Устройство для измерений геофизических и технологических параметров в процессе бурения с электромагнитным каналом связи

Изобретение относится к области геофизических исследований скважин, а именно к приборам для измерений геофизических и технологических параметров в процессе бурения. Техническим результатом является повышение информативности измерений и точности геонавигации в процессе бурения за счет расположения зонда для измерения удельного электрического сопротивления на максимально близком расстоянии к долоту в наддолотном модуле (НДМ). Устройство по изобретению содержит забойную телеметрическую систему (ЗТС), включающую бурильную колонну, корпус, блок питания, измерительные модули, приемо-передающий модуль, электрический разделитель, выполненный в виде отдельного переводника. НДМ установлен непосредственно над долотом. При этом долото состоит из корпуса с центральным промывочным отверстием, на котором размещен центральный электрод. В свою очередь центральный электрод расположен между изоляторами и электрически изолирован от корпуса, в котором расположены электрические схемы, измерительные датчики, источник питания и передающее устройство. При этом НДМ снабжен зондом измерения удельного электрического сопротивления пласта, включающим измеритель тока, соединенный с низом бурильной колонны и центральным электродом указанного модуля, и измеритель разности потенциалов между низом бурильной колонны и центральным электродом указанного модуля. Кроме того, выходы измерителя тока и указанного измерителя разности потенциалов соединены с выходным узлом передающего устройства НДМ. 4 ил.

 

Изобретение относится к области геофизических исследований скважин, а именно к приборам для измерений геофизических и технологических параметров в процессе бурения, и может быть использовано для измерения электрических характеристик горных пород и геонавигации.

Известно устройство для определения удельного электрического сопротивления (УЭС) вблизи долота. В приборе для измерения в процессе бурения в качестве фокусирующего устройства используется буровое долото и прилегающая часть воротника бура, а измерительный электрод находится на торце или боковой поверхности бура (Патент ЕАПВ №014920, публ. 29.04.2011 г. «Способ и устройство для определения электрического сопротивления породы спереди и сбоку долота»).

Недостатком данного устройства является: значительное влияние бурового раствора на показания метода. Для обеспечения питания зонда необходимы разделение компоновки нижней части бурильных труб, либо установка тороидальных катушек, что усложняет устройство и снижает надежность.

Известно устройство для электрического каротажа скважин в процессе бурения, в котором решается задача сокращения размеров устройства и уменьшения аппаратурных затрат, а также повышения информативности геофизических данных каротажа в процессе бурения без увеличения габаритов установки (патент РФ №2368779, публ. 27.09.2009 г.).

Устройство содержит электрический разделитель, установленный между колонной труб и нижней частью бурового инструмента. В середине нижней части бурового инструмента нанесено электроизоляционное покрытие, поверх которого установлен электрод. Между колонной труб и нижней частью бурового инструмента размещено передающее устройство. При этом электрод соединен с нижней частью бурового инструмента через измеритель тока, выход которого подключен к первому входу передающего устройства, и измеритель потенциала, выход которого подключен ко второму входу передающего устройства. По обе стороны от электрода могут быть также установлены дополнительные электроды, соединяемые электрически с нижней частью бурового инструмента через ключевое устройство и подключаемые через генератор тока к передающему устройству.

В устройстве совмещены функции передающего диполя и зонда электрического каротажа. Это позволяет совместить процесс передачи информации и измерение методом бокового каротажа УЭС пород, окружающих скважину.

Недостатком данного устройства является расположение измерительных датчиков (центральный электрод) на значительном расстоянии от долота, что приводит к запаздыванию информации об УЭС и снижает эффективность метода для целей геонавигации в процессе бурения.

Известно устройство, в котором измерительные датчики расположены в непосредственной близости от долота в корпусе наддолотного модуля (пат. РФ на полезную модель №27839, публ. 20.02.2003 г.).

Устройство содержит забойную телеметрическую систему, включающую бурильную колонну, корпус, блок питания, измерительные модули, модуль передающего устройства, электрический разделитель, выполненный в виде отдельного переводника, устанавливаемого непосредственно над забойным двигателем, при этом в устройстве непосредственно над долотом установлен наддолотный модуль, соединенный с валом забойного двигателя и состоящий из корпуса с центральным промывочным отверстием, на котором размещен центральный электрод, расположенный между изоляторами и электрически изолированный от корпуса. В корпусе расположены электрические схемы, измерительные датчики, источник питания и передающее устройств, а в модуль передающего устройства введено приемно-обрабатывающее устройство, осуществляющее прием сигналов от наддолотного модуля (прототип).

Недостаток известного устройства заключается в том, что в наддолотном модуле отсутствует канал непосредственного измерения УЭС пласта, что снижает информативность измерений и точность геонавигации.

В предлагаемом изобретении решается задача повышения информативности измерений и точности геонавигации в процессе бурения за счет расположения зонда для измерения УЭС на максимально близком расстоянии к долоту в наддолотном модуле.

Указанная задача решается тем, что устройство для измерений геофизических и технологических параметров в процессе бурения с электромагнитным каналом связи, содержит забойную телеметрическую систему (ЗТС), включающую бурильную колонну, корпус, блок питания, измерительные модули, приемо-передающий модуль, электрический разделитель, выполненный в виде отдельного переводника, а также установленный непосредственно над долотом наддолотный модуль, соединенный с валом забойного двигателя и состоящий из корпуса с центральным промывочным отверстием, на котором размещен центральный электрод, расположенный между изоляторами и электрически изолированный от корпуса, при этом в корпусе наддолотного модуля расположены электрические схемы, измерительные датчики, источник питания и передающее устройство. В отличие от прототипа, в заявляемом устройстве наддолотный модуль снабжен зондом измерения УЭС, включающим измеритель тока, соединенный с низом бурильной колонны и центральным электродом указанного модуля, и измеритель разности потенциалов между низом бурильной колонны и центральным электродом указанного модуля, при этом выходы измерителя тока и указанного измерителя разности потенциалов соединены с выходным узлом передающего устройства наддолотного модуля.

На фиг.1 показано устройство для измерения параметров скважин.

На фиг.2 показан геометрический фактор зонда.

На фиг.3 приведены расчеты для диаметра d наддолотного модуля 150 мм, УЭС бурового раствора 1 Ом·м, и диаметрах D долота- 168, 198, 264 мм.

На фиг.4 приведена диаграмма УЭС, полученная в процессе проводки скважины.

На фиг.1 устройство содержит забойную телеметрическую систему (ЗТС) в составе бурильной колонны 1, расположенную в корпусе 2, блок питания, измерительные модули (на фиг. не показаны), приемопередающий модуль 3, электрический разделитель 4, выполненный в виде отдельного переводника, а также установленный непосредственно над долотом 5 с диаметром D наддолотный модуль с диаметром d, состоящий из корпуса 6 с центральным промывочным отверстием, на котором размещен центральный электрод 7, расположенный между изоляторами 8 и электрически изолированный от корпуса 6, при этом в корпусе наддолотного модуля расположены электрические схемы, измерительные датчики, источник питания (на фиг.1 не показаны) и передающее устройство 9 для передачи сигналов на приемо-передающий модуль 3 ЗТС. Наддолотный модуль снабжен зондом измерения УЭС, включающим измеритель тока 10, соединенный с низом бурильной колонны 11 (через вал забойного двигателя, который не показан на фиг.1) и центральным электродом 7 указанного модуля, и измеритель разности потенциалов 12 между низом бурильной колонны 11 и центральным электродом 7 указанного модуля. При этом выходы измерителя тока 10 и указанного измерителя разности потенциалов 12 соединены с выходным узлом передающего устройства 9 наддолотного модуля.

Устройство работает следующим образом: низ бурильной колонны 11 и центральный электрод 7 наддолотного модуля образует электрический диполь, на который передающее устройство 9 передает сигнал, кодированный импульсами тока от наддолотного модуля, на приемопередающий модуль 3 ЗТС через диполь, образованный бурильной колонной 1 и низом бурильной колонны 11. Далее ЗТС через этот же диполь передает информацию на поверхность по беспроводному электромагнитному каналу связи.

Этот же диполь используется для измерения УЭС пластов посредством измерения разности потенциалов U (между низом бурильной колонны 11 и электродом 7) и тока I, проходящего от электрода 7 к низу бурильной колонны 11.

Кажущееся сопротивление пласта вычисляется по формуле:

ρ k ( r ) = k U I ( 1 )

где k - коэффициент зонда для измерения УЭС, который рассчитывается на основе математического моделирования и зависит от длины изолятора 8, диаметра наддолотного модуля d, длины центрального электрода 7 и диаметра долота D.

Для наддолотного модуля диаметром: 150 мм, длиной колонны: 5-7 м и изолятора: 0,8 - 0,1 м, длиной центрального электрода: 7-23 мм, k=1,396.

На фиг.2 показан геометрический фактор G(r), рассчитываемый по формуле:

G ( r ) = ρ k ( r ) ρ 1 ρ 2 ρ 1 ( 2 )

где:

ρ1 - УЭС покрывающего пласта, Ом·м

ρ2 - УЭС пласта, в котором находится инструмент, Ом·м

ρ k ( r ) - кажущееся сопротивление пласта, Ом·м

r - расстояние до границы покрывающего пласта от электрода наддолотного модуля, м.

На фиг.2 видно, что на расстоянии 0,7-0,9 м чувствительность к границе остается, а на расстоянии 0,5 м регистрируется только 20% сигнала от покрывающего пласта.

При прохождении пласта важно оценить влияние бурового раствора и диаметра долота для заданного диаметра бурильной колонны.

На фиг.3 приведены зависимости значений кажущегося сопротивления пласта ρ k ( r ) от удельного электрического сопротивления (УЭС) пласта при различных диаметрах долота.

Данные зависимости можно использовать для внесения поправок и более точного определения УЭС пласта.

На фиг.4 приведен пример проводки скважины, где ρ k ( r ) - значения кажущегося сопротивления пласта.

Устройство для измерений геофизических и технологических параметров в процессе бурения с электромагнитным каналом связи, содержащее забойную телеметрическую систему (ЗТС), включающую бурильную колонну, корпус, блок питания, измерительные модули, приемо-передающий модуль, электрический разделитель, выполненный в виде отдельного переводника, а также установленный непосредственно над долотом наддолотный модуль, состоящий из корпуса с центральным промывочным отверстием, на котором размещен центральный электрод, расположенный между изоляторами и электрически изолированный от корпуса, при этом в корпусе наддолотного модуля расположены электрические схемы, измерительные датчики, источник питания и передающее устройство, отличающееся тем, что наддолотный модуль снабжен зондом измерения удельного электрического сопротивления (УЭС) пласта, включающим измеритель тока, соединенный с низом бурильной колонны и центральным электродом указанного модуля, и измеритель разности потенциалов между низом бурильной колонны и центральным электродом указанного модуля, при этом выходы измерителя тока и указанного измерителя разности потенциалов соединены с выходным узлом передающего устройства наддолотного модуля.



 

Похожие патенты:

Изобретение относится к области геофизики и может быть использовано для определения насыщения флюидом порового пространства пород исследуемых пластов. Способ определения насыщения водой в подземном пласте включает в себя определение глубины проникновения в пласт на основании множества измерений, выполняемых в стволе скважины, пробуренном сквозь пласт.

Изобретение относится к области исследования обсаженных скважин и предназначено для оценки электрохимической активности среды в заколонном пространстве методом вызванной поляризации (ВП).

Изобретение относится к области геофизики и может быть использовано при электрическом каротаже скважин. .

Изобретение относится к области изготовления, градуировки и обслуживания приборов и устройств для геофизических измерений и может быть использовано в оборудовании для каротажа, содержащем систему охлаждения с использованием криогенных жидкостей.

Изобретение относится к обработке изображения или каротажной информации, а более конкретно, к обработке изображения или результатов исследований в скважине на основе объема исследования.

Изобретение относится к области измерительной техники и может быть использовано для проведения каротажа на рудных скважинах. .

Изобретение относится к области исследований нефтяных скважин, а именно к акустическим измерениям, проводимым для определения формы и размеров области заводнения нефтяного пласта в окрестностях скважины.

Изобретение относится к геофизическим исследованиям электрических параметров пород в нефтегазовых скважинах. .

Изобретение относится к области геофизических исследований в скважинах, а именно к приборам электрического каротажа в процессе бурения. .

Изобретение относится к беспроводной связи посредством радиосигналов, предназначенной для использования при анализе геологических формаций. .

Изобретение относится к способу и устройству для скважинных измерений для контроля и управления нефтяными и газовыми эксплуатационными, нагнетательными и наблюдательными скважинами и, в частности, к способу и устройству для контроля параметров ствола скважины и пласта в месте залегания.

Изобретение относится к бурению скважины и может быть использовано для контроля забойных параметров и каротаже в процессе бурения. Техническим результатом является повышение качества исследования скважины за счет увеличения надежности передачи информации от забоя на поверхность.

Изобретение относится к эксплуатации нефтяных и газовых скважин и может быть использовано при контроле коррозионного состояния обсадных колонн (ОК) и насосно-компрессорных труб (НКТ) скважин.

Изобретение относится к креплению скважин, в частности к способу определения целостности кольцевого уплотнения обсадной колонны в скважине. Техническим результатом является снижение трудозатрат на обеспечение качественного уплотнения межтрубного пространства в скважине.

Изобретение относится к гидрологии, бурению и эксплуатации скважин и может быть использовано при проведении геофизических исследований технического состояния скважин.

Способ обеспечивает определение объема отсепарированного попутного нефтяного газа (ПНГ) в установке предварительного сброса воды (УПСВ) или дожимной насосной станции (ДНС).

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для определения качества цементирования скважин. Акустический способ определения места перетока флюида в заколонном пространстве скважины заключается в равномерном перемещении вдоль скважины акустического преобразователя и отработке полученного на его выходе шумового сигнала, по которому судят о глубине расположения места перетока флюида.

Изобретение относится к гидрогеологии, бурению и эксплуатации скважин и может быть использовано для проведения геофизических исследований технического состояния скважин.

Изобретение относится к системе и способу минимизации поглощения бурового раствора в пределах подземных пластов-коллекторов. Техническим результатом является снижение потерь материалов и повышение эффективности эксплуатации скважин.

Группа изобретений относится к нефтедобывающей промышленности, а именно к пакерам с электронным измерительным прибором и способам для их реализации. Обеспечивает повышение эффективности эксплуатации скважины.

Изобретение относится к исследованию скважин и может быть использовано для непрерывного контроля параметров в скважине. Техническим результатом является упрощение конструкции системы наблюдения за параметрами в скважине. Предложена система наблюдения в скважине, включающая датчики, в частности, давления и температуры, кабель, соединяющий скважинную систему наблюдения и устье скважины. При этом устье скважины содержит электрический вывод устья, имеющий телеметрическую систему сбора данных и источник питания для скважинной системы наблюдения. Кроме того, электрический вывод устья содержит командный модуль для скважинной системы наблюдения и модуль хранения данных с микропроцессором. 4 н. и 20 з.п. ф-лы, 4 ил.
Наверх