Способ диагностики колебаний рабочего колеса турбомашины

Изобретение относится к авиадвигателестроению и энергомашиностроению и может найти применение при доводке газотурбинных двигателей (ГТД), а также для создания систем диагностики колебаний. Техническим результатом изобретения является повышение эффективности и надежности диагностики колебаний рабочего колеса турбомашины в режиме реального времени. Технический результат достигается тем, что в способе диагностики колебаний рабочего колеса турбомашины сигналы измеряют одновременно, по меньшей мере, с двух датчиков, вторым из которых является вибропреобразователь, установленный на статорных деталях турбомашины вблизи рабочего колеса, в качестве безразмерного параметра, характеризующего потерю устойчивости, используют коэффициент эксцесса, предварительно задают пороговые уровни для сигналов с датчика пульсаций давления потока и вибропреобразователя и определяют соответствующие им пороговые значения коэффициентов эксцесса, измерение сигналов производят в узкой полосе частот, для каждого из сигналов определяют значения коэффициентов эксцесса и моменты времени, в которые они достигают своих пороговых значений, при этом, если коэффициент эксцесса для сигнала с датчика пульсаций давления потока достигает своего порогового значения раньше, чем коэффициент эксцесса для сигнала с вибропреобразователя, то это свидетельствует о наличии срывных колебаний в рабочем колесе, если коэффициенты эксцесса для сигналов с датчика пульсаций давления потока и вибропреобразователя одновременно достигают своих пороговых значений, то это свидетельствует о наличии автоколебаний в рабочем колесе. 1 з.п. ф-лы, 3 ил.

 

Предлагаемое изобретение относится к авиадвигателестроению и энергомашиностроению и может найти применение при доводке газотурбинных двигателей (ГТД), а также для создания систем диагностики колебаний.

Известен способ диагностики колебаний рабочего колеса турбомашины (патент РФ на изобретение №2111469, МПК G01M 15/00, опубл. 20.05.1998), при котором в процессе испытаний измеряют сигналы с датчика пульсаций давления потока, установленного на статорных деталях турбомашины вблизи рабочего колеса, и судят о виде колебаний рабочего колеса. Способ позволяет выполнять диагностику автоколебаний и вращающегося срыва по наличию и соотношению уровней двух диагностических составляющих в спектре пульсаций давления потока.

При диагностике по данному способу, как показала его экспериментальная проверка, возможна постановка ложного диагноза (ошибка второго рода), т.к. появление диагностических составляющих, различных по уровню, может быть не связано с колебаниями лопаток или образованием зон срывного обтекания. Такое же проявление и сочетание диагностических признаков наблюдалось при наличии помехи и шумов от работающего стендового оборудования. За счет эффекта Доплера колебания, воспринимаемые датчиком, установленным на статорных деталях турбомашины, становятся частотно-модулированными и имеют дискретный спектр. Аналогичное модулирующее влияние могут оказывать составляющие от шумов различного происхождения, причем в спектре шумового сигнала левые и правые боковые составляющие, характеризующие его модуляцию, также будут различными по уровню. Все это делает способ малонадежным и низкоэффективным. Кроме того, диагностика производится после проведения испытаний по уже зарегистрированной информации.

Известен способ диагностики колебаний рабочего колеса турбомашины (патент РФ на изобретение №2395068, МПК G01M 15/14, опубл. 20.07.2010), при котором в процессе испытаний измеряют сигналы с вибропреобразователя, установленного на статорных деталях турбомашины вблизи рабочего колеса, судят о виде колебаний рабочего колеса.

Способ основан на определении направлений распространения волн деформации. Он дает более достоверные результаты по сравнению с предыдущим способом, однако его использование ограничено только рабочими колесами малоразмерных ГТД, значения частот собственных колебаний рабочих лопаток которых превышают произведение частоты вращения на число узловых диаметров.

Наиболее близким к предлагаемому является способ диагностики колебаний рабочего колеса турбомашины (патент РФ на изобретение №2402751, МПК G01M 15/14, опубл. 27.10.2010), при котором в процессе испытаний измеряют сигналы с датчиков, одним из которых является датчик пульсаций давления потока, установленный на статорных деталях турбомашины вблизи рабочего колеса, определяют соответствующие им значения безразмерного параметра, характеризующего потерю устойчивости, и моменты времени, в которые они изменяются заданным образом, по которым судят о виде колебаний рабочего колеса, при этом, если изменение значений безразмерного параметра произошло раньше для сигнала с датчика пульсаций давления потока, то это свидетельствует о наличии срывных колебаний в рабочем колесе.

В данном способе измеряют и регистрируют сигналы с тензодатчиков, установленных на рабочих лопатках, и с датчика пульсаций давления потока, установленного на корпусе турбомашины. Определяют диагностические частоты колебаний лопаток в спектре пульсаций потока. В качестве безразмерного параметра, характеризующего потерю устойчивости, используют коэффициент возбуждения в нестационарном сигнале на частотах колебаний рабочих лопаток и на диагностических частотах колебаний в спектре пульсаций потока. Строят зависимости значений коэффициентов возбуждения от времени для сигналов, регистрируемых с датчиков. Определяют моменты времени, при которых значения коэффициентов возбуждения из отрицательных становятся положительными, и по ним судят о виде колебаний рабочих лопаток (автоколебания или вращающийся срыв).

Способ позволяет проводить диагностику по уже зарегистрированной информации, т.е. не в режиме реального времени, а после останова турбомашины.

Однако при диагностике колебаний по данному способу возможна постановка ложного диагноза. Это связано с тем, что при определении коэффициента возбуждения для реального сигнала с нарастающей по времени амплитудой в отдельные моменты времени значение амплитуды сигнала может уменьшаться при сохранении общей тенденции к росту. В момент уменьшения амплитуды сигнала коэффициент возбуждения в соответствии с данным способом будет изменять свой знак на противоположный, что может привести к постановке ложного диагноза.

При определении коэффициента возбуждения по данному способу определяют амплитуды на соседних полуволнах сигнала, поэтому, при относительно высокой частоте сигнала и нарастающем его характере, эти амплитуды отличаются друг от друга незначительно, в результате их отношение близко к единице, а натуральный логарифм единицы равен нулю. Для смещения значений сигнала относительно нулевого уровня в формулу для определения коэффициента возбуждения введен масштабный коэффициент, в качестве которого принята частота сигнала. Однако одновременно с усилением сигнала и его удалением от нулевого уровня происходит пропорциональное усиление всех погрешностей. В результате происходит постоянная смена знака, что может привести к постановке ложного диагноза. В радиоэлектронике к подобному явлению применяют термин «дребезг контактов». Поэтому данный способ применим только для идеализированных сигналов (гладких, искусственно смоделированных кривых).

О наличии автоколебаний судят по одновременному прохождению через нулевой уровень коэффициентов возбуждения двух сигналов. В то же время предыдущая и последующая амплитуды для этих сигналов определяются в разные моменты времени. Т.е. в способе заложена методическая погрешность, снижающая надежность диагностики, вызванная необходимостью выполнения анализа на двух разных частотах, а следовательно, в разные моменты времени, поэтому делать вывод об «одновременности» нет оснований.

В связи с тем, что при подходе к границе автоколебаний процесс заведомо нестационарный, в данном способе коэффициенты возбуждения для таких процессов определяют по методу Прони (О.Б. Балакшин, Б.Г. Кухаренко, А.А. Хориков. Исследование динамических процессов при флаттере лопаток с использованием метода Прони). Сложная техническая реализация метода Прони и отсутствие отработанных алгоритмов затрудняют практическое использование способа диагностики.

Для диагностики по данному способу требуется проведение тензометрирования, при этом установленный на рабочей лопатке колеса турбомашины тензодатчик, по которому в процессе развития колебаний определяют частоту и коэффициент возбуждения колебаний лопатки, обладает низкой надежностью. Проведение динамического тензометрирования связано с существенными затратами (наклейкой тензодатчиков, выводом препарации и пр.). Кроме того, там, где по особенностям конструкции турбомашины тензометрирование невозможно, например для каскада высокого давления двухвального газотурбинного двигателя, этот способ не применим.

Технической задачей изобретения является разработка способа, обеспечивающего возможность диагностики колебаний только по датчикам, установленным на статорных (невращающихся) деталях турбомашины, например корпусе, и использованием для диагностики в качестве безразмерного параметра коэффициента эксцесса, который наиболее эффективен именно для нестационарных процессов, при этом менее трудоемок в вычислительном плане.

Техническим результатом изобретения является повышение эффективности и надежности диагностики колебаний рабочего колеса турбомашины в режиме реального времени.

Технический результат достигается тем, что в способе диагностики колебаний рабочего колеса турбомашины, при котором в процессе испытаний измеряют сигналы с датчиков, одним из которых является датчик пульсаций давления потока, установленный на статорных деталях турбомашины вблизи рабочего колеса, определяют соответствующие им значения безразмерного параметра, характеризующего потерю устойчивости, и моменты времени, в которые они изменяются заданным образом, по которым судят о виде колебаний рабочего колеса, при этом, если изменение значений безразмерного параметра произошло раньше для сигнала с датчика пульсаций давления потока, то это свидетельствует о наличии срывных колебаний в рабочем колесе, в отличие от известного, сигналы измеряют одновременно, по меньшей мере, с двух датчиков, вторым из которых является вибропреобразователь, установленный на статорных деталях турбомашины вблизи рабочего колеса, в качестве безразмерного параметра, характеризующего потерю устойчивости, используют коэффициент эксцесса, предварительно задают пороговые уровни для сигналов с датчика пульсаций давления потока и вибропреобразователя и определяют соответствующие им пороговые значения коэффициентов эксцесса, измерение сигналов производят в узкой полосе частот, для каждого из сигналов определяют значения коэффициентов эксцесса и моменты времени, в которые они достигают своих пороговых значений, при этом, если коэффициент эксцесса для сигнала с датчика пульсаций давления потока достигает своего порогового значения раньше, чем коэффициент эксцесса для сигнала с вибропреобразователя, то это свидетельствует о наличии срывных колебаний в рабочем колесе, если коэффициенты эксцесса для сигналов с датчика пульсаций давления потока и вибропреобразователя одновременно достигают своих пороговых значений, то это свидетельствует о наличии автоколебаний в рабочем колесе.

Измерение сигналов производят в полосе частот, ограниченной фильтром низкой частоты.

На прилагаемых фигурах изображены:

фиг.1 - две зоны динамического усиления сигналов с вибропреобразователя (верхний график) и датчика пульсаций давления потока (нижний график);

фиг.2 - огибающие амплитуд сигналов с вибропреобразователя (верхний график) и датчика пульсаций давления потока (нижний график) в зонах динамического усиления сигналов;

фиг.3 - значения коэффициентов эксцесса для сигналов с вибропреобразователя (верхний график) и датчика пульсаций давления потока (нижний график) в зонах динамического усиления сигналов.

Способ осуществляют следующим образом.

Предварительно по результатам экспериментальных исследований быстропеременных процессов задают пороговые уровни для сигналов с датчика пульсаций давления потока и вибропреобразователя, установленных на статорных деталях турбомашины вблизи рабочего колеса, достижение которых свидетельствует о возникновении колебаний. Определяют соответствующие им пороговые значения безразмерного параметра, характеризующего потерю устойчивости, в качестве которого используют коэффициент эксцесса.

В процессе испытаний одновременно (синхронно) измеряют сигналы, по меньшей мере, с двух датчиков, установленных на статорных деталях турбомашины вблизи рабочего колеса, одним из которых является датчик пульсаций давления потока, а вторым - вибропреобразователь. Измерение сигналов, с целью повышения эффективности использования коэффициента эксцесса, производят в узкой полосе частот, например, ограниченной фильтром низкой частоты.

Для каждого из измеряемых сигналов с вибропреобразователя и датчика пульсаций давления потока определяют значения коэффициентов эксцесса и сравнивают с соответствующими им пороговыми значениями.

Определяют моменты времени, в которые значения коэффициентов эксцесса для сигналов с датчика пульсаций давления потока и вибропреобразователя достигают своих пороговых значений, по которым и судят о виде возникших нестационарных колебаний рабочего колеса.

Если коэффициент эксцесса для сигнала с датчика пульсаций давления потока достигает своего порогового значения раньше, чем коэффициент эксцесса для сигнала с вибропреобразователя, то это свидетельствует о наличии срывных колебаний в рабочем колесе.

Если коэффициенты эксцесса для сигналов с датчика пульсаций давления потока и вибропреобразователя достигают своих пороговых значений одновременно, то это свидетельствует о наличии автоколебаний в рабочем колесе.

Дополнительно в процессе испытаний измеряемые сигналы можно регистрировать и преобразовывать в частотные спектры, что позволит провести детальный анализ полученных результатов и подтвердить поставленный диагноз.

Способ был реализован при испытаниях газотурбинного двигателя.

В процессе проведения экспериментальных исследований вентиляторной ступени компрессора (исследование устойчивости к автоколебаниям лопаток вентилятора в широком диапазоне эксплуатационных режимов, определения границы газодинамической устойчивости) были оценены возможности диагностики колебаний с использованием предложенного способа по информации с различных датчиков, установленных на статорных деталях, вблизи рабочего колеса.

Задали пороговые уровни для сигналов с датчика пульсаций давления потока - 0,025 кгс/см2 и вибропреобразователя - 4 мм/с, которые соответствовали значениям пороговых амплитуд вибрационных напряжений в лопатках. Превышение указанных уровней свидетельствовало о начале возникновения опасных колебаний.

Определили соответствующие им пороговые значения коэффициента эксцесса, учитывая, что для нормального распределения коэффициент эксцесса равен трем (Тюрин Ю.Н., Макаров А.А. Анализ данных на компьютере. Под ред. В.Э. Фигурнова. - М.: ИНФРА-М. 2002. С. 34).

Из курса математической статистики и теории вероятностей известно, что коэффициент эксцесса определяется по формуле:

E = 1 N σ 4 i = 0 N 1 ( V i M O ) 4 ,

где σ - среднеквадратическое отклонение,

σ = 1 N 1 i = 0 N 1 ( V i M O ) 2 ,

МО - математическое ожидание (среднее значение),

M O = 1 N i = 0 N 1 V i ,

Vi -амплитуда сигнала с датчика;

N - количество значений.

Пороговые значения коэффициентов эксцесса для сигнала с датчика пульсаций давления потока и вибропреобразователя для обоих сигналов, определенные по формуле, составили одно и то же значение E=3,5. Следует отметить, что в общем случае они могут иметь различные значения.

В ряде источников формула для определения коэффициента эксцесса приведена с учетом его равенства нулю при нормальном законе распределения. Это учтено уменьшением определяемого значения на 3. Однако в связи с тем, что отклонение от нормального закона распределения вероятности не является критерием начала потери устойчивости, то нет необходимости приводить формулу для определения коэффициента эксцесса к виду, при котором его значение для нормального закона распределения становится равным нулю. При использовании такой формулы величина порогового уровня вместо значения E=3,5 была бы принята равной E=0,5.

Таким образом, формула для определения коэффициента эксцесса выбрана исходя из того, что малое близкое к нулю значение безразмерного параметра не способствует повышению надежности диагностики (с точки зрения ее реализации).

Перед проведением испытаний корпус вентилятора был препарирован высокочастотным датчиком пульсаций давления потока Kulite XTE-190 и высокочастотным трехкомпонентным вибропреобразователем ВТК-7. Для измерения и анализа динамических параметров использовались цифровые регистраторы динамических сигналов MIC-300M.

В процессе проведения испытаний одновременно (синхронно) измеряли сигналы с датчика пульсаций давления потока и вибропреобразователя и преобразовывали их в узкополосные с помощью фильтра низкой частоты с частотой среза 300 Гц.

Для наглядности способа проводили синхронную регистрацию сигналов с вибропреобразователя и датчика пульсаций давления потока. На фиг.1 показаны две зоны динамического усиления для сигнала с вибропреобразователя V, B и датчика пульсаций давления потока Р, В в зависимости от времени.

Анализ нарастания амплитуд был выполнен для первой (10-20 с) и второй (72,5-82,5 с) зон динамического усиления сигналов с вибропреобразователя (верхний график) и датчика пульсаций давления потока (нижний график) фиг.2, где V, V' - значения сигнала с вибропреобразователя в зонах динамического усиления вибрации, Р, Р' - значения сигнала с датчика пульсаций давления потока в зонах динамического усиления пульсаций.

Для этих зон с интервалом в 2,5 с были определены значения коэффициентов эксцесса для измеряемых датчиками сигналов. На фиг.3 приведены Eν, Eν' - значения коэффициента эксцесса для сигнала с вибропреобразователя в зонах динамического усиления, Ер, Ер' - значения коэффициента эксцесса для сигнала с датчика пульсаций давления потока в зонах динамического усиления.

Сравнивали значения коэффициентов эксцессов для сигналов с датчика пульсаций давления потока и вибропреобразователя с их пороговыми значениями E=3,5.

Определили моменты времени, при которых значения коэффициентов эксцесса принимали величину E=3,5. Единому для вибраций и для пульсаций давления потока пороговому значению коэффициента эксцесса E=3,5 соответствовал момент фиксации: для первой зоны динамического усиления 16,5 с, для второй 79 с. Для обеих зон динамического усиления сигналов в указанные моменты времени уровень вибраций составлял 0,15 В, что соответствует 4 мм/с (максимальное значение амплитуды в зоне динамического усиления вибрации составляло 10 мм/с), а уровень пульсаций - 0,05 В, что соответствует 0,025 кгс/см2 (максимальное значение амплитуды в зоне динамического усиления пульсации давления потока составляло 0,05 кгс/см2).

Коэффициенты эксцесса для сигналов с вибропреобразователя и датчика пульсаций давления потока одновременно достигли порогового значения. Следовательно, делали вывод о возникновении автоколебаний.

Изобретение позволило создать способ диагностики колебаний рабочего колеса турбомашины в режиме реального времени, обладающий более высокой надежностью и эффективностью, не допускающий, благодаря своевременной диагностике, разрушений деталей и узлов турбомашины и позволяющий определить вид опасных колебаний и предпринять меры по их устранению, сводя к минимуму риск разрушения турбомашины.

1. Способ диагностики колебаний рабочего колеса турбомашины, при котором в процессе испытаний измеряют сигналы с датчиков, одним из которых является датчик пульсаций давления потока, установленный на статорных деталях турбомашины вблизи рабочего колеса, определяют соответствующие им значения безразмерного параметра, характеризующего потерю устойчивости, и моменты времени, в которые они изменяются заданным образом, по которым судят о виде колебаний рабочего колеса, при этом, если изменение значений безразмерного параметра произошло раньше для сигнала с датчика пульсаций давления потока, то это свидетельствует о наличии срывных колебаний в рабочем колесе, отличающийся тем, что сигналы измеряют одновременно, по меньшей мере, с двух датчиков, вторым из которых является вибропреобразователь, установленный на статорных деталях турбомашины вблизи рабочего колеса, в качестве безразмерного параметра, характеризующего потерю устойчивости, используют коэффициент эксцесса, предварительно задают пороговые уровни для сигналов с датчика пульсаций давления потока и вибропреобразователя и определяют соответствующие им пороговые значения коэффициентов эксцесса, измерение сигналов производят в узкой полосе частот, для каждого из сигналов определяют значения коэффициентов эксцесса и моменты времени, в которые они достигают своих пороговых значений, при этом, если коэффициент эксцесса для сигнала с датчика пульсаций давления потока достигает своего порогового значения раньше, чем коэффициент эксцесса для сигнала с вибропреобразователя, то это свидетельствует о наличии срывных колебаний в рабочем колесе, если коэффициенты эксцесса для сигналов с датчика пульсаций давления потока и вибропреобразователя одновременно достигают своих пороговых значений, то это свидетельствует о наличии автоколебаний в рабочем колесе.

2. Способ по п.1, отличающийся тем, что измерение сигналов производят в полосе частот, ограниченной фильтром низкой частоты.



 

Похожие патенты:

Изобретение относится к способам технической диагностики дефектов элементов газотурбинного двигателя при его испытаниях и может найти применение при его доводке, а также для создания систем диагностики двигателя.

Изобретение относится к стендам для испытаний газотурбинных установок (ГТУ) газоперекачивающих агрегатов магистральных газопроводов. Стенд включает в себя испытательный станок с установленной на нем платформой с ГТУ, выхлопное устройство, выполненное в виде выпускного вертикально расположенного газохода, в состав которого входит пристыкованный к выходу испытуемой ГТУ выпускной коллектор, расположенный выше него и присоединенный к нему термокомпенсирующий и виброгасящий блок, пристыкованный к термокомпенсирующему и виброгасящему блоку переходный канал, присоединенную к переходному каналу выхлопную трубу, верхний срез которой расположен выше входной шахты.

Изобретение может быть использовано при испытаниях объекта (О): транспортного средства (ТС), снабженного двигателем внутреннего сгорания (ДВС), в отношении мощностных показателей, выбросов загрязняющих веществ и топливной экономичности или ДВС в отношении его рабочих характеристик при работе на газовых топливах (ГТ).

Изобретение относится к авиации и может быть применено для определения запаса устойчивости входного устройства газотурбинных двигателей. При постоянной частоте вращения ротора двигателя при перемещении органа механизации воздухозаборника определяют программное и фактическое положения органа механизации, измеряют пульсации давления с помощью датчиков, установленных за входным устройством на входе в двигатель, по результатам измерений вычисляют вейвлет-коэффициенты различного уровня и среднеквадратичные отклонения (СКО) вейвлет-коэффициентов, сравнивая значения СКО с полученными во время предварительных испытаний их критическими значениями, при достижении СКО критических значений определяют критическое положение органа механизации и вычисляют запас устойчивости как разницу между программным и критическим положениями органа механизации.

Стенд для испытания мощного высокооборотного агрегата содержит соосно соединенные турбину, компрессор, электрогенератор и соединительную муфту для испытуемого высокооборотного агрегата, а также стендовые системы газоснабжения, водоснабжения, вакуумирования, электропитания, управления и измерений.

Изобретение относится к области измерительной техники, в частности к способам диагностики технического состояния новой техники, не имеющих аналогов. Способ включает испытания объектов до выработки ими ресурса на рабочих режимах работы с определением времени наработки до отказа.

Изобретение относится к контролю технического состояния авиационных газотурбинных двигателей (ГТД) и может быть использовано для диагностики ГТД в процессе их эксплуатации, после технического обслуживания и/или ремонта.

Изобретение относится к области электротехники и может быть использовано в дизель-электрической системе привода. Технический результат - исключение перегрузки мощных полупроводников автономных выпрямителей импульсного тока со стороны генератора при проведении теста self-load-test.

Изобретение относится к технической диагностике и может быть использовано для диагностирования электрических цепей, содержащих активное сопротивление и индуктивность, в частности обмоток электрических машин и аппаратов.

Изобретение относятся к диагностике турбомашин и может быть использовано для диагностирования состояния трансмиссии двухвальных авиационных газотурбинных двигателей (ГТД).

Изобретение может быть использовано при диагностировании двигателей внутреннего сгорания (ДВС). ДВС выводят номинальный тепловой режим и измеряют температурное поле на поверхности выпускного коллектора (ВК). Определяют конфигурацию ВК и коэффициент, учитывающий особенности движения выхлопных (отработавших) газов (ВГ) в ВК. Затем рассчитывают фактическую температуру ВГ (ТВГп) для каждого цилиндра по формуле: Т В Г п = k n p α в ( Т с 1 − Т в ) ( 1 α в г + δ λ k ) + Т с 1 , где k - коэффициент, учитывающий количество окон ВК; n - порядковый номер цилиндра; р - показатель, зависящий от особенностей конфигурации ВК; αвг - коэффициент теплопередачи ВГ, Вт/(К·м2); αв - коэффициент теплопередачи воздуха, Вт/(K·м2); λk - коэффициент теплопроводности материала ВК, Вт/(К·м); δ - толщина стенки ВК, м; Tс1 - температура наружной стенки ВК, К; Тв - температура наружного воздуха, К; Твг - температура ВГ, затем путем сравнения ее с эталоном, устанавливают конкретное место или несколько мест неисправностей в двигателе. Технический результат заключается в снижении трудоемкости и уменьшении времени проведения диагностики, повышении информативности. 2 ил.

Изобретение относится к авиации и предназначено для определения температуры газа при испытаниях и эксплуатации газотурбинных двигателей на форсажных режимах. Техническим результатом, объективно достигаемым при использовании заявленного способа, является повышение точности определения температуры газа перед турбиной на форсажном режиме за счет уменьшения расчетных величин и использования метода косвенного измерения. Указанный технический результат достигается тем, что в способе определения температуры газа перед турбиной на форсажном режиме турбореактивного двигателя измеряют на максимальном и форсажном режимах температуру газа за турбиной Т4М и Т4Ф, также измеряют на максимальном и форсажном режимах давление за компрессором РКМ и РКФ и за турбиной РТМ и РТФ, далее определяют температуру газа перед турбиной на максимальном режиме перед включением форсажа ТГМ. Затем приводится формула для определения температуры газа перед турбиной на форсажном режиме ТГФ.

Изобретение относится к машиностроению. Сущность изобретения: установка для испытаний кассетного нейтрализатора отработавших газов двигателя внутреннего сгорания содержит пористые проницаемые металлокерамические каталитические блоки фильтрации твердых частиц, пористые проницаемые металлокерамические окислительные и восстановительные каталитические блоки установлены с образованием кассет в секции. Установка снабжена входным и выходным патрубками, секцией приема очищенных газов и установлена на опорах, жестко связанных с секцией пористых проницаемых металлокерамических каталитических блоков фильтрации твердых частиц и секцией приема очищенных газов. Между последовательно расположенными секциями установлены промежуточные соединения, закрепленные на крестовинах и имеющие возможность перемещения в осевом и продольном направлениях относительно общей для всех секций оси. Секция с пористыми проницаемыми металлокерамическими восстановительными каталитическими блоками и секция с пористыми проницаемыми металлокерамическими окислительными каталитическими блоками, имеющие выпускные окна, установлены между секцией пористых проницаемых металлокерамических каталитических блоков фильтрации твердых частиц и секцией приема очищенных газов на общей для всех секций оси с возможностью поворота относительно последней и снабжены фиксаторами положения. На опорах смонтирована штанга, снабженная скользящими направляющими втулками, подсоединенными к промежуточным соединениям. Секции выполнены в виде барабанов. Техническим результатом изобретения является обеспечение идентичности условий и методов испытаний и возможности многовариантного подбора составов каталитических материалов для обеспечения эффективной системы очистки. 1ил.

Изобретения относятся к измерительной технике, в частности к области контроля состояния газотурбинных двигателей, и могут быть использованы для контроля вибрационных явлений, появляющихся в газотурбинном двигателе летательного аппарата во время работы. Способ состоит в том, что устанавливают спектр частот вибрационного сигнала, характерного для состояния работы двигателя и его компонентов, используют множество вибрационных сигнатур, каждая из которых соответствует вибрационному явлению, которое появляется во время работы авиационных двигателей того же типа, что и контролируемый, и причиной которого является дефект или ненормальная работа компонента двигателей. При этом в спектре идентифицируют точки кривых, которые отвечают математическим функциям, каждая из которых определяет вибрационную сигнатуру, для каждой идентифицированной кривой, соответствующей дефекту компонентов двигателя, анализируют амплитуду, связанную с точками кривой, по отношению к предопределенным значениям амплитуды, соответствующим степени серьезности дефекта, и при превышении значения амплитуды или при обнаружении ненормальной работы передают сообщение, связанное с вибрационной сигнатурой. Система содержит средства получения вибрационного сигнала, средства установления спектра частот вибрационного сигнала, базу данных, содержащую множество вибрационных сигнатур, средства идентификации в спектре частот вибрационной сигнатуры, средства анализа амплитуды и средства передачи сообщения, связанного с вибрационной сигнатурой. Технический результат заключается в улучшении качества контроля за состоянием газотурбинного двигателя. 2 н. и 8 з.п. ф-лы, 3 ил.

Изобретение относится к области испытаний и эксплуатации газотурбинных двигателей, в частности двухконтурных, а именно к контролю технического состояния во время их испытаний и эксплуатации для принятия решения по их обслуживанию и дальнейшей эксплуатации. В качестве дополнительного параметра для оценки изменений технического состояния двигателя выбирают полную температуру газа за турбиной низкого давления − T 4 * , измеренную не менее чем в 8 точках, равномерно распределенных по окружности в характерном сечении, определяют среднюю температуру и предварительно устанавливают предельно допустимое отклонение средней температуры от ее исходного значения в процессе эксплуатации, определяют термопары с максимальным и минимальным значением температуры по измеренным текущим температурам двигателя в процессе эксплуатации, проводят оценку изменения технического состояния по предельно допустимым отклонениям от средней температуры, по предельно допустимым отклонениям разницы между максимальным и минимальным значением температуры, а по месту расположения термопар с максимальной и минимальной температурой определяется место расположения неисправного узла и причина неисправности. Оценку технического состояния производят при значениях разности температур − T 4 * в точках с максимальной и минимальной температурой не более 110°C, и отклонениях температуры по всем точкам от среднего значения не более 10°. Технический результат изобретения - повышение точности определения мест засорения, износа, повреждения проточной части газовоздушного тракта, надежности поддержания требуемого режимного состояния и эксплуатационных характеристик, эксплуатационной экономичности газотурбинного двигателя. 1 з.п. ф-лы, 1 ил., 3 табл.

Изобретение относится к ракетной технике, а именно к стендовому оборудованию, применяемому при огневых стендовых испытаниях ракетных двигателей с имитацией высотных условий. Стенд для высотных испытаний ракетных двигателей с тонкостенными соплами содержит барокамеру, выхлопной диффузор, кольцевой эжектор и соединенный с ним источник эжектирующего рабочего тела. Источник эжектирующего рабочего тела выполнен в виде парогенератора, образованного охватывающим диффузор кожухом, полость которого на входе сообщена с подводом охлаждающей жидкости, а на выходе с кольцевым эжектором. Стенд снабжен форсунками, размещенными в кольцевом эжекторе и имеющими программно разрушающиеся корпусы. Изобретение позволяет имитировать высотные условия при испытании ракетного двигателя с тонкостенным соплом на различных режимах его работы, включая период выключения, а также обеспечить сохранность элементов конструкции двигателя. 1 з.п. ф-лы, 3 ил.

Изобретение относится к электрическим испытаниям электрооборудования на восприимчивость к электромагнитному воздействию. Способ испытаний микропроцессорной системы управления двигателем автотранспортного средства на восприимчивость к электромагнитному воздействию, в котором испытуемую систему управления в составе транспортного средства подвергают импульсному воздействию электромагнитного излучения с помощью генератора грозового разряда. Испытуемую систему подвергают воздействию заданного количества несинхронизированных импульсов электромагнитного излучения, при этом количество импульсов электромагнитного излучения рассчитывают из формулы. Решение позволяет более достоверно оценить электромагнитную стойкость системы управления двигателем. 1 ил.

Изобретение относится к области управления работой газотурбинных двигателей и может быть использовано для диагностики положения направляющих аппаратов осевого компрессора ротора газотурбинной установки, например, авиационного газотурбинного двигателя (ГТД). Дополнительно задают допустимые значения отклонений от программного положения направляющих аппаратов на приемистости и торможении ротора компрессора, причем в качестве значений допустимых отклонений на приемистости и торможении используют значения заданного допустимого уровня отклонения положения направляющих аппаратов и заданной величины скорости изменения частоты вращения ротора компрессора, причем на режимах приемистости или торможения допустимое заданное значение отклонения положения направляющих аппаратов сравнивают с значением отклонения текущего положения направляющих аппаратов от программного, а допустимое значение величины скорости изменения частоты вращения ротора компрессора - с текущим ее значением и по результатам сравнения диагностируют положение направляющих аппаратов ротора компрессора на приемистости или торможении. Технический результат изобретения - повышение надежности диагностирования во всем диапазоне режимов его работы. 2 ил.

Изобретение относится к контролю технического состояния авиационных газотурбинных двигателей (ГТД) и может быть использовано для диагностики ГТД в процессе их эксплуатации в реальном времени. Способ вибродиагностики двухвального газотурбинного двигателя включает измерение частоты вращения каждого ротора и выделение значений вибрации каждого ротора в зависимости от частоты его вращения, причем дополнительно по значениям частот вращения каждого ротора определяют расчетное значение частоты вращения и снимают значение вибрации на данной частоте, которое сравнивают с выделенными значениями вибрации каждого ротора, а также с заданным допустимым значением уровня вибрации двигателя на данной частоте и по результатам каждого сравнения определяют состояние газотурбинного двигателя. Технический результат изобретения - точность и надежность диагностики ГТД за счет определения неисправности трансмиссии каждого ротора отдельно, а также состояния межвального подшипника двигателя в широком диапазоне режимов работы двигателя независимо от конструкции межвального подшипника. 1 ил.

Способ определения эрозии крыльчатки центробежного турбокомпрессора ступени сжатия турбомашины. Крыльчатка (10) центробежного турбокомпрессора содержит ступицу (12), полотно (14), продолжающееся радиально от ступицы, и множество лопаток (16), установленных на крыльчатке. Полотно содержит индикатор (18) эрозии. Индикатор (18) эрозии содержит по меньшей мере одно ребро (20), выступающее радиально от периферийного края (22) полотна в положении задней кромки (16b) одной из лопаток (16). Причем ребро (20) имеет осевую толщину, которая меньше осевой толщины полотна (14) для образования уступа между плоской поверхностью ребра и поверхностью полотна, от которой продолжается лопатка. Для проверки вводят эндоскоп (40) в ступень (13) сжатия для проверки износа индикатора (18) эрозии крыльчатки. Исключена необходимость в демонтаже крыльчатки турбокомпрессора для проверки его эрозии, поскольку механик может проверить износ крыльчатки, направив камеру на индикатор износа. Затем, поворачивая крыльчатку турбокомпрессора, механик может легко проверить эрозию, создаваемую бороздами у хвостовиков каждой лопатки крыльчатки. Таким образом, степень эрозии можно определить при регламентном обслуживании, а не только при капитальном ремонте турбомашины. 4 н. и 3 з.п. ф-лы, 7 ил.
Наверх