Турбонасосный агрегат и способ перекачивания холодной, горячей и промышленной воды

Изобретение относится к турбонасосостроению. Турбонасосный агрегат содержит турбинный узел, включающий корпус подвода пара, сопловый аппарат с наклонными конфузорно-диффузорными соплами, турбину, имеющую вал с рабочим колесом, и расположенный за турбиной по потоку корпус отвода отработанного пара. Корпус подвода пара снабжен подводящим патрубком и коллектором, включающим осесимметричную кольцевую оболочку, большая часть которой имеет форму фрагмента тора или тороида. Коллектор присоединен к диску соплового аппарата. Сопла аппарата выполнены в диске в количестве 8÷15, продольными осями радиально эквидистантно удалены от оси турбины и разнесены по окружности на равные углы, определенные в диапазоне (24÷45)°. Продольная ось каждого сопла расположена в условной плоскости, параллельной оси вала турбины, нормально радиусу и наклонена в указанной плоскости под углом к условной плоскости диска в направлении, противоположном вектору вращения рабочего колеса турбины под углом (12÷25)°. Насосный узел агрегата включает корпус насоса со шнекоцентробежным рабочим колесом. Изобретение направлено на повышение ресурса работы, компактности, КПД и надежности агрегата и эффективности перекачивания сред при одновременном снижении материалоемкости. 2 н. и 17 з.п. ф-лы, 6 ил.

 

Изобретение относится к турбонасосостроению, а именно к турбонасосным агрегатам, предназначенным для подачи промышленной воды в паровые котлы, а также продуктов нефтепереработки на нефте-, газоперерабатывающих, химических и нефтехимических, металлургических и других предприятиях, а также к способу перекачивания упомянутых жидких сред.

Известен турбонасосный агрегат, содержащий корпус насоса, корпус турбины, корпус подшипниковых опор насоса и турбины, подпружиненный ротор, узел разгрузки осевых сил и закрепленные на корпусах ограничительные упоры. Корпус подшипниковой опоры турбины жестко установлен в промежуточный корпус. Упор в корпусе турбинной подшипниковой опоры выполнен подвижным в осевом направлении в виде упругого элемента и втулки с ограничителем осевого перемещения со стороны подшипника (RU 2083860 C1, опубл. 10.07.1997).

Известен турбонасосный агрегат, содержащий корпус, ротор, установленный на подшипниковых опорах, закрепленные на корпусе ограничительные упоры и автомат осевой разгрузки ротора. Автомат осевой разгрузки расположен между упорами. Между вторым упором и наружной обоймой подшипниковой опоры, а также между пятой автомата осевой разгрузки и ротором выполнены зазоры. Ротор подпружинен в направлении пяты автомата (RU 2083881 C1, опубл. 10.07.1997).

Известен турбонасосный агрегат, содержащий корпус и ротор со шнеком, центробежным колесом и гидротурбиной, установленный на подшипники скольжения с питанием перекачиваемой жидкостью, упорные устройства - гидравлическую пяту основную и пусковую пяту для восприятия осевых сил.

Агрегат также содержит подшипник, питаемый от встроенного лабиринтного насоса, и подшипник, питаемый от перепада давления жидкости между полостью гидротурбины и центробежным колесом. Сливная камера гидравлической пяты сообщена с входом центробежного колеса. Шнек имеет винтовую решетку лопастей на периферии, образующих совместно осевихревую ступень с большим проходным сечением на входе, чем на выходе. В диске центробежного колеса выполнены отверстия, посредством которых сливная камера гидравлической пяты сообщена с входом центробежного колеса (RU 2341689 C2, опубл. 20.12.2008).

Известен турбонасосный агрегат, включающий турбинный узел с коллектором подвода рабочего тела, с сопловым аппаратом, ротор с рабочим колесом турбины, корпус выхода отработанного рабочего тела, опорный узел, насосный узел с рабочим колесом и автоматом осевой разгрузки (Валюхов С.Г., Веселов В.Н. Экспериментальная отработка турбонасосного агрегата ТНА 100/580 с торцевыми уплотнениями на опорах качения: Труды VI международной научно-технической конференции "СИНТ"11", ООО "Воронежская Международная Конференция", УДК 621.675(063), ISBN 978-5-904786-98-4, стр.42-45).

Недостатками известных решений являются повышенная конструктивная сложность агрегатов, недостаточная защита от кавитации насоса и невысокая долговечность работы агрегата.

Задача настоящего изобретения заключается в разработке турбонасосного агрегата, наделенного повышенным ресурсом, надежностью и эффективностью подачи перекачиваемой среды потребителю при одновременном снижении материалоемкости и повышении компактности и КПД агрегата при уменьшении электроемкости на единицу массы перекачиваемой среды, в том числе в повышении вариантной универсальности турбонасосного агрегата, а также в разработке способа перекачивания различных жидких сред от холодной, горячей воды до нефти, нефтепродуктов.

Поставленная задача в части турбонасосного агрегата решается тем, что турбонасосный агрегат, согласно изобретению, содержит турбинный узел, образующий привод турбонасосного агрегата и включающий корпус подвода рабочего тела типа газа, объединенный с сопловым аппаратом, выполненным в виде диска с наклонными, предпочтительно, сверхзвуковыми соплами, которые выполнены конфузорно-диффузорными, а также активную, по меньшей мере, одноступенчатую турбину, имеющую вал с рабочим колесом, состоящим не менее чем из одного диска с лопатками и межлопаточными каналами, и, кроме того, расположенный за турбиной по вектору потока рабочего тела корпус отвода отработанного рабочего тела; кроме того, турбонасосный агрегат содержит опорный узел, включающий прикрепленный к корпусу отвода корпус ходовой части турбонасосного агрегата не менее чем с двумя подшипниковыми опорами и ходовой частью вала, а также насосный узел, включающий корпус насоса, ротор с валом и шнекоцентробежным рабочим колесом, при этом вал турбины, вал ходовой части агрегата и вал ротора насоса объединены в общий вал турбонасосного агрегата, кроме того, корпус подвода рабочего тела турбинного узла снабжен подводящим патрубком и коллектором, включающим осесимметричную герметичную кольцевую оболочку, по меньшей мере, большая часть которой имеет форму типа продольно усеченного фрагмента тора или тороида, герметично присоединенного с напорной стороны радиально эквидистантно относительно оси вала турбины к диску соплового аппарата по внешней и внутренней кольцевым кромкам, а сопла соплового аппарата выполнены в диске в количестве 8÷15 и продольными осями радиально эквидистантно удалены от оси турбины и разнесены по условной окружности на равные углы, определенные в диапазоне (24÷45)°, при этом пространственное удаление осей сопел зафиксировано в точках пересечения последних с условной плоскостью диска соплового аппарата, а радиальное расстояние каждой из указанных точек от оси вала турбины принято превышающим не менее чем на одну треть радиальной высоты лопатки рабочего колеса турбины радиальное расстояние поперечного корневого сечения упомянутой лопатки до вала турбины, кроме того, продольная ось каждого сопла соплового аппарата расположена в условной плоскости, параллельной оси вала турбины, нормально радиусу и наклонена в указанной плоскости под углом к условной плоскости диска в направлении, противоположном вектору вращения рабочего колеса турбины под углом (12÷25)°.

При этом корпус отвода отработанного рабочего тела может быть выполнен герметичным со скошенной кольцевой стенкой, оппозитной выходным кромкам межлопаточных каналов рабочего колеса турбины, и снабжен, преимущественно, тангенциальным патрубком выхода отработанного рабочего тела.

Кольцевая оболочка коллектора турбинного узла может быть герметично прикреплена к диску соплового аппарата с охватом входных устий сопел по внешней и внутренней кольцевым кромкам, предпочтительно, сваркой.

Лопатки рабочего колеса турбины могут быть выполнены выпукло-вогнутыми по ширине, а толщина лопатки принята переменной в направлении вектора потока рабочего тела с максимумом, преимущественно, в средней части хордовой ширины лопатки, при этом хордовая ширина лопатки в проекции на условную хордовую плоскость, соединяющую заходную и выходную боковые кромки лопатки, принята не превышающей радиальную высоту лопатки, а общее количество лопаток рабочего колеса турбины принято в 2,6÷34,4 раз превышающим количество сопел в сопловом аппарате.

Лопатки рабочего колеса турбины могут быть радиально удалены от оси вала турбины, не менее чем на 0,8R, где R - радиус диска рабочего колеса турбины, и равномерно разнесены по окружности диска с градиентом радианной плотности G, определенным в диапазоне

Град. G - (10÷44) [ед/рад],

где градиент G - численная характеристика лопаток, размещенных в угловом диапазоне в один радиан.

Межлопаточный канал рабочего колеса турбины может быть выполнен конфузорно-диффузорным в направлении вектора потока рабочего тела с максимальным сужением площади поперечного проходного сечения S, определяемой в зоне максимальной толщины лопаток δmax из выражения

S=ΔR(2πR-Tδmax)/T,

где ΔR - радиальная высота межлопаточного канала, T - число межлопаточных каналов по числу лопаток диска рабочего колеса турбины.

Вал ходовой части агрегата может быть выполнен консольным, при этом одна из консолей образует вал турбины, а другая образует вал насоса, причем вал ходовой части с указанными консолями образует общий вал турбонасосного агрегата.

Вал ротора турбонасосного агрегата может быть оперт на корпус ходовой части через упомянутые подшипниковые опоры, преимущественно, снабженные шарикоподшипниками, один из которых, предпочтительно, зафиксирован в осевом направлении, а другой, предпочтительно, выполнен плавающим, причем оба указанных шарикоподшипника выполнены с возможностью защиты рабочих полостей уплотнениями, в том числе типа лабиринтов, при этом вал ротора выполнен полым и снабжен на проток с системой жидкостного охлаждения, а, по меньшей мере, шарикоподшипник со стороны турбины выполнен с возможностью дополнительного воздушного охлаждения посредством вентилятора.

Корпус насоса может быть выполнен сборным, включающим корпус входа с патрубком осевого подвода перекачиваемой среды, корпус отвода, состоящий из фронтального кольцевого элемента, соединенного с корпусом входа, и снабженный патрубком отвода, выполненным, преимущественно, диффузорным, тангенциального типа, а также из тыльного кольцевого элемента, связанного с фронтальным, которые совместно образуют проточную полость с объемом, достаточным для размещения шнекоцентробежного рабочего колеса, автомата осевой разгрузки ротора и спирального отвода, причем тыльный кольцевой элемент корпуса отвода выполнен уступообразным в поперечном сечении и объединен с внутренней стороны с тыльной стенкой корпуса насоса, а спиральный отвод насосного узла выполнен, предпочтительно, в виде двухзаходной улитки с разнесением заходных устий, преимущественно, на 180° по радиальной закрутке и с диффузорно расширяющимися каналами и превышением площади выходного сечения относительно входного с градиентом расширения по ходу закрутки, принятым с соблюдением условия квазиравенства скоростей потоков в каждом канале улитки.

Шнекоцентробежное рабочее колесо может быть выполнено в виде конструктивно объединенного со шнеком многозаходного центробежного рабочего колеса, образующего крыльчатку, предпочтительно, закрытого типа, и включает основной и покрывной диски с системой расположенных между ними лопаток, разделенных межлопаточными каналами, причем лопатки рабочего колеса выполнены, предпочтительно, различной длины и переменной высоты по длине, убывающей к выходу из рабочего колеса, с количеством лопаток, принятым от 4 до 16, предпочтительно, 12, а шнек шнекоцентробежного рабочего колеса насоса выполнен не менее чем двухзаходным, снабжен плавным расширением в зоне перехода канала шнека в многозаходный канал центробежного колеса и спиральными лопастями, выполненными, преимущественно, с переменными, по меньшей мере, на части длины радиусом и шагом спиральной закрутки, имеющими по ходу потока перекачиваемой среды заходный участок с углом закрутки спирали с приращением величины радиуса каждой из лопастей от 0 до R в угловом диапазоне, составляющем (85-250)°, а градиент G шага угловой закрутки каждой лопасти в пределах осевой длины спирали шнека определен в диапазоне G=(17÷70)π рад/м.

Автомат осевой разгрузки ротора может содержать кольцевую пяту, уступообразно закрепленную или выполненную на тыльной стенке корпуса насоса, а также включает кольцевой поясок, размещенный на тыльной стороне основного диска рабочего колеса и сопряженный с пятой с образованием переточного кольцевого канала, включающего боковое и торцевое щелевые уплотнения, выполненного с возможностью саморегулируемого перетока перекачиваемой среды из зоны высокого в зону низкого давления упомянутого центробежного колеса с обеспечением регулирования осевой разгрузки ротора турбонасосного агрегата.

Основой диск шнекоцентробежного рабочего колеса может быть снабжен в прикорневой части диска, по меньшей мере, одним переточным отверствием, а покрывной диск выполнен примыкающим к корпусу входа перекачиваемой среды через щелевое уплотнение.

Корпус отвода отработанного рабочего тела в турбинном узле может быть снабжен торцовыми уплотнениями для обеспечения герметичности конструктивных разъемов.

Турбонасосный агрегат может быть смонтирован на жесткой, предпочтительно, сварной раме с возможностью последующей установки на фундамент с возможностью разъемной фиксации посредством системы анкеров.

Турбонасосный агрегат вариантно может быть предназначен для перекачивания горячей, холодной, промышленной воды, нефти и продуктов крекинга нефти с напором до 750 м и возможностью подачи (расхода) от 20 до 1000 м3/ч, в том числе при номинальной частоте вращения ротора 9,85·104 (±20%) об/мин.

Поставленная задача в части способа перекачивания решается тем, что в способе перекачивания холодной, горячей и промышленной воды, согласно изобретению, перекачивание выполняют с использованием, по меньшей мере, одного турбонасосного агрегата, конструктивно описанного выше.

При этом перекачивание холодной типа водопроводной воды могут производить в системе водоснабжения промышленных, гражданских и жилых комплексов.

Перекачивание горячей воды могут производить в том числе с избыточным давлением до 2 МПа и более и с температурой 85-105°C и более в системе отопления и/или горячего водоснабжения промышленных, гражданских и жилых комплексов.

Перекачивание промышленной воды могут производить для питания котлов энергетических и промышленных предприятий.

Технический результат, достигаемый приведенной совокупностью признаков, состоит в разработке турбонасосного агрегата, наделенного повышенным ресурсом, надежностью и эффективностью подачи перекачиваемых жидких сред, а также в разработке способа перекачивания упомянутых сред.

Это достигается совокупностью разработанных в изобретении конструктивно-технологических решений основных узлов агрегата и параметров их работы, а именно, конструкции вала ротора с радиально-упорной системой подшипниковых опор и уплотнений; конструкции рабочего колеса турбины, сопел соплового аппарата с заявленными параметрами; формы коллектора подвода и корпуса отвода рабочего тела в турбинном узле, а также выполнения насосного узла с рабочим колесом шнекоцентробежного типа с заявленными параметрами и найденным решением автомата осевой разгрузки ротора. Использование расположенного на входе в рабочее колесо насоса шнека обеспечивает высокие антикавитационные качества насоса, а двухзавитковый спиральный отвод в корпусе насоса обеспечивает радиальную разгруженность во всем диапазоне изменения режимов работы агрегата.

При этом выполнение турбонасосного агрегата в предлагаемом в изобретении исполнении позволяет исключить утечки перекачиваемой среды и рабочего тела, а также упрощает агрегат, существенно уменьшая материалоемкость и повышая компактность и КПД агрегата. Кроме того, применение в качестве привода газовой турбины существенно сокращает энергопотребление.

Сущность изобретения поясняется чертежами, где:

на фиг.1 изображен турбонасосный агрегат, вид сбоку;

на фиг.2 - турбонасосный агрегат, продольный разрез;

на фиг.3 - лопатки рабочего колеса турбины, сечение;

на фиг.4 - расположение сопла в диске соплового аппарата, продольный разрез;

на фиг.5 - шнекоцентробежное рабочее колесо насоса, продольный разрез;

на фиг.6 - центробежное рабочее колесо насоса, основной диск с лопатками, продольное сечение.

Турбонасосный агрегат содержит турбинный узел 1, образующий привод турбонасосного агрегата. Турбинный узел включает корпус 2 подвода рабочего тела типа газа, объединенный с сопловым аппаратом 3, а также активную, по меньшей мере, одноступенчатую турбину и расположенный за турбиной по вектору потока рабочего тела корпус 4 отвода отработанного рабочего тела - газа.

Сопловый аппарат 3 выполнен в виде диска с наклонными, предпочтительно, сверхзвуковыми соплами 5, которые выполнены конфузорно-диффузорными. Турбина снабжена валом 6 с рабочим колесом 7, состоящим не менее чем из одного диска с лопатками 8 и межлопаточными каналами.

Турбонасосный агрегат содержит опорный узел 9, включающий прикрепленный к корпусу 4 отвода отработанного газа корпус 10 ходовой части турбонасосного агрегата не менее чем с двумя подшипниковыми опорами 11 и ходовой частью вала 12.

Турбонасосный агрегат содержит также насосный узел 13, включающий корпус 14 насоса, ротор с валом 15 и шнекоцентробежным рабочим колесом 16.

При этом вал 6 турбины, вал 12 ходовой части агрегата и вал 15 ротора насоса объединены в общий вал турбонасосного агрегата.

Корпус 2 подвода рабочего тела турбинного узла 1 снабжен подводящим патрубком 17, коллектором 18 и крышкой 19. Коллектор 18 включает осесимметричную герметичную кольцевую оболочку, по меньшей мере, большая часть которой имеет форму типа продольно усеченного фрагмента тора или тороида, герметично присоединенного с напорной стороны радиально эквидистантно относительно оси вала 6 турбины к диску соплового аппарата 3 по внешней и внутренней кольцевым кромкам 20.

Сопла 5 соплового аппарата 3 выполнены в диске в количестве 8-15 и продольными осями радиально эквидистантно удалены от оси турбины и разнесены по условной окружности на равные углы, определенные в диапазоне (24÷45)°. Пространственное удаление осей сопел 5 зафиксировано в точках пересечения последних с условной плоскостью диска соплового аппарата 3. Радиальное расстояние каждой из указанных точек от оси вала 6 турбины принято превышающим не менее чем на одну треть радиальной высоты лопатки 8 рабочего колеса 7 турбины радиальное расстояние поперечного корневого сечения упомянутой лопатки до вала 6 турбины. Продольная ось каждого сопла 5 соплового аппарата 3 расположена в условной плоскости, параллельной оси вала 6 турбины, нормально радиусу и наклонена в указанной плоскости под углом к условной плоскости диска соплового аппарата 3 в направлении, противоположном вектору вращения рабочего колеса 7 турбины под углом (12÷25)°.

Корпус 4 отвода отработанного рабочего тела выполнен герметичным со скошенной кольцевой стенкой 21, оппозитной выходным кромкам межлопаточных каналов рабочего колеса 7 турбины, и снабжен, преимущественно, тангенциальным патрубком 22 выхода отработанного рабочего тела.

Кольцевая оболочка коллектора 18 турбинного узла 1 герметично прикреплена к диску соплового аппарата 3 с охватом входных устий сопел 5 по внешней и внутренней кольцевым кромкам 20, предпочтительно, сваркой.

Лопатки 8 рабочего колеса 7 турбины выполнены выпукло-вогнутыми по ширине. Толщина лопатки 8 принята переменной в направлении вектора потока рабочего тела с максимумом, преимущественно, в средней части хордовой ширины лопатки. Хордовая ширина лопатки 8 в проекции на условную хордовую плоскость, соединяющую заходную и выходную боковые кромки лопатки 8, принята не превышающей радиальную высоту лопатки 8. Общее количество лопаток 8 рабочего колеса 7 турбины принято в 2,6÷34,4 раз превышающим количество сопел 5 в сопловом аппарате 3.

Лопатки 8 рабочего колеса 7 турбины радиально удалены от оси вала 6 турбины, не менее чем на 0,8R, где R - радиус диска рабочего колеса 7 турбины, и равномерно разнесены по окружности диска с градиентом радианной плотности G, определенным в диапазоне

Град. G=(10÷44) [ед/рад],

где градиент G - численная характеристика лопаток 8, размещенных в угловом диапазоне в один радиан.

Межлопаточный канал рабочего колеса 7 турбины выполнен конфузорно-диффузорным в направлении вектора потока рабочего тела с максимальным сужением площади поперечного проходного сечения S, определяемой в зоне максимальной толщины лопаток δmax из выражения

S=ΔR(2πR-Tδmax)/T,

где ΔR - радиальная высота межлопаточного канала;

T - число межлопаточных каналов по числу лопаток диска рабочего колеса турбины.

Вал 12 ходовой части агрегата выполнен консольным. При этом одна из консолей образует вал 6 турбины, а другая образует вал 15 насоса. Вал 12 ходовой части с указанными консолями образует общий вал турбонасосного агрегата.

Вал ротора турбонасосного агрегата оперт на корпус 10 ходовой части через подшипниковые опоры 11, преимущественно, снабженные шарикоподшипниками 23, один из которых, предпочтительно, зафиксирован в осевом направлении, а другой, предпочтительно, выполнен плавающим. Подшипники 23 выполнены с возможностью защиты рабочих полостей уплотнениями, в том числе типа лабиринтов 24. Вал ротора выполнен полым и снабжен на проток с системой жидкостного охлаждения, а, по меньшей мере, шарикоподшипник 23 со стороны турбины выполнен с возможностью дополнительного воздушного охлаждения посредством вентилятора (на чертежах не показано).

Корпус 14 насоса выполнен сборным. Корпус 14 включает корпус 25 входа с патрубком 26 осевого подвода перекачиваемой среды, корпус 27 отвода, состоящий из фронтального кольцевого элемента, соединенного с корпусом 25 входа, и снабженный патрубком 28 отвода, выполненным, преимущественно, диффузорным, тангенциального типа, а также из тыльного кольцевого элемента 29, связанного с фронтальным кольцевым элементом корпуса 27 отвода. Совместно они образуют проточную полость 30 с объемом, достаточным для размещения шнекоцентробежного рабочего колеса 16, автомата осевой разгрузки ротора и спирального отвода. Тыльный кольцевой элемент 29 корпуса 27 отвода выполнен уступообразным в поперечном сечении и объединен с внутренней стороны с тыльной стенкой корпуса 14 насоса.

При этом спиральный отвод выполнен, предпочтительно, в виде двухзаходной улитки с разнесением заходных устий, преимущественно, на 180° по радиальной закрутке и с диффузорно расширяющимися каналами и превышением площади выходного сечения относительно входного с градиентом расширения по ходу закрутки, принятым с соблюдением условия квазиравенства скоростей потоков в каждом канале улитки.

Шнекоцентробежное рабочее колесо 16 выполнено в виде конструктивно объединенного со шнеком 31 многозаходного центробежного рабочего колеса, образующего крыльчатку, предпочтительно, закрытого типа. Центробежное рабочее колесо включает основной и покрывной диски 32 и 33 соответственно с системой расположенных между ними лопаток 34, разделенных межлопаточными каналами 35. Лопатки 34 центробежного рабочего колеса выполнены, предпочтительно, различной длины и переменной высоты по длине, убывающей к выходу из рабочего колеса. Количество лопаток 34 принято от 4 до 16, предпочтительно, 12.

Шнек 31 шнекоцентробежного рабочего колеса 16 насоса выполнен не менее чем двухзаходным, снабжен плавным расширением в зоне 36 перехода канала шнека 31 в многозаходный канал центробежного колеса и спиральными лопастями 37. Лопасти 37 выполнены, преимущественно, с переменными, по меньшей мере, на части длины радиусом и шагом спиральной закрутки и имеют по ходу потока перекачиваемой среды заходный участок 38 с углом закрутки спирали с приращением величины радиуса каждой из лопастей от 0 до R в угловом диапазоне, составляющем (85-250)°. Градиент G шага угловой закрутки каждой лопасти 37 в пределах осевой длины спирали шнека 37 определен в диапазоне G=(17÷70)π рад/м.

Автомат осевой разгрузки ротора содержит кольцевую пяту 39, уступообразно закрепленную или выполненную на тыльной стенке корпуса 14 насоса. Автомат также включает кольцевой поясок 40, размещенный на тыльной стороне основного диска 32 шнекоцентробежного рабочего колеса 16 и сопряженный с пятой 39 с образованием переточного кольцевого канала 41. Переточный канал 41 включает боковое и торцевое щелевые уплотнения 42 и 43 соответственно и выполнен с возможностью саморегулируемого перетока перекачиваемой среды из зоны высокого в зону низкого давления центробежного рабочего колеса с обеспечением регулирования осевой разгрузки ротора турбонасосного агрегата. Основой диск 32 шнекоцентробежного рабочего колеса 16 снабжен в прикорневой части диска 32, по меньшей мере, одним переточным отверстием 44. Покрывной диск 33 шнекоцентробежного рабочего колеса 16 выполнен примыкающим к корпусу входа перекачиваемой среды через щелевое уплотнение 45.

Корпус 4 отвода отработанного рабочего тела в турбинном узле 1 снабжен торцовыми уплотнениями 46 для обеспечения герметичности конструктивных разъемов.

Турбонасосный агрегат смонтирован на жесткой, предпочтительно, сварной раме 47 с возможностью последующей установки на фундамент с возможностью разъемной фиксации посредством системы анкеров.

Турбонасосный агрегат вариантно предназначен для перекачивания горячей, холодной, промышленной воды, нефти и продуктов крекинга нефти с напором до 750 м и возможностью подачи (расхода) от 20 до 1000 м3/ч, в том числе при номинальной частоте вращения ротора 9,85·104 (±20%) об/мин.

В способе перекачивания холодной, горячей и промышленной воды, перекачивание выполняют с использованием, по меньшей мере, одного турбонасосного агрегата, конструктивно описанного выше.

Перекачивание холодной типа водопроводной воды производят в системе водоснабжения промышленных, гражданских и жилых комплексов.

Перекачивание горячей воды производят в том числе с избыточным давлением до 2 МПа и более и с температурой 85-105°C и более в системе отопления и/или горячего водоснабжения промышленных, гражданских и жилых комплексов.

Перекачивание промышленной воды производят для питания котлов энергетических и промышленных предприятий.

Работа турбонасосного агрегата осуществляется следующим образом.

После прогрева конструкции и слива конденсата из полости корпуса 4 отвода отработанного рабочего тела - газа турбинного узла 1 запускают турбонасосный агрегат. При этом проточная полость 30 корпуса 14 насоса заполнена перекачиваемой жидкостью до клапана на напорной магистрали, находящегося на выходе из насоса.

Открывают регулируемый клапан, подающий газ под давлением в коллектор 18 и через двенадцать сопел 5 соплового аппарата 3 на вход в турбину. Разгоняют газ до сверхзвуковых скоростей, передавая рабочему колесу 7 турбины кинетическую энергию. При этом ротор турбины выходит на номинальные обороты 170 с-1 (10200 об/мин).

Неуравновешенная площадь турбины создает на роторе осевую силу в сторону насоса, которую через вал воспринимает упорный подшипник 23, которую после выхода на номинальные обороты компенсирует автомат осевой разгрузки.

В насосном узле 13 перекачиваемая среда через патрубок 26 подвода, попадая на вход в шнекоцентробежное рабочее колесо 16, перемещается от центра к периферии под действием центробежных сил, приобретая при этом кинетическую энергию и получая закрутку в направлении вращения рабочего колеса.

После выхода из рабочего колеса 16 поток переходит в двухзаходный спиральный отвод, расширяющийся к патрубку 28 отвода перекачиваемой среды с соблюдением условия квазиравенства скоростей потоков в каждом канале отвода. Из отвода перекачиваемая среда попадает в патрубок отвода 28 и поступает в трубопровод для дальнейшего транспортирования.

При этом на номинальных оборотах ротора на шнекоцентробежное рабочее колесо 16 насоса также действует осевая сила. Эта осевая сила направлена в сторону турбины и пяты 39 автомата осевой разгрузки из-за разности диаметров щелевых уплотнений 42, 45 на рабочем колесе 16 и расположения зазора торцового щелевого уплотнения 43. Под воздействием указанной осевой силы ротор сдвигается, либо уменьшая торцовой зазор между рабочим колесом 16 и пятой 39 или наоборот раскрывая зазор в торцевом уплотнении 43, занимает равновесное положение, компенсируя осевую силу на упорном подшипнике 23.

Торцовые уплотнения 46 в полости корпуса 4 отвода пара не пропускают перекачиваемую и охлаждающую их жидкость с одной стороны в полость турбины, обеспечивая герметичность разъемов во всем диапазоне рабочих температур и не допуская эрозии конструктивных элементов. С другой стороны не пускают конденсат в полость опорного узла 9, которая сообщена с атмосферой через отверстие 48 в нижней зоне корпуса 10 ходовой части, предназначенное для слива допустимых утечек.

Дополнительно полость подшипника 23 защищена вращающимся лабиринтным уплотнением 24, что обеспечивает эвакуацию конденсата, возникающего от взаимодействия с горячим корпусом 4 отвода турбины, через отверстие 48 в корпусе 10 ходовой части. Точно также в насосной части установлено одинарное торцовое уплотнение 49, не допускающее перекачиваемую среду в подшипниковую полость, отделенную вращающимся лабиринтным уплотнением 24. В случае незначительной негерметичности торцового уплотнения 49 они выводятся из проточной полости 30 через отверстие 48 в корпусе 10 ходовой части. В процессе работы турбонасосного агрегата ротор и подшипники 23 охлаждают обдувом воздуха посредством вентилятора.

Во время работы обороты ротора фиксируют двумя датчиками 50 оборотов и датчиками вибрации, расположенными на корпусе 10 ходовой части. Фиксируют виброскорость, которая не должна превышать допустимых величин.

Останов турбонасосного агрегата осуществляют, закрывая клапан подачи пара, и после падения давления за насосом и остановки ротора закрывают задвижку на напорной магистрали насоса. Воду для охлаждения торцовых уплотнений 46 подают в полость турбинного узла 1 до полного остывания корпуса турбины.

Таким образом, за счет разработанных в изобретении конструктивно-технологических решений основных узлов агрегата и параметров их работы достигают повышение ресурса агрегата, надежности и эффективности подачи перекачиваемой среды потребителю при одновременном снижении материалоемкости и повышении компактности и КПД турбонасосного агрегата.

1. Турбонасосный агрегат, характеризующийся тем, что содержит турбинный узел, образующий привод турбонасосного агрегата и включающий корпус подвода рабочего тела типа газа, объединенный с сопловым аппаратом, выполненным в виде диска с наклонными, предпочтительно, сверхзвуковыми соплами, которые выполнены конфузорно-диффузорными, а также активную, по меньшей мере, одноступенчатую турбину, имеющую вал с рабочим колесом, состоящим не менее чем из одного диска с лопатками и межлопаточными каналами, и, кроме того, расположенный за турбиной по вектору потока рабочего тела корпус отвода отработанного рабочего тела; кроме того, турбонасосный агрегат содержит опорный узел, включающий прикрепленный к корпусу отвода корпус ходовой части турбонасосного агрегата не менее чем с двумя подшипниковыми опорами и ходовой частью вала, а также насосный узел, включающий корпус насоса, ротор с валом и шнекоцентробежным рабочим колесом, при этом вал турбины, вал ходовой части агрегата и вал ротора насоса объединены в общий вал турбонасосного агрегата, кроме того, корпус подвода рабочего тела турбинного узла снабжен подводящим патрубком и коллектором, включающим осесимметричную герметичную кольцевую оболочку, по меньшей мере, большая часть которой имеет форму типа продольно усеченного фрагмента тора или тороида, герметично присоединенного с напорной стороны радиально эквидистантно относительно оси вала турбины к диску соплового аппарата по внешней и внутренней кольцевым кромкам, а сопла соплового аппарата выполнены в диске в количестве 8÷15 и продольными осями радиально эквидистантно удалены от оси турбины и разнесены по условной окружности на равные углы, определенные в диапазоне (24÷45)°, при этом пространственное удаление осей сопел зафиксировано в точках пересечения последних с условной плоскостью диска соплового аппарата, а радиальное расстояние каждой из указанных точек от оси вала турбины принято превышающим не менее чем на одну треть радиальной высоты лопатки рабочего колеса турбины радиальное расстояние поперечного корневого сечения упомянутой лопатки до вала турбины, кроме того, продольная ось каждого сопла соплового аппарата расположена в условной плоскости, параллельной оси вала турбины, нормально радиусу и наклонена в указанной плоскости под углом к условной плоскости диска в направлении, противоположном вектору вращения рабочего колеса турбины под углом (12÷25)°.

2. Турбонасосный агрегат по п.1, отличающийся тем, что корпус отвода отработанного рабочего тела выполнен герметичным со скошенной кольцевой стенкой, оппозитной выходным кромкам межлопаточных каналов рабочего колеса турбины, и снабжен, преимущественно, тангенциальным патрубком выхода отработанного рабочего тела.

3. Турбонасосный агрегат по п.1, отличающийся тем, что кольцевая оболочка коллектора турбинного узла герметично прикреплена к диску соплового аппарата с охватом входных устий сопел по внешней и внутренней кольцевым кромкам, предпочтительно, сваркой.

4. Турбонасосный агрегат по п.1, отличающийся тем, что лопатки рабочего колеса турбины выполнены выпукло-вогнутыми по ширине, а толщина лопатки принята переменной в направлении вектора потока рабочего тела с максимумом, преимущественно, в средней части хордовой ширины лопатки, при этом хордовая ширина лопатки в проекции на условную хордовую плоскость, соединяющую заходную и выходную боковые кромки лопатки, принята не превышающей радиальную высоту лопатки, а общее количество лопаток рабочего колеса турбины принято в 2,6÷34,4 раз превышающим количество сопел в сопловом аппарате.

5. Турбонасосный агрегат по п.1, отличающийся тем, что лопатки рабочего колеса турбины радиально удалены от оси вала турбины, не менее чем на 0,8R, где R - радиус диска рабочего колеса турбины, и равномерно разнесены по окружности диска с градиентом радианной плотности G, определенным в диапазоне
Град. G=(10÷44) [ед/рад],
где градиент G - численная характеристика лопаток, размещенных в угловом диапазоне в один радиан.

6. Турбонасосный агрегат по п.1, отличающийся тем, что межлопаточный канал рабочего колеса турбины выполнен конфузорно-диффузорным в направлении вектора потока рабочего тела с максимальным сужением площади поперечного проходного сечения S, определяемой в зоне максимальной толщины лопаток δmax из выражения
S=ΔR(2πR-Tδmax)/T,
где ΔR - радиальная высота межлопаточного канала, T - число межлопаточных каналов по числу лопаток диска рабочего колеса турбины.

7. Турбонасосный агрегат по п.1, отличающийся тем, что вал ходовой части агрегата выполнен консольным, при этом одна из консолей образует вал турбины, а другая образует вал насоса, причем вал ходовой части с указанными консолями образует общий вал турбонасосного агрегата.

8. Турбонасосный агрегат по п.1, отличающийся тем, что вал ротора турбонасосного агрегата оперт на корпус ходовой части через упомянутые подшипниковые опоры, преимущественно, снабженные шарикоподшипниками, один из которых, предпочтительно, зафиксирован в осевом направлении, а другой, предпочтительно, выполнен плавающим, причем оба указанных шарикоподшипника выполнены с возможностью защиты рабочих полостей уплотнениями, в том числе типа лабиринтов, при этом вал ротора выполнен полым и снабжен на проток с системой жидкостного охлаждения, а, по меньшей мере, шарикоподшипник со стороны турбины выполнен с возможностью дополнительного воздушного охлаждения посредством вентилятора.

9. Турбонасосный агрегат по п.1, отличающийся тем, что корпус насоса выполнен сборным, включающим корпус входа с патрубком осевого подвода перекачиваемой среды, корпус отвода, состоящий из фронтального кольцевого элемента, соединенного с корпусом входа, и снабженный патрубком отвода, выполненным, преимущественно, диффузорным, тангенциального типа, а также из тыльного кольцевого элемента, связанного с фронтальным, которые совместно образуют проточную полость с объемом, достаточным для размещения шнекоцентробежного рабочего колеса, автомата осевой разгрузки ротора и спирального отвода, причем тыльный кольцевой элемент корпуса отвода выполнен уступообразным в поперечном сечении и объединен с внутренней стороны с тыльной стенкой корпуса насоса, а спиральный отвод насосного узла выполнен, предпочтительно, в виде двухзаходной улитки с разнесением заходных устий, преимущественно, на 180° по радиальной закрутке и с диффузорно расширяющимися каналами и превышением площади выходного сечения относительно входного с градиентом расширения по ходу закрутки, принятым с соблюдением условия квазиравенства скоростей потоков в каждом канале улитки.

10. Турбонасосный агрегат по п.1, отличающийся тем, что шнекоцентробежное рабочее колесо выполнено в виде конструктивно объединенного со шнеком многозаходного центробежного рабочего колеса, образующего крыльчатку, предпочтительно, закрытого типа, и включает основной и покрывной диски с системой расположенных между ними лопаток, разделенных межлопаточными каналами, причем лопатки рабочего колеса выполнены, предпочтительно, различной длины и переменной высоты по длине, убывающей к выходу из рабочего колеса, с количеством лопаток, принятым от 4 до 16, предпочтительно, 12, а шнек шнекоцентробежного рабочего колеса насоса выполнен не менее чем двухзаходным, снабжен плавным расширением в зоне перехода канала шнека в многозаходный канал центробежного колеса и спиральными лопастями, выполненными, преимущественно, с переменными, по меньшей мере, на части длины радиусом и шагом спиральной закрутки, имеющими по ходу потока перекачиваемой среды заходный участок с углом закрутки спирали с приращением величины радиуса каждой из лопастей от 0 до R в угловом диапазоне, составляющем (85-250)°, а градиент G шага угловой закрутки каждой лопасти в пределах осевой длины спирали шнека определен в диапазоне G=(17÷70)π рад/м.

11. Турбонасосный агрегат по п.9, отличающийся тем, что автомат осевой разгрузки ротора содержит кольцевую пяту, уступообразно закрепленную или выполненную на тыльной стенке корпуса насоса, а также включает кольцевой поясок, размещенный на тыльной стороне основного диска рабочего колеса и сопряженный с пятой с образованием переточного кольцевого канала, включающего боковое и торцевое щелевые уплотнения, выполненного с возможностью саморегулируемого перетока перекачиваемой среды из зоны высокого в зону низкого давления упомянутого центробежного колеса с обеспечением регулирования осевой разгрузки ротора турбонасосного агрегата.

12. Турбонасосный агрегат по п.9, отличающийся тем, что основой диск шнекоцентробежного рабочего колеса снабжен в прикорневой части диска, по меньшей мере, одним переточным отверстием, а покрывной диск выполнен примыкающим к корпусу входа перекачиваемой среды через щелевое уплотнение.

13. Турбонасосный агрегат по п.1, отличающийся тем, что корпус отвода отработанного рабочего тела в турбинном узле снабжен торцовыми уплотнениями для обеспечения герметичности конструктивных разъемов.

14. Турбонасосный агрегат по п.1, отличающийся тем, что смонтирован на жесткой, предпочтительно, сварной раме с возможностью последующей установки на фундамент с возможностью разъемной фиксации посредством системы анкеров.

15. Турбонасосный агрегат по п.1, отличающийся тем, что вариантно предназначен для перекачивания горячей, холодной, промышленной воды, нефти и продуктов крекинга нефти с напором до 750 м и возможностью подачи (расхода) от 20 до 1000 м3/ч, в том числе при номинальной частоте вращения ротора 9,85·104 (±20%) об/мин.

16. Способ перекачивания холодной, горячей и промышленной воды, характеризующийся тем, что перекачивание выполняют с использованием, по меньшей мере, одного турбонасосного агрегата, который выполнен по любому из пп.1-15.

17. Способ по п.16, отличающийся тем, что перекачивание холодной типа водопроводной воды производят в системе водоснабжения промышленных, гражданских и жилых комплексов.

18. Способ по п.16, отличающийся тем, что перекачивание горячей воды производят, в том числе с избыточным давлением до 2 МПа и более и с температурой 85-105°С и более в системе отопления и/или горячего водоснабжения промышленных, гражданских и жилых комплексов.

19. Способ по п.16, отличающийся тем, что перекачивание промышленной воды производят для питания котлов энергетических и промышленных предприятий.



 

Похожие патенты:

Группа изобретений относится к турбонасосостроению. Корпус насоса включает корпусы входа и отвода перекачиваемой среды и уступообразный тыльный кольцевой элемент, образующие совместно проточную полость для размещения шнекоцентробежного рабочего колеса закрытого типа и автомата осевой разгрузки ротора.

Изобретение касается гидравлической машины. Гидравлическая машина содержит колесо, размещенное на валу, при этом колесо и вал установлены подвижно с возможностью вращения вокруг оси Х5.

Изобретение относится к машиностроению, а именно к системам магнитного подвеса (СМП) роторных машин, и может найти применение в компрессорах, турбодетандерах и других установках.

Изобретение относится к компрессоростроению и может быть использовано в центробежных компрессорах. Технический результат достигается тем, что рабочее колесо центробежного компрессора, содержащее основной диск, лопатки, выполненные загнутыми назад относительно направления движения, согласно изменению, на периферийном участке лопатки выполнены с постоянным углом наклона, причем участок с постоянным углом наклона начинается на расстоянии, равном 0,7-0,95 D2 от наружного диаметра колеса.

Изобретение относится к нефтедобывающей промышленности, в частности к погружным электронасосным агрегатам, используемым для добычи нефти и откачки воды из скважин.

Изобретение относится к области насосостроения. Насос содержит корпус с подводом и отводом и ротор.

Изобретение относится к нефтедобывающей промышленности, в частности к погружным электронасосным агрегатам, используемым для добычи нефти и откачки воды из скважин.

Изобретение относится к нефтяной промышленности и может быть использовано для одновременно раздельной добычи нефти и закачки воды в обводненных скважинах, оборудованных установками электроцентробежных насосов.

Изобретение относится к электронасосным агрегатам, в частности, с магистральными горизонтальными центробежными насосами. .

Группа изобретений относится к турбонасосостроению. Корпус насоса включает корпусы входа и отвода перекачиваемой среды и уступообразный тыльный кольцевой элемент, образующие совместно проточную полость для размещения шнекоцентробежного рабочего колеса закрытого типа и автомата осевой разгрузки ротора.

Изобретение относится к турбонасосостроению. Турбонасосный агрегат содержит турбинный узел, включающий корпуса подвода и отвода пара, сопловый аппарат и турбину.

Группа изобретений относится к турбонасосостроению. Турбонасосный агрегат содержит турбинный, опорный и насосный узлы.

Изобретение относится к турбонасосостроению. Турбинный узел агрегата включает корпус подвода рабочего тела - пара, сопловый аппарат с наклонными соплами, турбину, имеющую вал с рабочим колесом, и расположенный за турбиной по потоку пара корпус отвода отработанного пара.

Изобретение относится к турбонасосостроению. Турбонасосный агрегат содержит турбинный узел c корпусами подвода и отвода рабочего тела, сопловым аппаратом, одноступенчатой турбиной.

Изобретение относится к области машиностроения, а именно к области лопаточных машин, и может быть использовано в турбонасосных агрегатах жидкостных ракетных двигателей и ядерных ракетных двигателей.

Изобретение относится к области гидромашиностроения в части возобновляемых источников энергии и может найти применение в системах и установках водоснабжения, орошения, осушки, увеличения напора на микро- и мини-ГЭС, накопления воды в судовых шлюзах.

Изобретение относится к насосостроению. .

Изобретение относится к насосостроению. .

Изобретение относится к теплоэнергетике и может быть использовано для утилизации вторичных энергоресурсов и низкопотенциальной энергии природных источников, а именно для трансформации тепловой энергии в механическую путем перемещения и нагнетания жидкостей.

Изобретение относится к турбинам газотурбинных двигателей наземного и авиационного применения. .
Наверх