Способ определения коэффициента пропитки обмоток электрических машин

Изобретение относится к электротехнике, а именно к способу определения коэффициента пропитки обмоток электрических машин, соединенных в звезду с изолированной нейтралью. В способе определения коэффициента пропитки обмоток электрических машин, характеризующего степень заполнения пропиточным составом полостей обмотки, у каждой обмотки из данной партии измеряют электрические параметры до пропитки и после пропитки и сушки, в качестве электрических параметров выбраны емкости двух фаз обмотки, соединенной в звезду, которые поочередно измеряют до пропитки Сдп12, Сдп13, Сдп23 и после пропитки Спп12, Спп13, Спп23 относительно корпуса, после чего по результатам измерений определяют коэффициент пропитки каждых двух фаз Кпр12, Кпр13, Кпр23 по математической зависимости, после чего определяют коэффициенты пропитки каждой фазы обмотки по математическим зависимостям. Техническим результатом является возможность определять не только усредненный коэффициент пропитки, но и распределение пропиточного состава по фазам обмотки, что существенно повышает информативность и точность контроля. 2 табл., 3 ил.

 

Изобретение относится к электротехнике, а именно к способу определения коэффициента пропитки обмоток электрических машин, соединенных в звезду с изолированной нейтралью.

Известен способ контроля качества пропитки обмоток электрических машин, предложенный в работе [2], который заключается в измерении емкости обмотки относительно магнитного сердечника до пропитки Сдп и емкости относительно магнитного сердечника после пропитки и сушки обмотки Спп, а о качестве пропитки предложено судить по коэффициенту пропитки Кпр, определяемому из выражения

К п р = С п п С д п                                         ( 1 )

Недостатком способа-аналога является низкая точность контроля, так как величины Сдп и Спп зависят от расположения витков в обмотке, а также от того как распределился состав по корпусным полостям обмотки. При попадании одинакового количества (массы) пропиточного состав в две разные однотипные обмотки одной партии Кпр, определяемый по формуле (1), может давать существенно отличающиеся друг от друга значения. Поэтому формула (1) не позволяет объективно судить о насыщенности полостей обмотки пропиточным составом.

Наиболее близким к заявляемому способу является способ определения коэффициента пропитки обмоток, описанный в работе [2], частично устраняющий указанные выше недостатки аналога.

В способе-прототипе [2], по которому у каждой обмотки из данной партии измеряют емкости относительно корпуса до пропитки и после пропитки и сушки, одну из обмоток, произвольно выбранную из данной партии, после измерения емкости относительно корпуса до пропитки погружают в пропиточную жидкость с известной диэлектрической проницаемостью обмотки и измеряют емкость относительно корпуса, не вынимая обмотку из пропиточной жидкости, а коэффициент пропитки для каждой из оставшихся обмоток данной партии определяют по формуле

К п р = 1 ln ε 2 ln ε 1 С п п ( С п п * С д п * 1 ) С п п * С д п * С д п ( ε 1 1 ) С п п ( ε 1 С п п * С д п * )                                   ( 2 )

где Сдп, Спп - емкости обмотки относительно корпуса соответственно до пропитки и после пропитки и сушки; С д п * - емкость произвольно выбранной обмотки относительно корпуса до пропитки; С п п * - емкость произвольно выбранной обмотки относительно корпуса после выдержки в пропиточной жидкости с известной диэлектрической проницаемостью до полного заполнения ею полостей обмотки; ε1 - диэлектрическая проницаемость пропиточной жидкости; ε2 - диэлектрическая проницаемость отвержденного пропиточного состава.

Недостатком способа-прототипа является необходимость у одной из произвольно выбранных обмоток измерять емкость относительно корпуса до пропитки, затем, после измерения емкости относительно корпуса до пропитки, погружать упомянутую обмотку в пропиточную жидкость с известной диэлектрической проницаемостью, и измерять емкость обмотки относительно корпуса, не вынимая обмотку из пропиточной жидкости. Введение этой операции усложняет способ.

Кроме того, по способу-прототипу определяют усредненный коэффициент пропитки обмоток, но этим способом невозможно определить распределенность пропиточного состава по фазам обмотки, которая в большинстве электрических машин соединена в звезду с изолированной нейтралью, что снижает информативность и точность контроля качества пропитки.

Технической задачей, на которую направлено изобретение, является упрощение способа, повышение его информативности и точности.

Поставленная техническая задача решается тем, что в способе определения коэффициента пропитки обмоток электрических машин, характеризующем степень заполнения пропиточным составом полостей обмотки, при котором у каждой обмотки из данной партии измеряют электрические параметры до пропитки и после пропитки и сушки, в качестве электрических параметров выбирают емкости двух фаз обмотки, соединенной в звезду, которые поочередно измеряют до пропитки Сдп12, Сдп13, Сдп23 и после нее Спп12, Спп13, Спп23 относительно корпуса, после чего по результатам измерений определяют коэффициент пропитки каждых двух фаз Кпр12, Кпр13, Кпр23 по формулам

К п р 12 = 1 ln ε п с × ln С п п 12 ( С э к в С д п 12 ) С д п 12 ( С э к в С п п 12 ) ,                                     ( 3 )

К п р 13 = 1 ln ε п с × ln С п п 13 ( С э к в С д п 13 ) С д п 13 ( С э к в С п п 13 ) ,                                       ( 4 )

К п р 23 = 1 ln ε п с × ln С п п 23 ( С э к в С д п 23 ) С д п 23 ( С э к в С п п 23 ) ,                                        ( 5 )

где С э к в = 2 p S ε 0 ε э ε к 3 ( d э ε к + d к ε э )        ( 6 ) - эквивалентная емкость последовательно соединенных емкостей эмали и корпусной изоляции двух фаз обмотки, p - количество пазов в магнитном сердечнике; S - площадь паза; ε0=8,854187·10-12 - электрическая постоянная; εэ - диэлектрическая проницаемость эмалевой пленки провода обмотки; εк - диэлектрическая проницаемость корпусной изоляции; dэ - толщина эмалевой изоляции провода; dк - толщина корпусной изоляции провода. После чего определяют коэффициенты пропитки каждой фазы обмотки по формулам

К п р 1 = К п р 12 К п р 23 + К п р 13 ,       ( 7 )

К п р 2 = К п р 23 К п р 13 + К п р 12 ,         ( 8 )

К п р 3 = К п р 13 К п р 12 + К п р 23 ,       ( 9 )

где Kпр1, Kпр2, Кпр3 - коэффициенты пропитки 1-й, 2-й, 3-й фаз соответственно.

На фиг 1. схематически представлена обмотка трехфазной электрической машины, соединенная звездой с изолированной нейтралью. Позициями 1, 2, 3 обозначены выводы фаз обмотки, позицией 4 обозначена нейтраль обмотки.

На фиг.2 представлено сечение обмотки в одном из пазов, представляющее слоистую систему.

Она состоит из проводов обмотки 5, покрытых слоем эмали 6, корпусной изоляции 7, поверхности паза 8, воздушных полостей между поверхностью обмотки и корпусной изоляцией 9 и воздушных полостей между корпусной изоляцией и поверхностью паза 10, магнитного сердечника (корпус) 11.

На фиг.3 изображены емкости обмотки относительно корпуса, которым является магнитный сердечник статора электрической машины, представлены в виде слоистого плоского конденсатора до пропитки (фиг.3,А) и после нее (фиг.3,Б). На фиг.3,А и фиг.3,Б введены те же обозначения, только на фиг.3,Б вместо позиций 9 и 10 введены позиции 12 и 13, так как воздушные полости обмотки 9 и 10 после пропитки и сушки частично заполняются пропиточным составом. В связи с этим позициями 12 и 13 обозначены те же слои 9 и 10, но заполненные статистически распределенными по этим слоям частицами пропиточного состава. Фиг.1, фиг.2 и фиг.3 служат для пояснения сущности изобретения.

Сущность способа заключается в следующем.

Обмотки трехфазных электрических машин обычно соединяют звездой (см. фиг.1).

В способе-прототипе выводы фаз 1, 2, 3 соединяют между собой и до пропитки измеряют емкость обмотки Сдп относительно магнитного сердечника. После пропитки и сушки обмотки вновь соединяют выводы 1, 2, 3 между собой и измеряют емкость обмотки Спп. Затем по формуле (2), используя результаты всех измерений, описанных в способе-прототипе, определяют интегральный усредненный коэффициент пропитки обмотки. Между тем качество пропитки оценивается не только этим усредненным интегральным коэффициентом пропитки, но и тем, насколько равномерно распределился пропиточный состав по полостям обмотки.

Обмотка электрической машины, размещенная в пазы магнитного сердечника, представляет собой слоистую систему (см. фиг.1). Так как толщина dэ эмалевой изоляции 6 провода 5, толщина dк корпусной изоляции 7, и суммарная толщина dв воздушных полостей между поверхностью обмотки и корпусной изоляцией 9 и воздушных полостей между корпусной изоляцией и поверхностью паза 10 пренебрежительно малы и составляют несколько микрон, то емкость обмотки относительно корпуса можно с пренебрежительно малой погрешностью представить в виде слоистого плоского конденсатора (см. фиг.3). Если до пропитки соединить между собой выводы фаз 1 и 2 (фиг.1) и измерить емкость этих двух фаз относительно магнитного сердечника до пропитки Сдп12, а затем повторить эту же процедуру с выводами 1-3 и 2-3 и измерить до пропитки емкости двух соответствующих фаз Сдп13 и Сдп23, то эти емкости, поскольку они соединены последовательно, можно записать, в соответствии с фиг.2, в виде следующих соотношений:

1 С д п 12 = 1 С э 12 + 1 С к 12 + 1 С в 12 ,            ( 10 )

1 С д п 13 = 1 С э 13 + 1 С к 13 + 1 С в 13 ,               ( 13 )

1 С д п 23 = 1 С э 23 + 1 С к 23 + 1 С в 23 ,             ( 12 )

где Сэ12, Сэ13, Сэ23 - емкости слоя эмаль-изоляции у двух фаз 1-2, 1-3, 2-3 соответственно, Ск12, Ск13, Ск23 - емкости слоя корпусной изоляции у двух фаз 1-2, 1-3, 2-3 соответственно, Св12, Св13, Св23 - суммарные емкости воздушных слоев 9 и 10 (фиг.3) у двух фаз 1-2, 1-3, 2-3 соответственно.

Так как у однотипных обмоток количество пазов, в которых расположены две фазы обмотки, площадь паза, толщина dэ эмалевой и толщина корпусной dк изоляции одинаковые, то следует принять, что Сэ12э13э23э(13) и Ск12к13к23=Ск (14).

Учитывая соотношения (13) и (14), выражения (10), (11) и (12) можно переписать в виде

1 С д п 12 = 1 С э + 1 С к + 1 С в 12 ,                   ( 15 )

1 С д п 13 = 1 С э + 1 С к + 1 С в 13 ,                      ( 16 )

1 С д п 23 = 1 С э + 1 С к + 1 С в 23                                               ( 17 )

Для плоского конденсатора можно записать

С э = 2 3 р × ε 0 ε э S d э                                ( 18 )

С к = 2 3 р × ε 0 ε к S d к                                  ( 19 )

С в 12 = 2 3 р × ε 0 ε в S d в 12                                 ( 20 )

С в 13 = 2 3 р × ε 0 ε в S d в 13                                  ( 21 )

С в 23 = 2 3 р × ε 0 ε в S d в 23                               ( 22 )

где р - количество пазов в магнитном сердечнике статора, εэ, εк, εв - диэлектрические проницаемости эмали, корпусной изоляции, воздуха соответственно, ε0=8,854187817·10-12 - электрическая постоянная; Св12, Св13, Св23 - суммарные емкости воздушных слоев 9 и 10 (фиг.2) двух фаз 1-2, 1-3, 2-3 соответственно. Подставив выражения (18), (19), (20), (21), (22) в формулы (15), (16), (17) и учитывая, что диэлектрическая проницаемость воздуха εв=1, можно записать

1 С д п 12 = 3 d э 2 р ε э ε 0 S + 3 d к 2 р ε 0 ε к S + 3 d 12 2 р ε 0 S ,                                    ( 23 )

1 С д п 13 = 3 d э 2 р ε 0 ε э S + 3 d к 2 р ε 0 ε к S + 3 d 13 2 р ε 0 S ,                                     ( 24 )

1 С д п 23 = 3 d э 2 р ε 0 ε э S + 3 d к 2 р ε 0 ε к S + 3 d 23 2 ε 0 р S ,                                     ( 25 )

Из выражений (23), (24) и (25) следует

d 12 = 2 3 р S ε 0 ( 1 С д п 12 3 d э 2 р ε 0 ε э S 3 d к 2 р ε 0 ε к S ) = = 2 3 ε 0 р S С д п 12 d э ε э d к ε к = 2 р S ε 0 ε э ε к 3 С д п 12 ( d э ε к + d к ε э ) 3 ε э ε к С д п 12 ,              ( 26 )

d 13 = 2 р S ε 0 ε э ε к 3 С д п 13 ( d э ε к + d к ε э ) 3 ε э ε к С д п 13                ( 27 )

d 23 = 2 р S ε 0 ε э ε к 3 С д п 23 ( d э ε к + d к ε э ) 3 ε э ε к С д п 23                  ( 28 )

После пропитки и сушки обмоток объемы полостей 12 и 13 частично заполняются пропиточным составом, имеющим диэлектрическую проницаемость εп (см. фиг.3,Б). Так как пропиточный состав не полностью заполняет объемы полостей 12 и 13, а статистически распределен по полостям 12 и 13, то в упомянутых полостях образуется бинарная статистическая смесь, состоящая из частиц пропиточного состава и частиц воздуха, с диэлектрической проницаемостью ε*. Диэлектрическая проницаемость бинарной смеси ε* подчиняется распределению Лихтенеккера-Ротера [3], в соответствии с которым можно записать для фаз 1-2 в виде

ln ε 12 * = V п 12 V 12 ln ε п + V 12 V п 12 V 12 ln ε в           ( 29 )

где Vп12 - объем, который занимают частицы пропиточного состава в слоях 11 и 12,

V12-Vп12 - объем воздуха в слоях 12 и 13, ε12* - диэлектрическая проницаемость статистической смеси в слоях 12 и 13 фаз 1-2.

Учитывая, что диэлектрическая проницаемость воздуха εв=1, a lnεв=0, выражение (29) можно записать в виде

ln ε 12 * = V п 12 V 12 ln ε п = = К п р 12 ln ε п                 ( 30 )

В выражении (30) отношение V п 12 V 12 есть не что иное, как коэффициент пропитки Kпр12 объемов полостей фаз 1-2, характеризующий степень заполнения объема полостей V12 пропиточным составом.

Аналогичные выражения можно записать для слоев 12 и 13 (фиг.3,Б) для фаз 1-3 и 2-3

ln ε 13 * = V п 13 V 13 ln ε п = К п р 13 ln ε п                    ( 31 )

ln ε 23 * = V п 23 V 23 ln ε п = К п р 23 ln ε п                    ( 32 )

Если после пропитки и сушки измерить емкости Cпп12, Cпп13, Спп23 двух соответствующих фаз относительно корпуса и учесть, что пропиточный состав, диэлектрическая проницаемость которого εп, статистически распределился по объемам зазоров d12, d13, d23, то емкости слоев 12 и 13 в соответствующих двух фазах можно представить выражениями

С п 12 = 2 3 р × ε 0 ε * 12 S d в 12                                         ( 33 )

С п 13 = 2 3 р × ε 0 ε * 13 S d в 13                              ( 34 )

С п 23 = 2 3 р × ε 0 ε * 23 S d в 23                            ( 35 )

Подставив в уравнения (15), (16) и (17) вместо Св12, Св13, Св23 величины Cп12, Cп13, Сп23, можно записать выражения для емкостей Cпп12, Cпп13, Спп23

1 С п п 12 = 3 d э 2 р ε 0 ε э S + 3 d к 2 р ε 0 ε к S + 3 d 12 2 р ε 0 ε * 12 S ,             ( 36 )

1 С п п 13 = 3 d э 2 р ε 0 ε э S + 3 d к 2 р ε 0 ε к S + 3 d 13 2 р ε 0 ε * 13 S ,              ( 37 )

1 С п п 23 = 3 d э 2 р ε 0 ε э S + 3 d к 2 р ε 0 ε к S + 3 d 23 2 р ε 0 ε * 23 S ,                ( 38 )

Из соотношений (36), (37), (38) выразим зазоры d12, d13, d23

d 12 = 2 3 р ε 0 ε * 12 S ( 1 С п п 12 3 d э 2 р ε 0 ε э S 3 d к 2 р ε 0 ε к S ) = ε 0 ε * 12 ( 2 3 р S С п п 12 d э ε 0 ε э d к ε 0 ε к ) = = ε * 12 [ 2 р S ε 0 ε э ε к 3 С п п 12 ( d э ε к + d к ε э ) 3 ε э ε к С п п 12 ] ,               ( 39 )

d 13 = ε * 12 [ 2 р S ε 0 ε э ε к 3 С п п 13 ( d э ε к + d к ε э ) 3 ε э ε к С п п 13 ]               ( 40 )

d 23 = ε * 12 [ 2 р S ε 0 ε э ε к 3 С п п 23 ( d э ε к + d к ε э ) 3 ε э ε к С п п 23 ]             ( 41 )

Так как после пропитки и сушки зазоры d12, d13, d23 в контролируемой обмотке не изменились, то можно приравнять правые части выражений (26), (27), (28) к правым частям соответствующих выражений (39), (40), (41), получим

ε * 12 [ 2 р S ε 0 ε э ε к 3 С п п 12 ( d э ε к + d к ε э ) 3 ε э ε к С п п 12 ] = 2 р S ε 0 ε э ε к 3 С д п 12 ( d э ε к + d к ε э ) 3 ε э ε к С д п 12       ( 42 )

ε * 12 [ 2 р S ε 0 ε э ε к 3 С п п 13 ( d э ε к + d к ε э ) 3 ε э ε к С п п 13 ] = 2 р S ε 0 ε э ε к 3 С д п 13 ( d э ε к + d к ε э ) 3 ε э ε к С д п 13            ( 43 )

ε * 12 [ 2 р S ε 0 ε э ε к 3 С п п 23 ( d э ε к + d к ε э ) 3 ε э ε к С п п 23 ] = 2 р S ε 0 ε э ε к 3 С д п 23 ( d э ε к + d к ε э ) 3 ε э ε к С д п 23          ( 44 )

Из соотношений (42), (43), (44) выразим ε 12 * , ε 13 * , ε 23 * и, преобразовав полученные выражения, запишем

ε 12 * = С п п 12 ( С э к в С д п 12 ) С д п 12 ( С э к в С д п 12 )                                   ( 45 )

ε 13 * = С п п 13 ( С э к в С д п 13 ) С д п 13 ( С э к в С п п 13 )                                ( 46 )

ε 23 * = С п п 23 ( С э к в С д п 23 ) С д п 23 ( С э к в С п п 23 )                                   ( 47 )

где С э к в = 2 р S ε 0 ε э ε к 3 ( d э ε к + d к ε э )      ( 48 ) - эквивалентная емкость последовательно соединенных емкостей эмали и корпусной изоляции.

Выразим из соотношений (30), (31), (32) коэффициенты пропитки Kпр12, Kпр13, Кпр13 соответствующих фаз 1-2, 1-3, 1 и 2-3, получим

К п р 12 = ln ε 12 * ln ε п                                                      ( 49 )

К п р 13 = ln ε 13 * ln ε п                                                      ( 50 )

К п р 23 = ln ε 23 * ln ε п                                                      ( 51 )

Подставив в выражения (49), (50) и (51) значения ε 12 * , ε 13 * , ε 23 * из соотношений (45), (46), (47), получим

К п р 12 = 1 ln ε п с × ln С п п 12 ( С э к в С д п 12 ) С д п 12 ( С э к в С п п 12 )                           ( 52 )

К п р 13 = 1 ln ε п с × ln С п п 13 ( С э к в С д п 13 ) С д п 13 ( С э к в С п п 13 )                              ( 53 )

К п р 23 = 1 ln ε п с × ln С п п 23 ( С э к в С д п 23 ) С д п 23 ( С э к в С п п 23 )                           ( 54 )

Коэффициенты пропитки Кпр12, Kпр13, Кпр23 являются среднестатистической характеристикой пропитки соответствующих двух фаз, и их величины можно определить из выражений

К п р 12 = К п р 1 + К п р 2 2                                 ( 55 )

К п р 13 = К п р 1 + К п р 3 2                                  ( 56 )

К п р 23 = К п р 3 + К п р 2 2                                ( 57 )

где Kпр1, Кпр2, Кпр3 - коэффициенты пропитки фаз 1, 2 и 3.

Решив систему уравнений (55), (56), (57), относительно коэффициентов пропитки фаз Кпр1, Кпр2, Кпр3, получим

К п р 1 = К п р 12 К п р 23 + К п р 13                             ( 58 )

К п р 2 = К п р 23 К п р 13 + К п р 12                              ( 59 )

К п р 3 = К п р 13 К п р 12 + К п р 23                              ( 60 )

где Сдп, Спп - емкости обмотки относительно корпуса соответственно до пропитки Пример. Производилось определение коэффициентов пропитки обмоток статоров асинхронного электрического двигателя типа 4А112М по способу-прототипу и по заявляемому способу. По способу-прототипу до пропитки и после пропитки измерялись емкости всех трех фаз обмоток, соединенных в звезду, относительно магнитного сердечника статора на частоте электрического поля f=1000 Гц мостом Е2-12. Результаты измерений емкостей произвольно выбранных обмоток до пропитки и после нее приведены в таблице 1.

Таблица 1
№ пп 1 2 3 4 5 6 7 8 9 10
Сдп, пФ 2430 2475 2480 2425 2470 2440 2450 2450 2470 2490
Спп, пФ 4009 4087 3720 3370 3581 3782 2480 3381 3754 3361
Кпр 1 0,56 0,44 0,35 0,40 0,46 0,36 0,34 0,45 0,31

Произвольно выбранный статор №1 с С д п * = 2430  пФ погружали в бинарную жидкость диоксан-вода с диэлектрической проницаемостью ε1=2,23. У погруженной в жидкость обмотки измеряется емкость относительно статора. Она равна С п п * = 4009 . По результатам измерений обмотки №1 определяют отношение

С п п * / С д п * = 1,65

Обмотки статоров пропитываются лаком КП-34 струйно-капельным методом. После сушки обмоток при температуре полимеризации компаунда КП-34, равной 160°С, измерялись емкости обмоток относительно статора Спп. По результатам измерений обмотки №1 статора и контролируемых обмоток статоров определяют коэффициенты пропитки обмоток по выражению (2)

К п р = 1 ln ε 2 ln ε 1 С п п ( С п п * С д п * 1 ) С п п * С д п * С д п ( ε 1 1 ) С п п ( ε 1 С п п * С д п * )

Диэлектрическая проницаемость отвержденного пропиточного компаунда КП-34 равняется ε2п=4,2.

Одновременно с этим по заявляемому способу определяли у тех же обмоток коэффициенты пропитки соответственных двух фаз Kпр12, Kпр13, Кпр23 по формулам (52), (53), (54), а затем коэффициенты пропитки каждой из фаз Kпр1, Kпр2, Кпр3, используя выражения (58), (59) и (60).

Предварительно по выражению (6) определяли величину Сэкв, исходя из следующих обмоточных данных:

р=36; S=0,5375×10-2 м2; dэ=0,7×10-3 м; dк=1×10-3 м; εэ=3,85; εк=5,92

С э к в = 2 р S ε 0 ε э ε к 3 ( d э ε к + d к ε э ) = 2 × 36 × 1,402 × 10 2 × 8,854187817 10 2 × 3,85 × 5,92 23,982 × 10 3 = 8493,78   пФ

Экспериментальные значения, необходимые для определения коэффициентов пропитки, и результаты контроля по заявляемому способу внесены в таблицу 2.

Таблица 2
№ пп 1 2 3 4 5 6 7 8 9 10
Сдп12,пФ 1600 1620 1660 1590 1630 1600 1590 1670 1610 1650
Сдп13, пФ 1590 1650 1640 1630 1620 1630 1630 1600 1650 1640
Сдп23, пФ 1620 1640 1625 1610 1600 1670 1640 1650 1680 1650
Спп12, пФ 2897 2557 2642 2771 2372 2773 2173 2626 2649 2364
Спп13, пФ 2882 2972 2615 2653 2433 2679 2394 2558 2681 2514
Спп23, пФ 2926 3356 2542 2513 2773 2657 2639 2740 2589 2446
Кпр12 1 0,42 0,43 0,47 0,34 0,51 0,28 0,42 0,46 0,33
Кпр13 1 0,56 0,43 0,45 0,37 0,46 0,35 0,45 0,45 0,39
Кпр23 1 0,7 0,41 0,42 0,51 0,43 0,44 0,47 0,40 0,36
Кпр1 1 0,28 0,45 0,50 0,20 0,54 0,19 0,40 0,51 0,36
Кпр2 1 0,56 0,41 0,44 0,48 0,48 0,37 0,44 0,41 0,30
Кпр3 1 0,84 0,41 0,40 0,54 0,38 0,51 0,50 0,39 0,42

Из сравнения результатов, приведенных в таблице 1, и результатов, приведенных в таблице 2, можно сделать следующие выводы.

Имитация 100% пропитки путем погружения обмотки №1 в невязкую жидкость как по способу-прототипу, так и по заявляемому способу дает одинаковые результаты, показывающие, что в обмотке №1 действительно произошло полное заполнение пор и капилляров пропиточной жидкостью. Как следует из таблицы 1, обмотка №2 имеет наибольший коэффициент пропитки среди всех обмоток партии, который в соответствии со способом-прототипом равен 0,56.

В то же время по заявляемому способу обмотка №2 имеет самую большую неравномерность распределения пропиточного состава и в фазе 1 наблюдается один из самых низких коэффициентов пропитки, равный 0,28. Так как надежность обмотки определяется самым слабым звеном, то низкий коэффициент пропитки 0,28 в фазе 1 обмотки указывает на низкое качество обмотки. Наиболее качественно пропитаны, как это следует из таблицы 2, обмотки №3, №4 и №8, так как пропиточный состав в этих обмотках равномерно распределился по фазам обмотки, а коэффициенты пропитки фаз этих обмоток имеют высокие значения.

Таким образом, заявляемый способ по сравнению со способом-прототипом имеет следующие преимущества.

В заявляемом способе устранены присутствующие в способе-прототипе операции: погружение одной из партий контролируемых обмоток в невязкую жидкость с известной диэлектрической проницаемостью, измерение у этой обмотки емкости относительно корпуса перед погружением и после него, и процедура вычисления отношения емкостей у погруженной обмотки к емкости той же обмотки до погружения, что упрощает заявляемый способ.

В заявляемом способе стало возможным определять не только усредненный коэффициент пропитки, но и распределение пропиточного состава по фазам обмотки, что по сравнению со способом-прототипом существенно повышает информативность и точность контроля.

Список использованной литературы

1. Кондратьева Н.Г. и др. Оценка возможности использования электрической емкости обмотки статоров для контроля качества пропитки статоров электродвигателей низкого напряжения. - Электротехническая промышленность. Серия "Электрические машины", вып. 5/75, 1977.

2. А.с. №1241361. Способ определения коэффициента пропитки обмоток электрических машин / Г.В.Смирнов, Г.Г.Зиновьев. - Опубл. 30.06.86. Бюл. №24 - прототип.

3. Смирнов Г.В. Надежность изоляции обмоток электротехнических изделий. - Томск: Изд-во Том. ун-та. 1990. - стр.131.

Способ определения коэффициента пропитки обмоток электрических машин, характеризующего степень заполнения пропиточным составом полостей обмотки, при котором у каждой обмотки из данной партии измеряют электрические параметры до пропитки и после пропитки и сушки, отличающийся тем, что в качестве электрических параметров выбраны емкости двух фаз обмотки, соединенной в звезду, которые поочередно измеряют до пропитки Сдп12, Сдп13, Сдп23 и после пропитки Спп12, Спп13, Спп23 относительно корпуса, после чего по результатам измерений определяют коэффициент пропитки каждых двух фаз Кпр12, Кпр13пр23 по формулам
К п р 12 = 1 ln ε п с × ln С п п 12 ( С э к в С д п 12 ) С д п 12 ( С э к в С п п 12 ) ,
К п р 13 = 1 ln ε п с × ln С п п 13 ( С э к в С д п 13 ) С д п 13 ( С э к в С п п 13 ) ,
К п р 23 = 1 ln ε п с × ln С п п 23 ( С э к в С д п 23 ) С д п 23 ( С э к в С п п 23 ) ,
где С э к в = 2 р S ε 0 ε э ε к 3 ( d э ε к + d к ε э ) - эквивалентная емкость последовательно соединенных емкостей эмали и корпусной изоляции двух фаз обмотки, р - количество пазов в магнитном сердечнике; S - площадь паза; ε0=8,854187·10-12 - электрическая постоянная; εэ - диэлектрическая проницаемость эмалевой пленки провода обмотки; εк - диэлектрическая проницаемость корпусной изоляции; dэ - толщина эмалевой изоляции провода; dк - толщина корпусной изоляции провода, после чего определяют коэффициенты пропитки каждой фазы обмотки по формулам
Кпр1пр12пр23пр13,
Кпр2пр23пр13пр12,
Кпр3пр13пр12пр23,
где Кпр1, Кпр2, Кпр3 - коэффициенты пропитки 1-й, 2-й, 3-й фазы соответственно.



 

Похожие патенты:

Изобретение относится к электротехнике и может быть использовано, например, в производстве статоров электрических машин. Способ пропитки многовитковой обмотки электрической машины заключается в подаче на лобовые части обмотки тонкой струи пропиточного состава из сопла на нагретую лобовую часть обмотки и во вращении струи вдоль лобовой части обмотки.

Изобретение относится к электромашиностроению и может быть использовано при изготовлении обмоток статоров электрических машин, трансформаторов, дросселей. Способ заключается в том, что пропиточный состав из емкости подают в виде вращающейся вдоль лобовых частей обмотки струи, при этом струю пропиточного состава заряжают электростатическим зарядом путем пропускания ее вдоль поверхности высоковольтного электрода, заземляют провод обмотки, а вращение струи осуществляют путем пропускания ее через индуктор, создающий вращающееся магнитное поле.
Изобретение относится к области электротехники, а именно к технологии изготовления электрических машин, и касается к способа изготовления обмоток электрических машин постоянного тока тягового электродвигателя.
Изобретение относится к способу изготовления изоляции обмоток электрических машин. Способ изготовления заключается в том, что вначале осуществляют пропитку стеклослюдоленты первым компаундом.

Изобретение относится к области электротехники и может использоваться, в частности, для контроля качества пропитки изоляционным составом обмоток электродвигателей, катушек трансформаторов и дросселей.

Изобретение относится к области электротехники и может быть использовано преимущественно при техническом обслуживании и ремонте электрических машин и аппаратов.
Изобретение относится к области электротехники и может быть использовано при пропитке изоляции обмоток электрических машин. .

Изобретение относится к области электротехники и может быть использовано при пропитке изоляции обмоток электрических машин. .

Изобретение относится к области электротехники и может быть использовано при техническом обслуживании и ремонте электрических машин. .

Изобретение относится к электротехнике, к корабельному электромашиностроению, в частности к погружным электрическим машинам, работающим в морской воде. .

Изобретение относится к области электротехники и электромашиностроения, в частности, к технологии электрических машин, например обмоток вращающихся электрических машин тягового подвижного состава. Способ пропитки изоляции лобовых частей обмоток вращающихся электрических машин состоит из трех последовательных этапов: 1) удаление влаги инфракрасным (ИК) нагревом из изоляции лобовой части перед пропиткой с предельно допустимой температурой для данного класса изоляции; 2) нанесение на лобовую часть пропиточной смеси при помощи автоматических распылителей высокого давления; 3) транспортировку пропиточной смеси вглубь изоляции обмотки при помощи коротковолновых и средневолновых импульсных керамических преобразователей ИК-излучения. При этом удаление влаги из изоляции лобовой части обмотки перед ее пропиткой и транспортировку пропиточной смеси вглубь изоляции обмотки осуществляют в спектрально-осциллирующих режимах энергоподвода с циклическим чередованием коротковолнового и средневолнового ИК-излучения. Технический результат - повышение качества процесса пропитки в несколько раз при одновременном сокращении времени пропитки в 7-10 раз и обеспечении 2- или 3-кратного эффекта от ресурсоэнергосбережения. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области электротехники и может быть использовано, например, в производстве статоров электрических машин. Согласно данному изобретению после разогрева обмотки перед пропиткой до заданной температуры подают в нее импульсы тока, амплитуда которых лежит в диапазоне (10-50)А, а длительность (0,5-10) с, при этом частота следования импульсов тока лежит в диапазоне (5-10) Гц. Одновременно с подачей упомянутых импульсов тока в обмотку подключают к магнитному сердечнику обмотки инфразвуковой излучатель. При этом изменяют частоту звуковых колебаний инфразвукового излучателя непрерывно и циклически в диапазоне частот от 0,5 кГц до 10 кГц и обратно. По завершении пропитки отключают от магнитного сердечника инфразвуковой генератор, отключают от обмотки источник импульсного тока, подключают к обмотке греющий постоянный или переменный ток, при помощи которого разогревают пропитанную обмотку до температуры полимеризации пропиточного состава, и сушат обмотку до полного отверждения в ней пропиточного состава. Технический результат, достигаемый при осуществлении данного способа, состоит в сокращении времени пропитки в 1,8 раза и в повышении коэффициента пропитки в 1,8 раза при одновременном снижении в три раза разброса коэффициентов пропитки от обмотки к обмотке. 2 ил.

Изобретение относится к области электротехники, в частности к контролю качества пропитанной изоляции электротехнических изделий, и может быть использовано для контроля процесса отверждения пропитанной изоляции обмоток электротехнических изделий. Согласно изобретению, предварительно подготавливают партию образцов пропиточного состава, с различными, отличающимися от образца к образцу, степенями высушенности, и у каждого из упомянутых образцов снимают зависимость диэлектрической проницаемости от частоты электромагнитного поля. По снятым зависимостям выбирают две частоты измерения, одна из которых f1 лежит в дисперсионной области не отвержденного изоляционного пропиточного состава, а другая - f2 в оптической области не отвержденного изоляционного пропиточного состава. Затем, используя снятые для образцов частотные зависимости, строят график зависимости степени высушенности пропиточного состава от отношения диэлектрических проницаемостей lg ε п с ( f 2 ) lg ε п с ( f 1 ) , где εпс(f1) εпс(f2) - диэлектрические проницаемости пропиточного состава, измеренные на частотах f1 и f2 электромагнитного поля соответственно. После этого у каждой из контролируемых обмоток измеряют на выбранных двух частотах емкости относительно корпуса до пропитки Cдп(f1) и Cдп(f2), и емкости у тех же обмоток после их пропитки и сушки Cпп(f1) и Cпп(f2), и по результатам измерений вычисляют отношение lgε пс ( f 2 ) lgε пс ( f 1 ) = lnC пп (f 2 ) + ln[C экв ( f 2 ) − C дп ( f 2 ) ] − lnC дп ( f 2 ) − ln[C экв ( f 2 ) − C пп ( f 2 ) ] lnC пп (f 1 ) + ln[C экв ( f 1 ) − C дп ( f 1 ) ] − lnC дп ( f 1 ) − ln[C экв ( f 1 ) − C пп ( f 1 ) ] , где C экв ( f 1 ) = 2pSε 0 ε э ( f 1 ) ε к ( f 1 ) 3[d э ε к ( f 1 ) + d к ε э ( f 1 ) , C экв ( f 2 ) = 2pSε 0 ε э ( f 2 ) ε к ( f 2 ) 3[d э ε к ( f 2 ) + d к ε э ( f 2 ) - эквивалентные емкости последовательно соединенных емкостей эмали и корпусной изоляции контролируемой обмотки на частотах f1 и f2 электромагнитного поля соответственно, p - количество пазов в магнитном сердечнике, в которые всыпана контролируемая часть обмотки; S - площадь паза; ε0=8,854187·10-12 - электрическая постоянная; εэ(f1), εэ(f2), - диэлектрические проницаемости эмалевой пленки провода обмотки на частотах f1 и f2 электромагнитного поля соответственно; εк(f1), εк(f2) - диэлектрические проницаемости корпусной изоляции на частотах f1 и f2 электромагнитного поля, соответственно; dэ - толщина эмалевой изоляции провода; dк - толщина корпусной изоляции, после чего по вычисленной по результатам измерения величине lg ε п с ( f 2 ) lg ε п с ( f 1 ) определяют из графика зависимости степени высушенности пропиточного состава степень высушенности пропиточного состава в каждой контролируемой обмотке. Предлагаемый способ обеспечивает достижение технического результата, состоящего в исключении необходимости измерения собственной емкости обмоток на трех частотах с применением эталонной индуктивности при одновременном обеспечении существенного упрощения его (способа) осуществления (реализации) за счет исключения необходимости изготовления и использования для контроля таких элементов, как стабилизатор тока, измеритель времени разогрева и измеритель приращения температуры обмоток в процессе их разогрева. 1 табл., 4 ил.

Изобретение относится к области электротехники, а именно к неразрушающим способам контроля качества технологических процессов производства электротехнических изделий, в частности пропитки обмоток электрических машин. Согласно предлагаемому способу определения коэффициента пропитки отверждаемым полимерным составом обмоток электрических машин у каждой обмотки из данной партии до пропитки и после пропитки полимерным составом и сушки измеряют емкости Скдп и Скпп относительно корпуса. Затем после пропитки и сушки обмоток измеряют температуру у каждой обмотки Т1пп и через провод каждой контролируемой обмотки пропускают постоянный стабилизированный ток I0, величину которого выбирают в зависимости от площади сечения S жилы провода обмотки в интервале предельно допустимых для материала провода обмотки плотностей тока от jmin до jmax в диапазоне значений jminS ≤ I0 ≤ jmaxS. При этом упомянутый выбранный ток I0 пропускают через обмотку в течение определенного времени t0 и измеряют падение напряжения на обмотке U1п в момент подвода к ней стабилизированного тока и падение напряжения на обмотке U2п в момент упомянутого времени t0. После упомянутых выше операций у каждой контролируемой обмотки по результатам измерений определяют коэффициент пропитки прикорпусных полостей Кки обмотки и коэффициент пропитки Кмв межвитковых полостей обмотки по формулам К к и = 1 ln ε п с × ln С к п п ( С э к в − С к д п ) С к д п ( С э к в − С к п п ) ,                                        ( 4 ) К м в = 1 m 0 м в с с { I 0 × t о [ U 1 п ( U 1 п + U 2 п ) α 2 ( U 2 п − U 1 п ) [ 1 + α ( Т 1 − 20 ] ] − [ 1 + α ( Т 1 − 20 ) ] B 2 U 1 п + B 1 } ,       ( 5 ) где С э к в = р S п ε 0 ε э ε к ( d э ε к + d к ε э ) - эквивалентная емкость последовательно соединенных емкостей эмали и корпусной изоляции обмотки; р - количество пазов в магнитном сердечнике, в которые всыпается контролируемая часть обмотки; Sп - площадь поверхности паза; ε0=8,854187·10-12 - электрическая постоянная; εэ - диэлектрическая проницаемость эмалевой пленки провода обмотки; εк - диэлектрическая проницаемость корпусной изоляции; dэ - толщина эмалевой изоляции провода; dк - толщина корпусной изоляции провода; cс - удельная теплоемкость высохшего пропиточного состава; m 0 м в = d c S c l w ( 1 − р 4 К з ) × р 2 − р S п 2 ε 0 ( С э к в − С д п С д п С э к в ) - предельная масса сухого пропиточного состава, которую можно разместить в межвитковых полостях обмотки при их 100% заполнении; dc - плотность высохшего пропиточного состава; Sс - площадь сечения паза; lw - длина витка обмотки; Кз - коэффициент заполнения паза; α - температурный коэффициент сопротивления провода обмотки; B1 = Сээм + Сэк - эквивалентная теплоемкость слоев теплоемкостей эмали С э э м = с э π ( D э 2 − D п р 2 ) 4 1 п р ρ э м и корпусной изоляции Сэк = Ски × П × dки × L × р × ски; сэ - удельная теплоемкость эмали; Dэ - диаметр эмалированного провода обмотки; Dпр - диаметр жилы провода обмотки; lпр - номинальная длина провода контролируемой части обмотки; ρэм - плотность эмали; ски - удельная теплоемкость корпусной изоляции; П - периметр паза; dки - толщина корпусной изоляции; L - длина паза; ρки - плотность корпусной изоляции; В 2 = с п р × ρ 2 0 × I 0 2 ρ п р l п р 2 - постоянный коэффициент; спр - удельная теплоемкость материала жилы провода обмотки; ρ20 - удельное сопротивление материала жилы провода обмотки при 20°С. Технический результат - упрощение способа за счет исключения необходимости у одной из произвольно выбранных обмоток измерять емкость относительно корпуса и собственную емкость до пропитки, затем погружать упомянутую обмотку в пропиточную жидкость с известной диэлектрической проницаемостью и вновь измерять емкость этой обмотки относительно корпуса и собственную емкость обмотки, не вынимая обмотку из пропиточной жидкости, а также исключения необходимости у каждой из контролируемых обмоток дважды измерять собственные емкости: до пропитки и после нее, повышение точности, так как значение коэффициента пропитки не зависит от взаимного расположения витков в пазу, а также повышение информативности контроля, так как данный способ позволяет определить, как пропиточный состав распределился внутри обмотки и каковы коэффициенты пропитки прикорпусных и межвитковых полостей обмоток. 1 табл., 2 ил.

Изобретение относится к области электротехники и электромашиностроения, в частности к производству и ремонту электрических машин, например обмоток тяговых электрических машин (ТЭМ) локомотивов и мотор-вагонного подвижного состава. Согласно предлагаемому селективному способу сушки увлажненной и пропитанной изоляции сушка изоляции обмоток равномерно вращающегося якоря ТЭМ осуществляется длинноволновыми импульсными керамическими инфракрасными (ИК) излучателями, расположенными по длине активной части якоря, а также со стороны его лобовой части. Предлагаемое устройство для реализации данного способа состоит из станины (1) с пристроенным частотно-регулируемым асинхронным электроприводом (3) и стойки (2), на которой располагаются длинноволновые импульсные керамические ИК-излучатели. Якорь ТЭМ приводится во вращение , и одновременно увлажненная или пропитанная лаком (компаундом) изоляция лобовой и активной частей обмотки якоря вращающейся ТЭМ нагревается до температуры 100 … 120° С при помощи указанных ИК-излучателей, что обеспечивает сушку изоляции. Технический результат, достигаемый при использовании предлагаемого изобретения, состоит в обеспечении равномерности нагрева изоляции обмоток по всей площади якоря, что повышает качество сушки изоляции обмоток якоря ТЭМ при одновременном сокращении энергозатрат и времени на технологический процесс сушки изоляции. 2 н. и 2 з.п. ф-лы, 2 ил.
Изобретение относится к области электротехники и касается технологии изготовления обмоток электрических машин, преимущественно якорей тяговых электродвигателей - машин постоянного тока. Технический результат, достигаемый при использовании данного изобретения, состоит в повышении электрофизических характеристик изоляции, водо- и влагостойкости обмоток. При пропитке компаундом, вязкость которого составляет 70-100 секунд по В3-4, на бандаже возникают вмятины и неровности. Это явление связано с тем, что при глубоком вакууме ≤1 мбар после вакуумирования, заполнения компаундом и создания избыточного давления, компаунд не успевает проникнуть в обмотку под бандаж, в результате чего создается перепад давления между внешней поверхностью бандажа и внутренней обмоткой, происходит доопрессовка вылетов катушек, что влечет возникновение вмятин и неровностей на поверхности бандажа. Неровности на бандаже недопустимы, так как они являются местом скопления пыли, грязи, влаги и т.п. Согласно предлагаемому способу разогретый до температуры пропитки якорь помещают в пропиточный котел, вакуумируют, затем под вакуумом подают пропиточный компаунд. При этом согласно данному изобретению для устранения перечисленных недостатков и достижения указанного технического результата подачу давления осуществляют постепенно до 6-8 бар в течение не менее 15 минут.1 з.п. ф-лы,1 табл.

Композиция для получения покрытия для снижения механических потерь высокоскоростного ротора электрической машины относится к гибридным органо-неорганическим нанокомпозиционным покрытиям, способным снижать механические потери высокоскоростного ротора электрической машины в охлаждающей газообразной среде. Композиция включает золь с силикатной составляющей на основе водно-спиртового раствора тетраэтоксилана или метилтриэтоксилана и дополнительно содержит модифицирующую добавку в виде соединения, обладающего пиро- и/или пьезоэлектрическими свойствами с размером частиц и их агрегатов 50-100 нм, при следующем соотношении компонентов (вес.%): золь с силикатной составляющей - 96-99; модифицирующая добавка - 1-4. Использование в составе золя метилтриэтоксилана обеспечивает адгезию с нержавеющей сталью без высокотемпературной обработки и 11-12 класс шероховатости поверхности. Использование в качестве модифицирующей добавки кристаллов пьезоэлектрика турмалина в виде спиртовой суспензии или порошка кристалла обеспечивает антифрикционные свойства покрытия. 1 ил., 3 пр.
Изобретение относится к электротехнике и может быть использовано преимущественно при техническом обслуживании и ремонте электрических машин. Техническим результатом является создание наиболее оптимального режима сушки изоляции, обеспечивающего увеличение ресурса электрических машин. Способ сушки изоляции электрических машин включает пять ступеней. На первой ступени поверхностные слои изоляции сушат методом электроосмотической сушки изоляции. На второй ступени поверхностные слои изоляции сушат воздушным потоком. На третьей ступени сушку осуществляют воздушным потоком без подогрева. На четвертой ступени сушка осуществляется на открытом воздухе во время сборки электрической машины. На пятой ступени сушка осуществляется путем пропускании электрического тока через обмотку электрической машины.

Изобретение относится к электротехнике и может быть использовано преимущественно при техническом обслуживании и ремонте тяговых электрических машин. Анализ статистических данных о надежности узлов и деталей оборудования электровозов в условиях эксплуатации показал, что большая доля отказов приходится на тяговые электрические машины из-за выхода из строя по пробою изоляции. Технический результат заключается в проведении технологического процесса сушки изоляции обмоток тяговых электрических машин ступенями и обеспечении своевременного отключения системы нагрева и подачи воздуха в корпус тяговой электрической машины. Установка для сушки изоляции обмотки тяговых электрических машин содержит узел для нагрева воздуха, узел контроля за состоянием изоляции по ее сопротивлению и узел для подачи нагретого воздуха. Узел для нагрева воздуха снабжен трубчатыми электронагревателями, управляемыми программируемым терморегулятором с контуром обратной связи по датчику температуры, подключенным к сети. Узел контроля за состоянием изоляции по ее сопротивлению содержит мегаомметр, подключенный измерительными проводами к обмотке тяговой электрической машины, с подачей сигнала на терморегулятор для переключения программы и ее шага. Узел подачи нагретого воздуха снабжен электродвигателем с вентилятором, который управляется программируемым преобразователем частоты с контуром обратной связи по датчику температуры, гибкой трубой, на конце которой устанавливается насадка с отражателем. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области электротехники, а именно к сушке обмоток, например, электрических машин. Технический результат - упрощение сушильного устройства обмоток, снижение веса, возможность использования в малых ремонтных мастерских, снижение трудоемкости процесса усушки, экономия электроэнергии при сушке. В способе сушки обмотки электрической машины нагревают обмотки источником токов высокой частоты с подключенным к нему нагревателем, выполненным в виде индуктора, а питание и управление источника токов высокой частоты осуществляют силовым блоком с системой управления индуктором. Индуктор выполняют в виде спирали и в процессе сушки вводят внутрь электродвигателя соосно с отклонением ±1.5 мм, располагая спираль индуктора в осевом направлении равномерно относительно статора электродвигателя таким образом, чтобы магнитные силовые линии, создаваемые индуктором, были направлены перпендикулярно шихтовке магнитопровода; затем через силовой блок с системой управления включают источник токов высокой частоты, прогревают обмотку статора до требуемой температуры и удерживают до состояния усушки лака. После окончания прогрева источник токов отключают, индуктор извлекают из электродвигателя. 1 ил.
Наверх