Способ отказоустойчивого управления движением корабля по глубине

Изобретение относится к области судостроения. Способ заключается в использовании задатчика глубины, первого фильтра оценки сигнала глубины, четвертого фильтра оценки сигнала угла дифферента и сумматора, на вход которого вводят сигналы. С выхода сумматора сигнал заданной скорости перекладки руля вводят на вход рулевого привода. Затем используют дополнительно установленные два резервных датчика глубины, два измерителя угла дифферента, четыре фильтра, блок диагностики и коммутации, на вход которого вводят сигналы. В блоке диагностики и коммутации формируют сигналы модуля разности: | h 1 h _ 1 _ | , | h 1 h _ 1 _ | , | h 2 h _ 2 _ | , | ψ 3 ψ _ 3 _ | , | ψ 2 ψ _ 2 _ | , | ψ 3 ψ _ 3 _ | , которые сравнивают с заданной постоянной C1 и C2, если модули разности удовлетворяют условию: | h i h _ i _ | < C 1 и | ψ i ψ _ i _ | < C 2 , то сигналы h _ i _ вводят в блок формирования среднего значения оценки глубины hср. Сигналы ψ _ i _ вводят в блок формирования среднего значения оценки угла дифферента ψ _ с р _ . Сигнал среднего значения оценки глубины h _ с р _ из блока среднего значения оценки глубины вводят на вход сумматора. Сигнал среднего значения оценки угла дифферента ψ _ с р _ из блока среднего значения оценки угла дифферента вводят на вход сумматора. Повышается точность и надёжность управления движением корабля. 1 ил.

 

Изобретение относится к области судостроения - автоматическому отказобезопасному управлению движением корабля.

Известен способ автоматического управления движением судна по заданному путевому углу, реализованный в «Системе автоматического управления движением судна» (RU 2248914 C1, 27.03.2005). Способ управления движением судна основан на использовании информации от датчика путевого угла, задатчика путевого угла и сумматора, в котором по сигналам текущего путевого угла, заданного путевого угла, угловой скорости судна формируют результирующий сигнал для управления рулевым приводом судна.

Известен также способ автоматического управления движением корабля с использованием динамической модели углового движения корабля (RU №2223197 C1, 10.02.2004, принятый нами в качестве прототипа). Аппаратура автоматического управления движением судна, содержит задатчик курсового угла, датчик угла перекладки руля, приемник спутниковой навигационной системы, рулевой привод, дифференциатор и сумматор, первый вход которого соединен с выходом задатчика путевого угла, выход приемника СНС соединен с вторым входом сумматора, к третьему входу которого подключен выход датчика угла перекладки руля, выход сумматора соединен с входом рулевого привода, четвертый вход сумматора соединен с выходом динамической модели углового движения судна-фильтра. На выходе динамической модели движения судна-фильтра формируется оценка угла курса. Сигнал оценки угла курса алгебраически суммируется с сигналом угла курса, получаемого с выхода приемника СНС. Разность этих сигналов вводится на вход динамической модели движения судна-фильтра.

Таким образом, в широко распространенном способе управления формируют следующие сигналы для обеспечения автоматического управления движением судна.

В задатчике курсового угла формируют сигнал - ϕзд=f(t), который вводят на вход сумматора, на второй вход которого поступает сигнал оценки угла курса - φ _ . Сигнал оценки - φ _ вводят с выхода электронной (динамической) модели движения судна. Для формирования оценки сигнала угла курса на вход электронной модели движения корабля вводят сигнал угла перекладки руля δ от датчика рулевого привода и сигнал невязки с выхода электронной модели движения корабля и датчика курса: K ( φ φ _ ) . На выходе сумматора-регулятора формируется сигнал заданного значения угла перекладки руля - δзд:

δ з д = K 1 ( φ _ φ з д . ) + K 2 d / d t φ _ ( 1 )

где φ _ - сигнал оценки угла курса, с выхода электронной модели движения корабля-фильтра,

δзд - сигнал заданного угла перекладки руля (с выхода сумматора вводят на вход рулевого привода).

Недостатками известных способов управления движением являются:

- отсутствие встроенного контроля исправности источников информации,

- выход из строя датчиков состояния корабля приводит к аварийным ситуациям,

- выход из строя вычислительных сетей фильтра обработки входной информации также приводит к аварийным ситуациям.

Техническим результатом предлагаемого способа управления движением судна является:

- повышение точности и надежности системы управления движением,

- введение блока диагностики и коммутации позволило осуществлять контроль исправности системы управления и перестройки архитектуры системы автоматического управления движением (САУД), что позволило осуществить построение отказоустойчивой системы управления,

- введение 2х резервных датчиков глубины, двух измерителей угла дифферента и четырех фильтров позволило обеспечить сохранение нормальной работы САУД не только при сбоях в датчиках, но и в вычислительных сетях фильтров обработки входной информации.

Технический результат в предлагаемом способе управления достигается благодаря:

- формированию сигнала среднего значения оценок глубины h _ с р _ :

1) по трем сигналам глубины с трех датчиков глубины (при отсутствии сбоев во всех трех датчиках глубины);

2) по двум сигналам глубины с двух исправных датчиков глубины (третий любой вышел из строя),

3) одному сигналу от исправного датчика глубины,

- формированию сигнала среднего значения оценки угла дифферента - ψ _ с р _

1) по трем сигналам угла дифферента с датчика угла дифферента и двух измерителей угла дифферента (при отсутствии сбоев во всех каналах глубины и угла дифферента);

2) по двум сигналам угла дифферента с двух исправных каналов угла дифферента (третий - вышел из строя, любой, в том числе и из-за выхода из строя датчика глубины),

3) одному сигналу от исправного канала угла дифферента (при исправных датчиках глубины);

- формированию сигнала среднего значения оценок глубины - h _ с р _ :

1) по сигналам с трех фильтров (при исправности первого, второго и третьего фильтра,

2) по сигналам с двух исправных фильтров из трех (и исправного датчика глубины),

3) по сигналу с одного исправного фильтра из трех (и исправных датчиках глубины),

- формированию сигнала среднего значения угла дифферента ψ _ с р _ :

1) по сигналам с трех фильтров (при исправности четвертого, пятого и шестого фильтра),

2) по сигналам с двух исправных фильтров (при неисправном четвертом, или пятом, или шестом фильтре),

- своевременному выявлению сбоя в системе управления и изменению архитектуры САУД, позволяющему сохранить высококачественное автоматическое управление движением корабля по глубине.

Способ отказоустойчивого управления движением корабля по глубине

Способ управления движением корабля по глубине с использованием датчика руля, первого датчика глубины, датчика угла дифферента, датчика угловой скорости, рулевого привода, задатчика глубины, первого фильтра оценки сигнала глубины, четвертого фильтра оценки сигнала угла дифферента и сумматора, на вход которого вводят сигналы:

- угла перекладки руля - δ (с датчика руля),

- угловой скорости - ω (с датчика угловой скорости),

- заданной глубины корабля- hзд (с задатчика глубины).

На вход первого фильтра оценки сигнала глубины вводят сигналы:

- угла перекладки руля δ (с датчика руля),

- глубины h1 (с первого датчика глубины),

- оценки глубины h _ 1 _ (с выхода первого фильтра оценки сигнала глубины).

На вход четвертого фильтра оценки сигнала угла дифферента вводят сигналы:

- угла дифферента ψ (с выхода датчика угла дифферента),

- угла перекладки руля δ (с датчика руля).

Сигнал заданной скорости перекладки руля - dδзд/dt (с выхода сумматора) вводят на вход рулевого привода.

Используют также второй датчик глубины, третий датчик глубины, второй фильтр оценки сигнала глубины, третий фильтр оценки сигнала глубины, пятый фильтр оценки сигнала угла дифферента, шестой фильтр оценки сигнала угла дифферента, блок диагностики и коммутации, на вход которого вводят сигналы:

- оценки глубины - h _ 1 _ с выхода первого фильтра,

- оценки глубины - h _ 2 _ c выхода второго фильтра,

- оценки глубины - h _ 3 _ с выхода третьего фильтра,

- оценки угла дифферента - ψ _ 1 _ с выхода четвертого фильтра,

- оценки угла дифферента - ψ _ 2 _ с выхода пятого фильтра,

- оценки угла дифферента - ψ _ 3 _ с выхода шестого фильтра.

В блоке диагностики и коммутации формируют сигналы шести модулей разности:

| h 1 h _ 1 _ | , | h 1 h _ 1 _ | , | h 2 h _ 2 _ | , | ψ 3 ψ _ 3 _ | , | ψ 2 ψ _ 2 _ | , | ψ 3 ψ _ 3 _ | , которые сравнивают с заданной постоянной C1 и C2, если модули разности удовлетворяют условию: | h i h _ i _ | < C 1 и | ψ i ψ _ i _ | < C 2 , то «хорошие» сигналы h _ i _ вводят в блок формирования среднего значения оценки глубины hср, а «хорошие» сигналы ψ _ i _ вводят в блок формирования среднего значения оценки угла дифферента ψ _ с р _ , сигнал среднего значения оценки глубины h _ с р _ из блока среднего значения оценки глубины вводят на вход сумматора, сигнал среднего значения оценки угла дифферента ψ _ с р _ из блока среднего значения оценки угла дифферента вводят на вход сумматора.

Система отказоустойчивого управления движением корабля (см. чертеж).

На чертеже приведена блок-схема системы отказоустойчивого управления движением корабля, которая реализована в соответствии предложенным способом управления.

Система содержит

1 - датчик руля, 2 - первый датчик глубины, 3 - второй датчик глубины, 4 - третий датчик глубины, 5 - датчик угла дифферента, 6 - датчик угловой скорости, 7 - задатчик глубины, 8-13 - первый-шестой фильтры, 14 - блок диагностики и коммутации, 15 - блок среднего значения глубины, 16 - блок среднего значения угла дифферента, 17 - сумматор, 18 - рулевой привод, 19 - корабль.

Реализация рассматриваемой системы возможна:

- с применением аналоговых счетно-решающих элементов,

- с использованием цифровой техники,

- датчики следует применить серийно выпускаемые нашей промышленностью,

- фильтры могут базироваться на электронной модели движения корабля с постоянными коэффициентами, также может быть использована адаптивная модель движения корабля.

Особенности работы системы отказоустойчивого управления движением корабля

а. Формирование оценок измеряемой информации - h _ i _ , ψ _ i _ (используем блоки 1-5, 8-13).

1-ю оценку сигнала текущей глубины корабля - h _ 1 _ формируют в первом фильтре - 8, с использованием электронной динамической модели управляемого движения корабля по глубине - h. На вход электронной модели движения корабля вводят сигналы:

δ - угол перекладки руля (с датчика руля - 1),

h1 - измеренное значение глубины (с первого датчика глубины - 2),

h _ 1 _ - оценку текущей глубины корабля (с выхода электронной динамической модели, этот же сигнал h _ 1 _ через выход первого фильтра - 8 вводят в блок диагностики и коммутации - 14. Аналогично на втором фильтре - 9 с использованием электронной динамической модели движения корабля по глубине - h (на выходе второго фильтра) формируют вторую оценку текущей глубины - h _ 2 _ с использованием сигналов:

δ - (с датчика руля - 1),

h2 - измеренного значения глубины(с второго датчика глубины - 3),

h _ 2 _ - оценки текущей глубины корабля (с выхода второго фильтра - 9),

с выхода второго фильтра сигнал - h _ 2 _ вводят на вход блока диагностики и коммутации - 14. Аналогично на третьем фильтре - 10 с использованием электронной динамической модели формируют третью оценку текущей глубины - h _ 3 _ с использованием сигналов:

δ - (с датчика руля - 1),

h3 - измеренного значения глубины (с третьего датчика глубины - 4),

h _ 3 _ - оценки текущей глубины корабля (с выхода третьего фильтра - 10), сигнал h _ 3 _ с выхода третьего фильтра также вводят на вход блока диагностики и коммутации - 14.

Первую оценку текущего угла дифферента ψ _ 1 _ формируют в четвертом фильтре - 11 с использованием электронной модели управляемого движения корабля по углу дифферента - ψ. На вход электронной модели движения корабля по углу дифферента - 11 вводят сигналы:

δ - угол перекладки руля (с датчика руля - 1)

ψ - измеренного угла дифферента (с датчика угла дифферента - 5),

ψ _ 1 _ - первой оценки текущего угла дифферента (с выхода электронной модели движения корабля по углу дифферента), сигнал - ψ _ 1 _ с выхода четвертого фильтра - 11 также вводят на вход блока диагностики и коммутации - 14.

Вторую оценку текущего угла дифферента - ψ _ 2 _ формируют в пятом фильтре - 12, на вход которого - электронной модели движения корабля по углу дифферента вводят сигналы:

δ - угол перекладки руля (с датчика руля - 1),

h1 - (с первого датчика глубины - 2),

h3 - (с третьего датчика глубины - 4),

ψ _ 2 _ - (с выхода пятого фильтра - 12), сигнал ψ _ 2 _ также вводят на вход блока диагностики и коммутации - 14.

Третью оценку текущего угла дифферента ψ _ 3 _ формируют в шестом фильтре - 13, на вход которого вводят сигналы:

δ - угол перекладки руля (с датчика руля - 1),

h1 - (с первого датчика глубины - 2),

h2 - (с второго датчика глубины - 3),

ψ _ 3 _ - с выхода шестого фильтра - 13, сигнал - ψ _ 3 _ также вводят на вход блока диагностики и коммутации - 14.

б. Диагностирование сбоя в трех каналах выработки оценок - h _ i _ и трех каналах выработки оценок - ψ _ i _

В блоке 14 формируют величину разности измеренных сигналов - hi, ψi и

их оценок - h _ i _ , ψ _ i _ .

Если модуль разности меньше допустимого значения, то следует, что данный «i» канал формирования «i» оценки измеряемой информации - h _ i _ , ψ _ i _ исправен - «хороший»:

| h i h _ i _ | < C 1 | ψ i ψ _ i _ | < C 2 ( 2 )

Используют только эти «хорошие» каналы сигналов оценок, которые удовлетворяют условию (2) Из блока диагностики - 14 «хорошие» сигналы, соответственно, вводят в блок среднего значения оценки глубины - 15 и блок среднего значения оценки угла дифферента - 16. В блоке 15 формируют среднее значение - h _ с р _ используя введенные «хорошие» сигналы - h _ i _ из блока 14 и в блоке 16 формируют среднее значение - ψ _ с р _ , используя сигналы - ψ _ i _ . Сформированные сигналы - ψ _ с р _ , h _ с р _ из блоков 15 и 16 вводят на вход сумматора - 17.

в. Управление движением корабля

Боцман задатчиком глубины - 7 устанавливает требуемую глубину плавания корабля hзд, при этом в рассматриваемой системе формируется закон автоматического управления рулевым приводом - 18, который отклоняет руль и выводит корабль на заданную глубину. Рассмотрим операции, которые при этом выполняются в системе.

На вход сумматора 17 поступают сигналы:

- заданной глубины - hзд (с задатчика глубины - 7),

- угловой скорости- ω (с датчика угловой скорости - 6),

- угла перекладки руля - δ (с датчика руля - 1),

- среднее значение оценок угла дифферента - ψ _ с р _ (с блока среднего значения оценок - ψ _ с р _ 16),

- среднее значение оценок глубин - ψ _ с р _ (с блока среднего значения оценок - 15).

В сумматоре - 17 формируется закон управления рулевым приводом - 18 для обеспечения движения корабля на заданной глубине - hзд

d δ / d t з д = K 1 ( h _ с р _ h з д ) + K 2 ψ _ с р _ + K 3 ω K 4 δ ( 3 )

Сигнал - dδ/dtзд с выхода сумматора - 17 вводится на вход рулевого привода - 18, при этом в соответствие с законом (3) корабль будет двигаться на глубине h=h зд.

Проведенное моделирование работы рассмотренной выше системы подтвердило эффективность использования предложенного способа управления.

Способ управления движением корабля по глубине с использованием датчика руля, первого датчика глубины, датчика угла дифферента, датчика угловой скорости, рулевого привода, задатчика глубины, первого фильтра оценки сигнала глубины, четвертого фильтра оценки сигнала угла дифферента и сумматора, на вход которого вводят сигналы:
- угла перекладки руля δ (с датчика руля),
- угловой скорости ω (с датчика угловой скорости),
- заданной глубины корабля hзд (с задатчика глубины),
на вход первого фильтра оценки сигнала глубины вводят сигналы:
- угла перекладки руля δ (с датчика руля),
- глубины h1 (с первого датчика глубины),
- оценки глубины h _ 1 _ (с выхода первого фильтра оценки сигнала глубины),
на вход четвертого фильтра оценки сигнала угла дифферента вводят сигналы:
- угла дифферента ψ (с выхода датчика угла дифферента),
- угла перекладки руля δ (с датчика руля),
сигнал заданной скорости перекладки руля - dδзд/dt (с выхода сумматора) вводят на вход рулевого привода, отличающийся тем, что используют второй датчик глубины, третий датчик глубины, второй фильтр оценки сигнала глубины, третий фильтр оценки сигнала глубины, пятый фильтр оценки сигнала угла дифферента, шестой фильтр оценки сигнала угла дифферента, блок диагностики и коммутации, на вход которого вводят сигналы:
- оценки глубины - h _ 1 _ с выхода первого фильтра,
- оценки глубины - h _ 2 _ c выхода второго фильтра,
- оценки глубины - h _ 3 _ с выхода третьего фильтра,
- оценки угла дифферента - ψ _ 1 _ с выхода четвертого фильтра,
- оценки угла дифферента - ψ _ 2 _ с выхода пятого фильтра,
- оценки угла дифферента - ψ _ 3 _ с выхода шестого фильтра,
в блоке диагностики и коммутации формируют сигналы модуля разности:
| h 1 h _ 1 _ | , | h 1 h _ 1 _ | , | h 2 h _ 2 _ | , | ψ 3 ψ _ 3 _ | , | ψ 2 ψ _ 2 _ | , | ψ 3 ψ _ 3 _ | , которые сравнивают с заданной постоянной C1 и C2, если модули разности удовлетворяют условию: | h i h _ i _ | < C 1 и | ψ i ψ _ i _ | < C 2 , то сигналы h _ i _ вводят в блок формирования среднего значения оценки глубины hср, а сигналы ψ _ i _ вводят в блок формирования среднего значения оценки угла дифферента ψ _ с р _ , сигнал среднего значения оценки глубины h _ с р _ из блока среднего значения оценки глубины вводят на вход сумматора, сигнал среднего значения оценки угла дифферента ψ _ с р _ из блока среднего значения оценки угла дифферента вводят на вход сумматора.



 

Похожие патенты:

Изобретение относится к системе активной и пассивной стабилизации судна, такого как корабли, суда для работ на мелководье, буровые вышки, баржи, платформы и подъемные краны, работающие на море.

Способ управления самолетом с двумя и более двигателями заключается в дифференциальной подаче топлива в двигатели. Подача осуществляется наряду с основными топливными насосами двигателей еще и от дополнительной топливной системы, приводимой в действие от приводной рессоры одного из основных двигателей или от электродвигателя и управляемой от гироскопической системы стабилизации-управления электрического или пневматического типа.
Изобретение относится к области приборостроения и может найти применение при управлении беспилотными летательными аппаратами (БЛА). Технический результат - повышение эффективности управления путем независимого ввода дополнительных поправок в каждый из приводов наведения БЛА и повышение точности наведения.

Изобретение относится к мобильному роботизированному устройству и способу его управления. Устройство содержит, по меньшей мере, один смещаемый элемент (8, 9) датчика для обнаружения столкновения между мобильным устройством и неподвижным объектом.

Изобретение относится к судовождению и может быть использовано для автоматизации управления траекторией движения любых типов судов, выполняющих сложное маневрирование, в частности, с большими углами дрейфа.

Изобретение предназначено для применения в области авиационного приборостроения, в частности в пилотажно-навигационном оборудовании летательных аппаратов (ЛА). Технический результат - повышение надежности и безопасности совершения посадки ЛА, увеличение точности формирования заданной траектории посадки.

Изобретение относится к способам управления самолетами при выполнении боевых задач. Способ сопровождения боевых самолетов включает взлет и полет основного боевого самолета, а также боевых самолетов уменьшенных размеров с компьютерным управлением и со своим боевым комплектом.

Изобретение относится к способу и устройству управления для бортовых систем стабилизации углового положения летательного аппарата. .

Изобретение относится к бортовым цифроаналоговым устройствам для систем автоматического управления существенно нестационарными беспилотными летательными аппаратами (ЛА).

Изобретение относится к устройствам управления для бортовых систем стабилизации углового движения летательного аппарата. .

Изобретение относится к системам управления высокоманевренными объектами. Система содержит датчики входной информации и аппаратуру спутниковой навигации, подключенные к управляющему вычислительному устройству (УВУ), выходы которого подключены к устройству управления исполнительными механизмами (УУИМ).

Изобретение относится к области судовождения по заданному маршруту. Предложенный способ базируется на автоматическом управлении движением судна с двумя законами управления - оптимальным (в смысле точности стабилизации судна на курсе при спокойном море) и «облегченным» (для сохранности работоспособности рулевого привода при сильном волнении на море).

Изобретение относится к технике управления подвижными объектами, например судами, работающими в неблагоприятных внешних условиях. Система содержит группу датчиков, блок сбора информации, связанный с аппаратурой спутниковой навигации и снабженный источником импульсного питания, подсистему инерциальной навигации и подсистему оптической коррекции.

Изобретение относится к области судовождения - автоматическому управлению движением судна по заданному направлению. .

Изобретение относится к области судовождения. .

Изобретение относится к водному транспорту и может быть использовано для управления траекторией движения буксируемого судна при выполнении буксирной операции. .

Изобретение относится к области судовождения. .

Изобретение относится к техническим средствам судовождения. .

Изобретение относится к области судовождения, в частности к автоматическому управлению движением судна. .

Изобретение относится к средствам автоматического управления движением судов и динамического позиционирования судов. .

Способ управления движением судна по широте и долготе позволяет управлять движением судна по заданной траектории с корректировкой скорости движения по времени. Корректировка по времени обеспечивает нахождение судна в заданной точке в заданное время. Использование в качестве навигационной информации широт и долгот повышает точность управления движением как в пространстве, так и во времени. Точное управление с использованием текущих и заданных во времени широт и долгот судна реализуется с учетом текущего нахождения путевого угла в одном из четырех секторов в диапазоне от 0° до 360°. При больших угловых изменениях заданной траектории движения обеспечивается автоматический переход на штатное управления движением по заданному путевому углу и заданной скорости хода судна. Достигается минимизация отклонения судна от заданной траектории, повышение экономичности и безопасности управления движением, прохождение судна в узкостях и управление перехода на типовое (штатное) движение судна. 1 ил.
Наверх