Способ получения 1,3-диметиладамантан-5-ола

Изобретение относится к улучшенному способу получения 1,3-диметиладамантан-5-ола из 1,3-диметиладамантана. При этом 1,3-диметиладамантан взаимодействует с бромтрихлорметаном и водой под действием солей и комплексов марганца, выбранных из ряда Mn(CH3CO2)2×4H2O, Mn2(СО)10, Mn(асас)3, MnBr2, активированных пиридином или алкилзамещенными пиридинами при мольном соотношении [1,3-диметиладамантан]:[CBrCl3]:[комплекс марганца]:[Н2О]:[R-Py]=100:125÷150:5:6000÷10000:200÷400, при температуре 130-150°С в течение 5-6 часов. Способ позволяет проводить процесс в отсутствие высокореакционных окислителей - агрессивных концентрированных неорганических кислот, сократить количество отходов, а также упростить технологию за счет использования доступных реагентов и уменьшения энергозатрат. 1 табл., 1 пр.

 

Изобретение относится к области органической химии, в частности к способу получения 1,3-диметиладамантан-5-ола.

1,3-Диметиладамантан-5-ол (1) находит применение в синтезе ряда труднодоступных производных адамантана. Так, 1,3-диметиладамантан-5-ол (1) является исходным соединением для синтеза 1-амино-3,5-диметиладамантана - действующего вещества известного лекарственного препарата «мемантина». «Мемантин» - уникальный фармацевтический препарат, эффективный для лечения болезни Альцгеймера, а также других нарушений ЦНС на ранних стадиях, способствует нормализации психической активности (улучшает память и способность к концентрации внимания, уменьшает утомляемость, симптомы депрессии и др.) и координирует двигательные нарушения. (G.L.Wenk, S.L.Mobley. Eur. J. Pharm. Environ. V.293, p.267-270 (1995) [1]; L.Tursi, K.J.Retting, P.A.Loschman, H.Wachtel. Nature, V.349, p.414-418 (1991) [2]; К.Gerzon, E.V.Krumkalns, R.L.Brindle, F.J.Marshall, M.A.Root. J. Med. Chem. V.6, p.760-763 (1963) [3]; P.Kovacic, P.D.Roskos. J. Am. Chem. Soc. V.91, №23, p.6457-6460 (1969) [4]; A.Scherin, В.Homburg, D.Peteri, H.Markobel. US Patent 4,122,193 (1978) [5]).

Большинство методов получения 1,3-диметиладамантан-5-ола (1) основано на реакции бромирования 1,3-диметиладамантана (2) и кислотного гидролиза образовавшегося 1-бром-3,5-диметиладамантана (3) в присутствии неорганических и органических кислот.

1-Бром-3,5-диметиладамантана (3) получают взаимодействием 1,3-диметиладамантана (2) с жидким бромом. Реакцию ведут при комнатной температуре в течение 12 часов с использованием 2-3-кратного избытка жидкого брома. Дальнейший гидролиз бромпроизводного (3) ледяной водой приводит к спирту (1) с высоким выходом (H.Ren, L.Lu, X.Wan, Y.Ji. Пат. Китай 101293814 (2008) [6]; N.Periyandi, S.Kilaru, R.Thennati. WO 062724 A2 (14.07.2005) [7]).

Недостатки метода:

1. Необходимость использования большого избытка жидкого брома.

2. Образование большого количества газообразного на первой стадии и водного раствора HBr после гидролиза.

Взаимодействием 1,3-диметиладамантана (2) с олеумом, взятым в количестве 103-108%, при 8-10°С в течение получаса получают сульфат, который подвергают гидролизу ледяной водой на протяжении 30 минут. Выход 1,3-диметиладамантан-5-ола (1) по данному методу составляет 72% (S.Taketani, H.Yamaguchi, Т.Hara, Т.Iwahama, S.Sakaguchi, Y.Ishii. Jpn. Patent 2000273059 (2000) [8]; R.E.Moore. US Patent 3,646,224 (29.02.1968) [9]).

Недостатки метода:

1. Использование стехиометрического количества 103-108% олеума.

2. При нейтрализации реакционной массы образуется большое количество неорганических отходов и сточных вод, которые необходимо утилизовать.

В работе [10] 1,3-диметиладамантан-5-ол (1) получен кипячением 1,3-диметиладамантана (2) (100 г) с бромом в 65% азотной кислоте (120 мл). Побочные продукты в количестве менее 10% были выделены кристаллизацией (J.Burkhard, J.Janku, L.Vodicka. Sbornik Vysoke Skoly Chemicko-Technologicke v Praze, D: Technologie Paliv. V.39, p.57-75 (1978) [10]).

Недостатки метода:

1. Использование стехиометрического количества HNO3.

2. Умеренный выход целевого продукта.

3. Необходимость утилизации кислых стоков.

4. Процесс требует сложного аппаратурного оформления, т.к. бром и образующийся бромоводород обладают высокой коррелирующей способностью.

В присутствии суперкислот FSO2OH-SbF5 (1:1) и HF-SbF5 из 1,3-диметиладамантана (2) генерируется адамантил-катион, последующая обработка которого водой приводит к 1,3-диметиладамантан-5-олу (1). Гидроксилирование осуществляли при комнатной температуре путем растворения соответствующего углеводорода в 20-кратном весовом избытке кислоты, выдерживания реакционной смеси в течение 10 минут и обработки льдом (G.A.Olah, J.J.Lucas. J. Am. Chem. Soc. №90, p.933 (1968) [11]; Б.М.Лерман, З.Я.Арефьева, Г.А.Толстиков. Ж. Орг. хим. Т.7, вып.5, с.1084 (1971) [12]).

Недостатки метода:

1. Использование агрессивной коррелирующей среды.

2. Большое количество неорганических отходов, образующихся при нейтрализации избытка суперкислот.

Комплекс N-гидроксифталимида (NHPI) с солями кобальта катализирует окисление 1,3-диметиладамантана (2) кислородом с образованием моно- и дигидроксипроизводных адамантана. Так, выдерживание 1,3-диметиладамантана (2) в присутствии NHPI (10 мол.%) и Со(асас)2 (0.5 мол.%) в уксусной кислоте при 75°С в течение 6 ч приводит к получению смеси продуктов: 1,3-диметиладамантан-5-ола (1) и 1,3-диметиладамантан-5,7-диола (4) с выходом 47 и 37% соответственно (Н.Takafumi, I.Takahiro, S.Satoshi, I.Yasutaka. J. Org. Chem. V.66, №19, p.6425-6431 (2001) [13]).

На основании сходства по трем признакам (исходный реагент - 1,3-диметиладамантан (2), использование катализатора и образование в результате реакции 1,3-диметиладамантан-5-ола (1)) за прототип взят метод окисления 1,3-диметиладамантана (2) кислородом под действием катализатора - комплекса N-гидроксифталимида с солями кобальта [13].

Прототип имеет следующие недостатки:

1. Образование большого количества отходов и сточных вод из-за использования избытка СН3СООН, которые необходимо утилизовать.

2. Низкий выход целевого продукта из-за неселективности процесса в результате образования побочного продукта - 1,3-диметиладамантан-5.7-диола (4).

Задачей настоящего изобретения является упрощение технологии получения 1,3-диметиладамантан-5-ола (1).

Авторами предлагается способ получения 1,3-диметиладамантан-5-ола (1), не имеющий указанных недостатков, присущих прототипу.

Сущность способа заключается во взаимодействии 1,3-диметиладамантана (2) с бромтрихлорметаном и водой под действием каталитической системы, состоящей из солей и комплексов марганца, таких как Mn(CH3CO2)2×4H2O, Mn2(СО)10, Mn(асас)3, MnBr2, активированных пиридином или алкилпиридинами (2-пиколин, 3-пиколин, 4-пиколин, 2,4-лутидин, 3,5-лутидин, дипиридил, 2-цианпиридин) при мольном соотношении [1,3-диметиладамантан]:[CBrCl3]:[комплекс марганца]:[H2O]:[R-Py]=100:125÷150:5:6000÷10000:200÷400, при температуре 130-150°С в течение 5-6 часов.

В оптимальных условиях в присутствии наиболее активной каталитической системы Mn(асас)3-пиридин единственным продуктом реакции является 1,3-диметиладамантан-5-ол (1), а конверсия 1,3-диметиладамантана (2) составляет 95-97%.

Существенные отличия предлагаемого способа от прототипа:

1. Для получения 1,3-диметиладамантан-5-ола (1) из 1,3-диметиладамантана (2) используется система CBrCl3-H2O-пиридин-Mn(асас)3.

Преимущества предлагаемого метода:

1. Доступность исходных реагентов: 1,3-диметиладамантана, CBrCl3 и H2O, пиридина.

2. Отсутствие высокореакционных окислителей - агрессивных концентрированных неорганических кислот (H2SO4) и неорганических отходов.

3. Удешевление себестоимости и упрощение технологии в целом за счет использования дешевых и доступных реагентов и уменьшения энерго- и трудозатрат.

Предлагаемый способ поясняется примерами.

Общая методика.

В микроавтоклав из нержавеющей стали (V=17 мл) или стеклянную ампулу (V=20 мл) (результаты параллельных опытов практически не отличаются) помещали 0.5 ммоля Mn(асас)3, 10 ммолей 1,3-диметиладамантана, 12.5-15 ммолей CBrCl3, 600-1000 ммолей воды (которая играет роль реагента и растворителя одновременно), 200-400 ммолей пиридина (служит ловушкой для брома и межфазным катализатором), автоклав герметично закрывали (ампулу запаивали) и нагревали при 130-150°С в течение 5-6 часов. После окончания реакции автоклав охлаждали до комнатной температуры, вскрывали, реакционную массу промывали водой и экстрагировали этилацетатом (5 мл × 3), растворитель отгоняли, остаток кристаллизовали из гексана. Выход 1,3-диметиладамантан-5-ол составил 65-79%.

Пример 1. В микроавтоклав (V=17 мл) помещали 0.18 г (0.5 ммоля) Mn(асас)3, 1.6 г (10 ммолей) 1,3-диметиладамантана, 1.25 мл (12.5 ммолей) CBrCl3, 10.8 мл (600 ммолей) воды, 1.6 мл (20 ммолей) пиридина, автоклав герметично закрывали и нагревали при 140°С в течение 5 часов. После окончания реакции автоклав охлаждали до комнатной температуры, вскрывали, после обработки реакционной массы, как указано выше, был выделен 1,3-диметиладамантан-5-ол (1) с выходом 79%.

Спектр ЯМР 1Н (CDCl3, δ, м.д.): 0.86-0.92 (м., 6Н, 2СН3), 1.23-1.4 (м., 8Н, Н2, Н6, Н9, Н10, 4СН2), 1.56-1.6 (м., 2Н, Н8, СН2), 1.96-1.98 (м., Н, Н7, СН), 2.17-2.19 (м., 2Н, Н4, СН2), 2.69 (с., 1Н, ОН). Спектр ЯМР 13С (CDCl3, δ, м.д.): 29.02 (С7), 29.98 (2СН3), 31.09 (С1, С3), 42.47 (С6, С9), 43.87 (С8), 50.48 (С4), 51.44 (С2, С10), 69.81 (С5). Найдено, %: С 79.91%, Н 11.15%, О 8,83%. С12Н20О. Вычислено, %: С 79.94, Н 11.18, О 8.87.

Другие примеры, подтверждающие способ, приведены в таблице 1.

Таблица 1
Результаты опытов по синтезу 1,3-диметиладамантан-5-ола (1) реакцией 1,3-диметиладамантана (2) с системой бромтрихлорметаном и водой под действием соединений марганца
№ п/п Мольное соотношение [Mn]:[1,3-Me2Ad]:[CBrCl3]:[H2O]:[RPy] Соединения марганца лиганд Температура, °С Время реакции, ч Конверсия, % Выход 1,3-диметил-адамантан-5-ола (1), %
1 5:100:125:6000:200 Mn(асас)3 пиридин 140 5 96 79
2 5:100:125:10000:400 -//- -//- 140 5 97 70
3 5:100:125:10000:200 -//- -//- 140 5 98 65
4 5:100:125:10000:200 Mn(асас)3 пиридин 150 6 88 50
5 5:100:125:6000:400 Mn2(СО)10 пиридин 140 5 74 43
6 5:100:125:6000:400 Mn(CH3CO2)2×4H2O 3-пиколин 140 5 83 35
7 5:100:125:6000:400 Mn2(СО)10 3-пиколин 140 5 97 52
8 5:100:125:6000:400 MnBr2 пиридин 140 5 87 41
9 5:100:125:6000:400 Mn(асас)3 2-пиколин 140 5 76 32
10 5:100:125:6000:400 Mn(асас)3 3-пиколин 140 5 97 66
11 5:100:125:6000:400 Mn(асас)3 4-пиколин 140 5 83 47
12 5:100:125:6000:400 -//- 2,4-лутидин 140 5 80 46
13 5:100:125:6000:400 -//- 3,5-лутидин 140 5 89 33
14 5:100:150:6000:200 Mn(асас)3 дипиридил 130 6 94 6
15 5:100:150:6000:200 -//- 2-циан-пиридин 130 6 96 10

Способ получения 1,3-диметиладамантан-5-ола (1)

из 1,3-диметиладамантана, отличающийся тем, что 1,3-диметиладамантан взаимодействует с бромтрихлорметаном и водой под действием солей и комплексов марганца, выбранных из ряда Mn(CH3CO2)2×4H2O, Mn2(СО)10, Mn(асас)3, MnBr2, активированных пиридином или алкилзамещенными пиридинами при мольном соотношении [1,3-диметиладамантан]:[CBrCl3]:[комплекс марганца]:[Н2О]:[R-Py]=100:125÷150:5:6000÷10000:200÷400, при температуре 130-150°С в течение 5-6 часов.



 

Похожие патенты:

Изобретение относится к способу получения экзо-2-норборнеола и его производных общей формулы которые могут применяться в качестве компонентов синтетических душистых веществ, в качестве исходных соединений для получения бициклических кетонов, а также в качестве лекарственных препаратов.

Изобретение относится к способу получения адамантанола-1, являющегося ценным компонентом смазочных масел, гидравлических и трансмиссионных жидкостей, а также исходным сырьем для получения некоторых лекарственных средств.

Изобретение относится к способу получения адамантанола-1 - ценного компонента смазочных масел, гидравлических и трансмиссионных жидкостей. .

Изобретение относится к способу получения соединения формулы 13 путем обработки соединения формулы алкилами или кислотой Льюиса в присутствии основания третичного амина, где Р2 означает водород или гидроксизащитную группу.

Изобретение относится к синтезу производных адамантана, которые находят применение в синтезе биологически активных соединений. .

Изобретение относится к синтезу функциональных производных адамантана, конкретно к способу получения 1-гидроксиадамантана, который может использоваться как полупродукт для получения биологически активных веществ, в частности, "ремантадина", и полимеров.

Изобретение относится к способам получения водорастворимых производных фуллеренов - смешанных фуллеренолов. .

Изобретение относится к электрокаталитическому способу получения углеводородов, в частности диенов, олефинов, алканов и спиртов, путем гальваностатического электролиза смеси 10-ундециленовой и уксусной кислот, которые частично нейтрализованы и находятся в виде соли.

Изобретение относится к способу получения соединения общей формулы (I), включающему стадии согласно следующей схеме: причем на отдельных стадиях: а1) соединение формулы (IX) превращают в соединение формулы (V) в присутствии фермента, выбранного из липазы В из Candida antarctica, b) соединение формулы (V) в присутствии кислотного катализатора посредством действия соединения, которое может образовывать защитную группу Z3, стабильную в щелочной среде и лабильную в кислой среде, превращают в соединение формулы (VIII) и с) соединение формулы (VIII) в присутствии нуклеофильного агента превращают в соединение формулы (II); d) соединение формулы (II) в присутствии основания В1 превращают посредством действия соединения формулы (VI) в соединение формулы (IIIа); е) соединение формулы (IIIа) превращают в соединение формулы (IVa), причем соответствующее превращение осуществляют посредством действия спирта в присутствии кислотного катализатора; f) соединение (IVa) посредством действия соединения (VII) превращают в соединение формулы (Iа) в присутствии основания В1 и g) при необходимости, соединение (Iа) гидролизуют или подвергают гидрогенолизу до соединения (I), если R3 представляет собой Н; причем соединения (IX) представляет собой чистый цис-изомер или смесь цис/транс-изомеров соответственно; при этом переменные и заместители имеют следующие значения соответственно: цикл А представляет собой С3 -С8циклоалкил, R1, R2, R4 и R5 представляют собой независимо друг от друга Н, F, Cl, Вr, C1-С6 алкил или -O-(С1-С6алкил); R3 представляет собой Н, C1-С6алкил; R6 представляет собой C1-С6алкил или бензил; Х представляет собой C1-С6алкил; Y представляет собой C 1-С6алкил; Z1 представляет собой защитную группу, стабильную в кислой среде; Z2 представляет собой защитную группу, стабильную в кислой среде; Z3 представляет собой защитную группу, стабильную в щелочной среде и лабильную в кислой среде; Z4 представляет собой уходящую группу; Z5 представляет собой уходящую группу; В1 представляет собой третичный алкоголят щелочноземельного металла, третичный алкоголят щелочного металла, амид щелочноземельного металла, амид щелочного металла, силазид щелочноземельного металла, силазид щелочного металла или гидрид щелочного металла.

Изобретение относится к основному органическому синтезу и касается способа получения этиленгликоля совместно с карбамидом из диоксида углерода, оксида этилена и аммиака.

Изобретение относится к вариантам способа получения хирального нерацемического соединения формулы I где R1 обозначает . .

Изобретение относится к области органической химии, а именно к способу получения функционально замещенных фуллеренов, которые могут найти применение в качестве комплексообразователей, сорбентов, биологически активных соединений, а также при создании новых материалов с заданными свойствами.
Изобретение относится к способам получения полипренолов, обладающих высокой биологической активностью и являющихся сырьем для синтеза важнейших биологических регуляторов живых организмов.
Изобретение относится к способам получения полипренолов, которые обладают биологической активностью. .
Изобретение относится к способу получения этиленгликоля из полиоксисоединения. Способ включает добавление полиоксисоединения и воды в реактор, удаление воздуха из реактора, герметизацию реактора с газообразным водородом при определенном исходном давлении водорода и взаимодействие полиоксисоединения с водородом в присутствии катализатора при перемешивании реакционной смеси. При этом температура реакции поддерживается равной или выше 120°С, время реакции составляет не менее 5 минут, катализатор представляет собой смешанный катализатор, включающий катализатор А и катализатор В, где активный компонент катализатора А включает переходный металл 8, 9 или 10 группы, выбранный из железа, кобальта, никеля, рутения, родия, палладия, иридия и платины, или их смесь, активный компонент катализатора В включает соединение оксида вольфрама, сульфида вольфрама, хлорида вольфрама, гидроксида вольфрама, оксидной вольфрамовой бронзы, вольфрамовой кислоты, вольфрамата, метавольфрамовой кислоты, метавольфрамата, паравольфрамовой кислоты, паравольфрамата, пероксовольфрамовой кислоты, первольфрамата, гетерополикислоты, содержащей вольфрам, или их смесь. Кроме того, массовое соотношение активного компонента катализатора А и активного компонента катализатора В (из расчета на массу вольфрама) находится в интервале от 0,02 до 3000. Способ позволяет получать продукт с высоким выходом при использовании катализатора, который может быть получен в мягких условиях при низких затратах. 10 з.п. ф-лы, 6 табл., 9 пр.
Изобретение относится к способу получения катализатора депероксидирования алкилгидропероксида, содержащего хром в состоянии окисления 6+ в качестве основного каталитического элемента. Предлагаемый способ включает следующие этапы: растворение в воде хромового ангидрида; добавление к водному раствору хромового ангидрида третичного спирта, содержащего по меньшей мере 4 атома углерода и углеводородный растворитель; осуществление реакции спирта и хромового ангидрида при температуре от 20 до 40°C путем помещения реакционной среды в условия пониженного давления, чтобы отогнать воду; извлечение катализатора в виде сложного эфира хромовой кислоты в растворе углеводородного растворителя. Данный способ позволяет получать стабильный раствор катализатора депероксидирования алкилгидропероксида с очень хорошей производительностью и высоким выходом. 14 з.п. ф-лы, 3 пр.
Наверх