,4:1, мольное отношение кальций:фтор =1:2. Плотность полученной реакционной массы составляет 1,23 г/см3. Реакционную смесь нагревают, перемешивают при температуре 98°С до достижения показателя pH реакционной среды 5,6 в течение 3,5 часа. Полученная реакционная смесь представляет собой суспензию. Осадок нерастворимых примесей полуторных оксидов и фтористых соединений отделяют фильтрацией. Выделяют 28 кг осадка, содержащего 35,6% P2O5, 15% R2O3 и 5,3% F. Фильтрат перемешивают при температуре до достижения pH реакционной среды 7,0. Всего в процессе нейтрализации выделяется 82,4 кг углекислого газа. В отдельном реакторе в 92,45 л воды растворяют 2 кг комплексообразователя ОЭДФК, 1,6 кг сульфата меди CuSO4*5H2O, 0,88 кг сульфата марганца MnSO4*5H2O, 0,45 кг сульфата цинка ZnSO4*7H2O, 0,25 кг сульфата кобальта CoSO4*5H2O, 0,066 кг иодида калия KI, 2,3 кг борной кислоты H3BO3. Полученный 100 кг раствора солей микроэлементов добавляют к фильтрату. В результате получают 1000 кг жидкого комплексного удобрения плотностью 1,20 г/см3 уравновешенного состава, содержащего 12% азота, 12% фосфатов в пересчете на Р2О5. Содержание примеси фтора составляет 0,006% и 0,02% полуторных оксидов R2O3. Степень очистки от примеси фтора составляет 96%, от полуторных оксидов - 95,5%. Содержание микроэлементов в продукте составляет, %: 0,04 бора, 0,04 меди, 0,02 марганца, 0,01 цинка, 0,005 кобальта и 0,005 йода.

Пример 2. В реактор загружают 384,0 кг воды, добавляют 265,7 кг карбамида (4,43 кмоля), растворяют путем перемешивания при температуре 50-60°С. Получают 649,7 кг 41%-ного раствора карбамида. Далее в реактор вводят 361,1 кг экстракционной фосфорной кислоты состава в %: 49,7 H3PO4 (или 36,0 Р2О5), 4,9 H2SO4, 0,9 F и 1,8 R2O3 и 8,6 кг известняка. С кислотой вводится 180 кг H3PO4 (1,83 кмоля) и 3,25 кг фтора (171 моля), а с известняком 3,43 кг кальция (85,5 моля). Мольное отношение карбамид : H3PO4=2,4:1, мольное отношение кальций : фтор =1:2. Плотность полученной реакционной смеси составляет 1,23 г/см3. Реакционную смесь нагревают, перемешивают при температуре 98°С до достижения показателя pH реакционной среды 5,6 в течение 3,5 часа. Полученная реакционная смесь представляет собой суспензию. Осадок нерастворимых примесей полуторных оксидов и фтористых соединений отделяют фильтрацией. Выделяют 35 кг осадка, содержащий 28,8% P2O5, 18,6% R2O3 и 9,3% F. Фильтрат перемешивают при температуре до достижения pH реакционной среды до 7,0. Всего в процессе нейтрализации выделяется 84,3 кг углекислого газа. В отдельном реакторе в 92,45 л воды растворяют 2 кг трилона Б, 1,6 кг CuSO4*5H2O, 0,88 кг MnSO4*5H2O, 0,45 кг ZnSO4*7H2O, 0,25 кг CoSO4*5H2O, 0,066 кг KI, 2,3 кг H3BO3. Полученный 100 кг раствора микроэлементов добавляют к фильтрату. В результате получают 1000 кг жидкого комплексного удобрения уравновешенного состава с микроэлементами. Состав удобрения: 12% N, 12% P2O5, 0,006% F и 0,02% R2O3, плотность 1,20 г/см3. Степень очистки от примеси фтора составляет 98%, от полуторных оксидов - 95,4%.

Целесообразность выбора пределов показателей технологического процесса представлена в таблицах 1 и 2.

Таким образом, предлагаемый способ позволяет получать азотнофосфорное жидкое удобрение уравновешенного состава с малым содержанием вредных примесей фтора и полуторных оксидов.

Таблица 1
Зависимость содержания фтора и полуторных оксидов от величины pH реакционной среды в присутствии кальцийсодержащего агента
Условия проведения опытов
Состав ЭФК: 72% H3PO4, 4,9% H2SO4, 0,8% F и 1,8% R2O3; мольное соотношение карбамид:H3PO4=2,3:1, в качестве кальцийсодержащего агента взяты известняк (опыты 2, 3, 4), фосфогипс (опыт 5) и дикальцийфосфат (опыт 6), температура процесса 98°С, плотность реакционной массы 1,24 г/см3. В опыте 1 процесс проведен без добавления кальцийсодержащего агента
Опыт 2 Опыт 3 Опыт 4 Опыт 5 Опыт 6
pH среды Опыт 1 Известняк Известняк Известняк Фосфогипс Дикальцийфосфат
Мольн. отношение Мольн. отношение Мольн. отношение Мольн. отношение Мольн. отношение
Ca:F=0,8:2 Ca:F=1:2 Ca:F=1,1:2 Ca:F=1:2 Ca:F=1:2
F, % R2O3, % F, % R2O3, % F, % R2O3, % F, % R2O3, % F, % R203, % F, % R2O3, %
1,3 0,2 0,45 0,20 0,45 0,20 0,45 0,20 0,45 0,20 0,45 0,20 0,45
4,0 0,12 0,25 0,10 0,20 0,05 0,15 0,04 0,15 0,05 0,15 0,05 0,15
4,5 0,11 0,25 0,10 0,18 0,04 0,10 0,04 0,10 0,04 0,10 0,04 0,10
4,9 0,10 0,24 0,04 0,17 0,03 0,05 0,03 0,05 0,03 0,05 0,03 0,05
5,0 0,10 0,24 0,03 0,10 0,005 0,02 0,005 0,02 0,005 0,02 0,005 0,02
5,9 0,10 0,24 0,03 0,10 0,005 0,02 0,005 0,02 0,005 0,02 0,005 0,02
6,0 0,10 0,24 0,04 0,15 0,01 0,04 0,01 0,04 0,01 0,04 0,01 0,04
6,5 0,11 0,25 0,06 0,16 0,02 0,05 0,02 0,05 0,02 0,06 0,02 0,06
7,2 0,12 0,25 0,07 0,16 0,03 0,06 0,03 0,06 0,03 0,10 0,03 0,09

1. Способ получения жидких комплексных удобрений, включающий нейтрализацию экстракционной фосфорной кислоты азотсодержащим реагентом, отделение осадка нерастворимых примесей из полученного раствора, введение раствора солей микроэлементов в присутствии комплексообразователя, отличающийся тем, что в качестве азотсодержащего реагента используют карбамид в виде водного раствора, взятого в мольном отношении карбамид:H3PO4, равном (1,5-2,5):1, процесс нейтрализации ведут при температуре 95-99°С и плотности реакционной массы 1,22-1,28 г/см3 до достижения показателя рН реакционной среды 6,5-7,2 в присутствии кальцийсодержащего агента, взятого в мольном отношении кальций:фтор, равном 1:2, а отделение осадка нерастворимых примесей проводят при достижении рН реакционной среды 5,0-5,9.

2. Способ по п.1, отличающийся тем, что в качестве кальцийсодержащего агента используют известняк, фосфогипс, дикальцийфосфат.



 

Похожие патенты:
Изобретение относится к сельскому хозяйству, а именно к твердой сыпучей композиции удобрений, способу ее производства и применению для подготовки концентрированных водных композиций удобрений.
Изобретение относится к технологии минеральных удобрений. .

Изобретение относится к способу получения сыпучих, неокисляющих и невзрывоопасных нитрофосфатных и/или азотно-фосфатно-калийных продуктов с высоким содержанием азота.
Изобретение относится к способу получения бесхлорных NPK-удобрений и может найти применение в химической промышленности. .
Изобретение относится к способу получения сложных гранулированных удобрений на основе аммиачной селитры и фосфорсодержащего компонента. .

Изобретение относится к способу получения диаммонийфосфата, обладающего антисептическими свойствами. .
Изобретение относится к способу получения сложных гранулированных удобрений на основе аммиачной селитры и фосфорсодержащего компонента. .

Изобретение относится к способу получения диаммонийфосфата, обладающего антисептическими свойствами. .

Изобретение относится к способу получения гранулированных фосфатов аммония различного химического состава, широко используемых в сельском хозяйстве как удобрения.

Изобретение относится к получению фосфатов аммония из фосфорсодержащих растворов. Способ получения включает стадии: обеспечения обогащенной фосфором жидкой фазы, не смешивающейся с водой (210); добавления безводного аммиака в обогащенную фосфором жидкую фазу (212); осаждения моноаммоний фосфата и/или диаммоний фосфата из указанной жидкой фазы (214); регулирования температуры жидкой фазы в ходе указанных стадий добавления и осаждения в заранее заданном интервале температур (216); извлечения осажденного моноаммоний фосфата и/или диаммоний фосфата из указанной жидкой фазы (218); промывки кристаллов извлеченного осажденного моноаммоний фосфата и/или диаммоний фосфата (220) и сушки промытых кристаллов (228). Способ также включает стадии: отделения остаточной жидкой фазы, отмытой от указанных кристаллов (222); повторного использования указанной отделенной остаточной жидкой фазы для последующей абсорбции фосфора, чтобы повторно использовать в последующем извлечении (230), и повторного использования промывочной жидкости (226), обеденной указанной остаточной жидкой фазой для последующей промывки указанных кристаллов. Причем стадия промывки (220) включает промывку насыщенным водным раствором фосфата аммония, и стадия отделения остаточной жидкой фазы (222) включает фазовое разделение указанной жидкой фазы и указанного насыщенного водного раствора фосфата аммония. Изобретение также относится к установке для получения фосфатов аммония. Результатом является получение полностью растворимых фосфатов аммония без необходимости концентрирования фосфорной кислоты путем выпаривания воды. 2 н. и 18 з.п. ф-лы, 5 ил., 2 табл., 10 пр.

Изобретение относится к сельскому хозяйству. Способ утилизации на аммофос отработанной фосфорной кислоты после антикоррозионной обработки черных металлов путем аммонизации, причем обработку осуществляют аммиачной водой до рН 4,5, от полученной смеси отделяют осадок гидроксидов металлов, а из раствора после упаривания до плотности 1,293 г/см3 кристаллизуют аммонийфосфат при охлаждении до 20°C. Изобретение позволяет безопасно утилизировать отработанный раствор праймер-преобразователя, получить качественное комплексное минеральное удобрение аммофос. 1 табл., 1 пр.

Изобретение относится к питательным композициям для биологических систем, таких как люди, животные, растения и микроорганизмы. Питательная композиция содержит по меньшей мере один смешанный фосфат металлов типа (M1 М2 М3 … Mx)3(PO4)2⋅аН2О, где 0≤а≤9, где (M1, М2, М3 … Mx) по меньшей мере 2 разных металлов смешанного фосфата металлов и они выбраны из группы, включающей Na, K, Mg, Са, Cr, Мо, W, Mn, Fe, Со, Ni, Cu, Zn и В, при условии, что по меньшей мере один из металлов в фосфате выбран из группы, включающей Mn, Fe, Со и Ni, где этот по меньшей мере один фосфат имеет пластинчатую морфологию первичных кристаллитов. При этом композицию получают путем приготовления водного раствора (I), который содержит по меньшей мере один или большее количество металлов Mn, Fe, Со и/или Ni в виде двухвалентных катионов, путем введения оксидных соединений металла(II), металла(III) и/или металла(IV) или смесей, или их соединений, содержащих смешанные состояния окисления, выбранных из группы, включающей гидроксиды, оксиды, оксигидроксиды, гидраты оксидов, карбонаты и гидроксикарбонаты по меньшей мере одного из металлов Mn, Fe, Со и/или Ni вместе с элементарными формами или сплавами по меньшей мере одного из металлов Mn, Fe, Со и/или Ni, в водную среду, содержащую фосфорную кислоту, и реакцию оксидных соединений металлов с элементарными формами или сплавами металлов с образованием двухвалентных ионов металлов. Далее осуществляют отделение всех твердых веществ, содержащихся в водном растворе фосфорной кислоты (I). Если смешанный фосфат металлов, в дополнение к металлам, введенным в водный раствор (I), содержит другие металлы, выбранные из группы, включающей (M1, М2, М3 … Mx), проводят дополнительное добавление к водному раствору (I) по меньшей мере одного соединения по меньшей мере одного из металлов (M1, М2, М3 … Мх) в виде водного раствора или в виде твердого вещества в форме соли. При этом по меньшей мере одно соединение предпочтительно выбрано из группы, включающей гидроксиды, оксиды, оксигидроксиды, гидраты оксидов, карбонаты, гидроксикарбонаты, карбоксилаты, сульфаты, хлориды или нитраты металлов. Далее осуществляют приготовление начального загрузочного раствора (II), обладающего значением рН от 5 до 8, полученного из водного раствора фосфорной кислоты путем нейтрализации водным раствором гидроксида щелочного металла или полученного из водного раствора одного или большего количества фосфатов щелочных металлов. Затем проводят дозирование водного раствора (I) в начальный загрузочный раствор (II) и одновременно дозирование в щелочной водный раствор гидроксида щелочного металла, так что значение рН полученной реакционной смеси поддерживается в диапазоне от 5 до 8. Далее осажденный фосфат типа (M1 М2 М3 … Мх)3(PO4)2⋅aH2O отделяют от раствора реакционной смеси. Изобретение позволяет получить питательную композицию, обладающую улучшенной биодоступностью. 4 н. и 10 з.п. ф-лы, 8 ил., 1 табл., 20 пр.

Изобретения относятся к сельскому хозяйству. Сложное азотно-фосфорно-калийное удобрение (NPK) содержит нитрат аммония, сульфат кальция безводный, дигидрофосфат калия, причем массовая доля общего азота от 13-15%, массовая доля общих фосфатов в пересчете на P2O5 от 9-10%, массовая доля калия в пересчете на K2O от 13-15%. Способ получения сложного удобрения NPK из твердой фосфатной соли, представляющей собой смесь фторапатита Ca5(PO4)3F и дикальций фосфата CaHPO4×nH2O, где n - от 0 до 2, а содержание фторапатита Ca5(PO4)3F от 27 до 99% включает: стадию разложения указанной твердой фосфатной соли серной кислотой полусухим методом, стадии добавления сульфата калия в качестве источника калия, нитрата аммония в качестве источника азота, стадию приготовления сларри NPK, а также стадию грануляции и сушки готового продукта. Изобретения позволяют обеспечить улучшение свойств NPK-удобрения, повысить прочность гранул, решить проблему, связанную с пластичностью гранулированных сложных удобрений, повысить водорастворимость фосфора, содержащегося в удобрении, на 98% и тем самым улучшить потребительские свойства NPK-удобрений. 2 н. и 10 з.п. ф-лы, 1 ил., 3 табл., 3 пр.

Изобретение относится к получению фосфатов аммония из фосфорсодержащих растворов и, в частности, к получению фосфатов аммония из подаваемой жидкости, содержащей фосфорную кислоту. Установка (100) для получения полностью растворимых, чистых и хорошо выраженных моно- или диаммонийфосфатов включает секцию (10) экстракции, секцию (20) отпарки и устройства (90) окончательной обработки. В секции экстракции осуществляют жидкость-жидкостную экстракцию фосфата между подаваемой жидкостью (1), содержащей фосфорную кислоту и по существу не содержащей ионов нитрата, и растворителем (5), который является не смешивающимся с водой или по меньшей мере по существу не смешивающимся с водой растворителем. В секции отпарки осуществляют жидкость-жидкостную экстракцию фосфата между растворителем, обогащенным фосфатом, и раствором реэкстракции. Растворитель, обедненный фосфатом, рециркулируют в секцию экстракции для дальнейшей экстракции фосфата. Раствор реэкстракции представляет собой водный раствор фосфата аммония, в котором по меньшей мере 80 мол.% фосфата аммония представляет собой моноаммонийфосфат и/или растворитель представляет собой не смешивающийся с водой спирт. Устройства окончательной обработки содержат источник (60) аммиака, устройство (70) добавления, охлаждающее устройство (50), устройство (40) для удаления осадка и систему (80) рециркуляции. 2 н. и 17 з.п. ф-лы, 8 ил.
Наверх