Система управления гранатометом /варианты/

Изобретение относится к переносным и передвижным пусковым устройствам и к боевым ракетам, а именно к гранатометам всех калибров, к пусковым установкам наземного и воздушного базирования, к снайперским винтовкам, к артиллерии при стрельбе в условиях визуальной видимости. Система управления гранатомётом содержит лазерный дальномер, выход которого соединён со входом процессора или блока памяти, имеет датчик ветра, датчик атмосферного давления и датчик силы тяжести, при этом имеет вспомогательный источник сигналов дальности, который имеет три кнопки, разовое нажатие на две из которых прибавляет или убавляет замеренную дальность, а долговременное нажатие включает нарастающее изменение, причём поправка отображается в поле зрения визира оптического прицела, а третья кнопка обнуляет ручную поправку, а расположены эти кнопки под большим пальцем правой руки с левой стороны задней рукоятки. Технический результат - повышение точности стрельбы. 3 з.п. ф-лы.

 

Изобретение относится к переносным и передвижным пусковым устройствам и к боевым ракетам, а именно - к гранатомётам всех калибров, к пусковым установкам наземного и воздушного базирования, к снайперским винтовкам, к артиллерии при стрельбе в условиях визуальной видимости.

Известны гранатомёты, состоящие из боевой части и ракетного двигателя, см. например, интернет, википедия, РПГ-7, прицельным приспособлением которого является откидная рамка. Но точность стрельбы из них невелика. При современном уровне ракетной техники не проблема доставить боевую часть на любое расстояние, проблема - попасть! Можно выпустить 100 гранат и не попасть ни разу, а с хорошей системой управления можно попасть с первого-второго выстрела. Достижения электроники позволили сделать дешёвой и лёгкой систему определения дальности и расчёт угла возвышения и времени полёта.

Известны серийные образцы и проекты гранатомётов, имеющих лазерный дальномер и вычислитель траектории, и гранаты с таймером взрывателя, см. пат. № RU 2240485.

Задача и технический результат данного изобретения - повышение точности стрельбы и возможность подрыва гранаты в воздухе в заданной точке.

ВАРИАНТ 1. Для полёта гранаты в пределах прямой наводки (полёта гранаты по прямой линии согласно моему отдельному изобретению, пат. № RU 2499973) установка углов возвышения не нужна, но не лишним будет внесение поправок на ветер, высокогорье (то есть атмосферное давление), температуру воздуха (то есть его плотность), температуру заряда (то есть скорость его горения), угол возвышения или снижения, силу тяжести в данном месте и поправку на вращение Земли. Все поправки должны вноситься с учётом расстояния до объекта, за которым или перед которым прячется противник, то есть можно - в само значение дальности. Эти показатели будут влиять на направление прямого полёта (выше-ниже, левей-правей). Они будут незначительно влиять и на прямолинейность траектории полёта, но это влияние меньшего порядка, и им можно пренебречь. Теоретически следует вносить поправку и на ускорение Кориолиса, но в пределах прямой видимости она по сравнению с другими незначительна, и ей также можно пренебречь.

С учётом всего сказанного система управления гранатомётом состоит из лазерного дальномера, выход которого соединён со входом процессора или блока памяти, со входом последнего также соединены: задатчик ручной поправки дальности и датчики или задатчики следующих параметров: боковой и продольной (попутной или встречной) составляющих скорости ветра, и/или атмосферного давления, и/или температуры воздуха, и/или температуры заряда, и/или угла возвышения или снижения, и/или силы тяжести в данном месте, и/или поправки на вращение Земли, а выход процессора или блока памяти связан с дисплеем/дисплеями, отображающим вносимые поправки в делениях визира оптического прицела и/или в делениях лимба вертикальной наводки прицела (при любых сочетаниях альтернативных признаков с другими признаками обеспечивается один и тот же технический результат - внесение поправок и учёт их влияния на выдаваемый сигнал), причём дальномер и процессор или блок памяти включаются выключателем через реле времени. Последнее желательно для того, чтобы можно было зафиксировать результат измерения дальности и сообщить его товарищам, не имеющим дальномера.

Оптимальное расположение такого выключателя - на спусковом крючке в пределах свободного хода.

Система может иметь процессор, вычисляющий значение дальности с учётом поправок, а может иметь просто блок памяти, куда внесены все значения дальности вплоть до максимальной с определённым шагом, например 0,25 метра, и соответствующие им углы возвышения. В последнем случае система памяти получает от дальномера дальность.

Сравнивает её с ближайшей дальностью в памяти и выдаёт на дисплеи поправок соответствующие этой дальности значения. Быстродействие такой системы может быть выше, чем с процессором, что особенно важно при стрельбе по быстро движущейся цели.

В ряде случаев требуется зафиксировать значение дальности, прежде чем делать выстрел. Например, при стрельбе в окно без задней стенки, или при стрельбе по быстро движущемуся или летящему объекту, когда надо брать упреждение и выносить линию прицеливания, а значит, и линию лазерного дальномера, вперёд. И в том и в другом случаях дальномер покажет «бесконечность». То есть надо сначала наводить дальномер на стену здания чуть дальше окна, или на сам движущийся объект, или, если объект движется по дороге - на дорогу, а затем фиксировать это значение дальности. И только после этого - стрелять, в частности - с необходимым упреждением.

Чтобы можно было зафиксировать дальность, определённую для одного объекта, при переводе линии прицеливания в сторону система имеет переключатель, отключающий дальномер и включающий ячейку памяти, сохраняющую последнее значение дальности. Такой переключатель может быть расположен на спусковом крючке в пределах дальнейшего свободного хода или на второй рукоятке оружия (или на педали - для артиллерии). Желательна индикация режима фиксации в виде светодиода в визире оптического прицела, особенно если переключатель расположен на спусковом крючке в области дальнейшего выбирания свободного хода, которая тактильно чувствуется слабо.

В ряде случаев требуется вносить ручную поправку дальности, например при той же стрельбе в окно, или при стрельбе вглубь кустов, или при стрельбе по быстро движущемуся объекту, который движется не строго на траверсе, а приближаясь или удаляясь. Например, линия прицела наводится на кусты, за которыми укрылся противник. Дальномер определяет дальность до первого листа этого куста, и выстрел получится вровень с кустом, но с недолётом до противника. Поэтому стрелок вручную прибавляет к дальности, измеренной дальномером несколько метров, и производит выстрел, который попадёт куда надо.

Чтобы можно было вносить ручную поправку в дальность, система имеет вспомогательный источник сигналов дальности, который имеет три кнопки, разовое нажатие на две из которых прибавляет или убавляет замеренную дальность, а долговременное нажатие включает нарастающее изменение дальности (как установка времени в электронных часах), причём поправка отображается в поле зрения визира оптического прицела, а третья кнопка обнуляет ручную поправку. Расположены эти кнопки могут быть под большим пальцем правой руки с левой стороны задней рукоятки (для правшей).

Чтобы стрелок не отвлекался от прицеливания, дисплеи поправок, измеряемых в делениях визира оптического прицела, могут быть расположены в поле зрения визира оптического прицела. А дисплей поправки, вносимой по лимбу вертикальной наводки прицела, может быть расположен около этого лимба. Там же может быть расположен дисплей, показывающий замеренную дальность, причём конструктивно это может быть один и тот же дисплей.

Поправки в визире могут быть показаны на одном дисплее, например: Н-3,5, Л-1,5, +4. Что означает, что цель должна находиться не в перекрестье, а ниже него на 3,5 деления, левее него на 1,5 деления, и имеется ручная поправки дальности +4 метра. Однако в условиях стресса и стремительности современного боя понимание такого дисплея будет отнимать лишнее время у стрелка и может вызвать ошибки. Поэтому следует применить шесть разных дисплеев, причём поправка в делениях визира показывается в той стороне от перекрестья, в которой должна располагаться цель, а ручная поправка дальности показывается под углом 45 градусов к перекрестью слева или справа от него с соответствующим знаком и/или цветом в зависимости от того, отрицательная она или положительная. То есть в описанном выше случае внизу перекрестья светилось бы 3,5, слева 1,5, и справа под углом 45 градусов (удобнее справа-ниже) светилось бы красным цветом +4. Такая индикация поправок исключает ошибки - стрелок сдвигает цель в те стороны, в которых светятся поправки.

Причём, если поправка по вертикали превышает поле зрения прицела, то дисплеи работают по следующему алгоритму: верхний и нижний дисплеи одинаково показывают измеренную дальность, или нули (при действительно нулевой поправке они не показывают ничего), или максимальные числа, или любые другие незначащие знаки, а поправка показывается около лимба вертикальной наводки оптического прицела.

Не лишним было бы показывать в этом случае в визире дальность до цели, но при этом потребуется четырёхразрядный дисплей, так как максимальная дальность до цели может превысить 1000 метров, а для артиллерийских систем - даже пятиразрядный. При этом, если число делений визира выбрано не более 16-20, то можно обойтись одноразрядным дисплеем, показывающим цифры по типу почтовых индексов. Цифры больше 9 при этом можно показывать так: 10 - наподобие буквы Д, 11 - две палочки, 12 - как палочка и двойка, 13 - так же, 14 - так же (получится буква Н, 15 - как палочка и пятёрка, но у пятёрки нижняя половина должна быть как у тройки (иначе получится буква Б), 16 - как палочка и шестёрка или как буква Б, 17 - как палочка и семёрка, 18 - как единица с «носиком» и восьмёрка, 19 - как палочка и девятка, 20 - все девять элементов дисплея включены.

Рассмотрим, как можно вводить указанные восемь поправок, при этом поправка на ветер считается как две поправки - вдоль и поперёк выстрела.

Задатчики поправок по вышеуказанным параметрам могут быть в виде кремальеры или ползунка с лимбом, и представлять собой переменные резисторы, дроссели или конденсаторы, причём резисторы (потенциометры) могут быть различных характеристик (линейные, нелинейные) в зависимости от прогрессии изменений, вносимых данной поправкой.

Указанные параметры могут вноситься и датчиками, но это не всегда оправдано. Рассмотрим примеры датчиков.

Датчик ветра может представлять собой накрытый металлической сеткой флюгер на стволе гранатомёта, с передачей его положения по двум осям в процессор или в блок памяти с помощью дистанционной электрической передачи, например резистивной, ёмкостной, индуктивной, сельсинной, световой типа «светодиод-заслонка-фотодиод».

Однако стрелок может находиться в ветровой тени, поэтому метод введения задатчиком представляется надёжнее.

А вот датчик атмосферного давления будет очень кстати. Он может представлять собой анероид с передачей его положения в процессор или в блок памяти с помощью дистанционной электрической передачи, например резистивной, ёмкостной, индуктивной, сельсинной, световой типа «светодиод-заслонка-фотодиод». Датчик уменьшит количество органов управления на панели гранатомёта, что уменьшит возможную путаницу.

Датчики температуры воздуха и заряда могут представлять собой термопары или терморезисторы, в том числе - полупроводниковые. Однако при быстроменяющейся обстановке, например при выходе из машины на мороз, они могут давать ложные показания. Поэтому задатчики предпочтительнее. Хотя на корпусе гранатомёта желательно иметь термометр любой конструкции, показывающий температуру окружающего воздуха.

Датчик угла возвышения или снижения может представлять собой маятник в герметичной капсуле, заполненной незамерзающей жидкостью, с передачей его положения в процессор или в блок памяти с помощью дистанционной электрической передачи, например резистивной, ёмкостной, индуктивной, сельсинной, световой типа «светодиод-заслонка-фотодиод».

Датчик силы тяжести может представлять собой груз, расположенный на пружине или на тензодатчике, с передачей его положения в процессор или в блок памяти с помощью дистанционной электрической передачи, например резистивной, ёмкостной, индуктивной, сельсинной, световой типа «светодиод-заслонка-фотодиод». Но погрешность датчика будет почти равна вносимой поправке, и лучше вносить поправку задатчиком.

Эта поправка учитывает вращение Земли. Как известно, ускорение свободного падения зависит от географической широты - на полюсе оно максимально, а на экваторе - минимально, и разница составляет 0,344%. Не так уж много, но если все остальные поправки внесены правильно, то имеет смысл внести и её. При времени полёта гранаты (пули, снаряда) 3 сек поправка составит 15 см, что существенно при прицеливании в малоразмерную цель типа амбразуры дота.

Поправка «на вращение Земли» учитывает сложение линейной скорости вращения Земли (на экваторе она равна 464 м/сек) со средней скоростью полёта гранаты (пули, снаряда). Допустим, снаряд пролетел на экваторе какое-то расстояние со средней скоростью 836 м/сек по направлению вращения Земли - на восток. То есть его скорость относительно источника гравитации составит уже 1300 м/сек (снаряд с математической точки зрения представляет собой спутник Земли, движущийся по эллиптической орбите). Тогда действующая на него центростремительная сила уменьшится на величину mV2/r, то есть на 0,265 Н, что составляет примерно 2,7% от ускорения свободного падения на широте Москвы. Это уже значительный промах - в рассмотренном выше случае с полётом гранаты в течение 3 сек промах составит 1,2 метра по высоте по сравнению с выстрелом на север или на юг. То есть можно даже не попасть в такую сравнительно большую цель, как окно здания.

При стрельбе на запад промах составит примерно 15 см верх, а при стрельбе на юг или север эта поправка равна нулю. Учитывается только поправка на силу тяжести.

Датчик поправки на вращение Земли может представлять собой магнитный или гироскопический компас с передачей его положения в процессор или в блок памяти с помощью дистанционной электрической передачи, например, ёмкостной или световой типа «светодиод-заслонка-фотодиод». Резистивная, индуктивная и сельсинная передачи здесь практически не применимы из-за малого вращательного момента датчика и влияния магнитных полей на магнитную стрелку или гироскоп. Поэтому целесообразнее использовать задатчик, проградуированный в сторонах света.

Для поправки на упреждение при стрельбе по быстро движущейся цели на гранатомёте может иметься откидной коллиматорный прицел, особенно полезный в пределах прямого полёта гранаты.

Работает этот вариант системы так. Допустим, стоит задача поразить близко (до полукилометра) летящий вертолёт гранатой с бесконтактным лазерным взрывателем по пат № 2412427, автоматически взрывающим гранату на минимальном расстоянии от цели. Стрелок заранее вводит все поправки за исключением тех, которые вводятся автоматически. Затем выбирает часть свободного хода спускового крючка, при этом включается дальномер. Затем наводит перекрестье на вертолёт, выбирает часть свободного хода спускового крючка, при этом включается дальномер, и нажимает спусковой крючок на передней ручке, фиксируя тем самым измеренную дальность. Затем, учитывая предположительную скорость вертолёта, переводит прицельную область визира (она не совпадает с перекрестьем) вперёд вертолёта на соответствующее число делений визира, или, если поле зрения оптического прицела для этого мало (а его не хватит), то на соответствующее число делений откидного коллиматорного прицела, причём с учётом указанных на дисплее в визире боковых поправок (для быстрого пересчёта делений визира в деления коллиматорного прицела последние должны быть больше ровно в 10 раз). Производится выстрел. При пролёте на минимальном расстоянии или при прямом попадании граната взрывается.

Как видим, наводить гранатомёт на цель стрелку приходится наводить не перекрестьем, а «прицельной областью» (см. выше «ниже 3,5, слева 1,5»), что достаточно сложно, а необходимость переноса поправок из визира на коллиматорный прицел ещё более усложняет задачу стрелка. Именно поэтому целесообразны рассмотренные ниже варианты 2 и 3.

Такая система совместно с указанной гранатой является хорошим заменителем переносных зенитно-ракетных комплексов на расстояниях до километра и на высоте до 500 м. Предполагаемая вероятность поражения вертолётов гранатой калибра 76 мм опытным стрелком при стрельбе «вбок» - 25%, при стрельбе навстречу или вдогон - 75%. Предполагаемая вероятность поражения самолётов-штурмовиков соответственно 10% и 30%. Упомянутой гранатой, модернизированной так, чтобы она взрывалась при удалении от цели, совместно с данной системой можно также поражать противника в окне многоэтажного дома или за выступом скалы - граната взорвётся, пролетев раму окна или пролетев гребень скалы.

Ещё большие возможности сулит граната, имеющая аэродинамическую схему по пат. № 2439376 и оснащённая системой самонаведения по пат. № 2400590 - вероятность попадания на расстоянии 1,5 км и высоте до 1 км по вертолётам увеличится до 95%, а по самолётам - до 80%.

ВАРИАНТ 2. Выше была описана наиболее простая из рассматриваемых система управления гранатомётом. Она предусматривает только указание прицельных данных, но не установку их. Разумеется, в стрессовых условиях боя желательно было бы вводить прицельные данные автоматически. Тогда стрелок должен будет только наводить перекрестье прицела на цель и производить выстрел. Самой сложной для него задачей остался бы учёт упреждения при стрельбе по движущимся целям. Но большим подспорьем стрелку будет система, автоматически устанавливающая хотя бы угол возвышения.

Для этого система имеет электрический механизм установки угла возвышения, связанный с выходом процессора или блока памяти, причём механизм имеет датчик своего положения, выход с которого поступает на вход процессора или блока памяти (при любых сочетаниях альтернативных признаков с другими признаками обеспечивается один и тот же технический результат - внесение поправок и учёт их влияния на выдаваемый сигнал), а также выход процессора или блока памяти соединён с дисплеями боковых поправок. Работает это вариант системы так: стрелок наводит гранатомёт на цель прежде всего горизонтальной линией и затем смещает по ней точку прицеливания влево или вправо в соответствии с указанием боковых дисплеев.

ВАРИАНТ 3. Ещё лучше автоматически вносить и боковые поправки. Для этого система управления гранатомётом содержит лазерный дальномер, выход которого соединён со входом процессора или блока памяти, а выход процессора или блока памяти связан с электрическими механизмами установки угла возвышения и боковой наводки, причём механизмы имеют датчики своего положения, выход с которых поступает обратно на вход процессора или блока памяти. Дисплеи вертикальной и боковой поправок в этом случае не нужны, в визире должны остаться только дисплеи (или один дисплей) ручной поправки дальности и светодиод сигнализации включения фиксации дальности.

Работает этот вариант системы аналогично варианту 1, но наводить оружие на неподвижную цель можно перекрестьем, а при стрельбе по подвижным целям можно вносить упреждение, вынося вперёд не «прицельную область», а перекрестье прицела, в том числе коллиматорного, что гораздо удобнее и резко повышает вероятность поражения цели.

1. Система управления гранатомётом, содержащая лазерный дальномер, выход которого соединён с входом процессора или блока памяти, имеет датчик ветра, датчик атмосферного давления и датчик силы тяжести, отличающаяся тем, что имеет вспомогательный источник сигналов дальности, который имеет три кнопки, разовое нажатие на две из которых прибавляет или убавляет замеренную дальность, а долговременное нажатие включает нарастающее изменение, причём поправка отображается в поле зрения визира оптического прицела, а третья кнопка обнуляет ручную поправку, а расположены эти кнопки под большим пальцем правой руки с левой стороны задней рукоятки.

2. Система по п.1, отличающаяся тем, что датчик ветра представляет собой накрытый металлической сеткой флюгер на стволе гранатомёта с передачей его положения по двум осям в процессор или в блок памяти с помощью дистанционной электрической передачи, например резистивной, ёмкостной, индуктивной, сельсинной, световой типа «светодиод-заслонка-фотодиод».

3. Система по п.1, отличающаяся тем, что датчик атмосферного давления представляет собой анероид с передачей его положения в процессор или в блок памяти с помощью дистанционной электрической передачи, например резистивной, ёмкостной, сельсинной, индуктивной, световой типа «светодиод-заслонка-фотодиод».

4. Система по п.1, отличающаяся тем, что датчик силы тяжести представляет собой груз, расположенный на пружине или на тензодатчике, с передачей его положения в процессор или в блок памяти с помощью дистанционной электрической передачи, например резистивной, ёмкостной, индуктивной, сельсинной, световой типа «светодиод-заслонка-фотодиод».



 

Похожие патенты:

Изобретение относится к устройствам закрепления, например, приборов наведения на оружии и может быть использовано для расширения их применяемости. .

Изобретение относится к области вооружения и военной техники, в частности к прицельно-поисковым системам операторов вооружения. .

Изобретение относится к прицельным приспособлениям и может быть использовано в стрелковом оружии. .

Изобретение относится к стрелковому оружию, в частности к открытым механическим прицелам. .

Изобретение относится к области оптико-электронного приборостроения. .

Изобретение относится к регулируемому прицельному приспособлению для ручного огнестрельного оружия с одним стволом или пучком стволов, в частности, для ружья. .

Изобретение относится к оптическому приборостроению и может быть использовано в оптическом прицеле для стрелкового и охотничьего оружия. .

Изобретение относится к лазерным системам защиты и предназначено для светового ослепления и дезориентации нападающего, а также прицеливания при стрельбе из оружия.

Недискретное пассивное прицельное приспособление относится к прицельным приспособлениям для оружия и характеризуется парой линий, расположенных напротив друг друга относительно вертикали и имеющих с учетом поправки на деривацию такое искривление, что угловое расстояние между ними по горизонтали на глубине любого угла прицеливания равно угловой ширине штатной цели на дальности стрельбы для этого угла прицеливания. Приспособление применяется в составе конструкции, имеющей оптическую ось. Без применения активных (излучающих) средств дальнометрирования придает оружию по всей глубине прицельной дальности такой угол прицеливания, который точно соответствует дальности до штатной цели. Поэтому обеспечивает максимальную вероятность попадания в цель по всей глубине прицельной дальности. Технический результат - придание угла прицеливания, соответствующего дальности до штатной цели. 5 ил.

Изобретение относится к области оружейной техники и может быть использовано в стрелковом оружии, оснащенном лазерным целеуказателем (ЛЦУ). Пистолет с ЛЦУ имеет в своем составе находящийся в рукоятке магазин с патронами, спусковой крючок, тягу спускового крючка, шептало, курок, лазерный модуль, элемент питания и переключатель. ЛЦУ состоит из лазерного излучателя, элемента питания и кнопки включения-выключения и вмонтирован непосредственно в накладку пистолетной рукоятки. В состав ЛЦУ входит также светодиод тактической подсветки. Для включения ЛЦУ используют режим холостого хода пистолета, при котором при нажатии защищенного спусковой скобой спускового крючка шарик, расположенный в отверстии корпуса и находящийся в контакте с тягой с одной стороны и кнопкой включения ЛЦУ с другой, выходит из зенковки в тяге и давит на контакты, включая ЛЦУ, при этом питание ЛЦУ и тактической подсветки осуществляется от двух автономных источников питания. Тактическая подсветка может состоять из двух светодиодов, располагающихся по одному в каждой накладке, включается нажатием кнопки на накладке пистолетной рукоятки и имеет блокировку от случайного включения во время ношения оружия. Достигается упрощение конструкции, улучшение эксплуатационных характеристик пистолета и возможность использования штатной кобуры. 1 з.п. ф-лы, 4 ил.

Изобретение относится к прицельным устройствам для оружия. Недискретное пассивное устройство взятия упреждений характеризуется парой линий, расположенных напротив друг друга относительно вертикальной оси и имеющих такое искривление, что угловое расстояние от вертикальной оси до каждой из линий на уровне любого угла прицеливания равно угловому размеру упреждения по цели, движущейся на определенной скорости под определенным углом к направлению стрельбы на дальности стрельбы для этого угла прицеливания с учетом поправки на деривацию. Техническими результатами изобретения являются исключение необходимости запоминать или иметь при себе таблицу упреждений и выбирать требуемое упреждение из ряда меток, что обеспечивает быстроту взятия упреждения и максимальную вероятность попадания в цель, движущуюся под углом к направлению стрельбы, по всей глубине прицельной дальности без применения активных (излучающих) средств измерения, то есть скрытно. 3 ил.

Изобретение относится к коллиматорным оптическим прицелам для легкого стрелкового оружия и предназначено для формирования прицельного знака в бесконечности с помощью голограммного оптического элемента. Голографический коллиматорный содержит последовательно установленные на оптической оси лазерный диод, коллимирующую систему, голограммный оптический элемент, при этом голограммный оптический элемент выполнен в виде объемной высокоселективной фазовой голограммы на фото-термо-рефрактивном стекле. Техническим результатом изобретения является минимизация влияния температурного дрейфа длины волны излучения лазерного диода, приводящего к смещению прицельного знака. 1 ил.

(54) Изобретение относится к голографическим коллиматорным прицелам, формирующим мнимое изображение прицельного знака в бесконечности с помощью голограммного оптического элемента (ГОЭ). Голографический коллиматорный прицел включает в себя смонтированные в корпусе прицела последовательно установленные по ходу оптического луча лазерный диод, диафрагму, поворотное плоское зеркало, внеосевое сферическое коллимирующее зеркало, голограммную дифракционную решетку и голограммный оптический элемент, формирующий мнимое изображение прицельного знака в пространстве прицеливания, а параметры элементов оптической системы взяты из условия: - r1/r2=0,5÷5, где: r1 и r2 - соответственно радиусы кривизны передней и задней поверхностей коллимирующего отражателя; - предел отражающей дифракционной решетки m=1÷3; - количество штрихов отражающей дифракционной решетки на мм N=600÷2400; причем расстояния между оптическими элементами составляют соответственно: A=5÷30 мм; B=20÷250 мм; A+B=30÷280 мм; B/A=0,6÷50; C=15÷240 мм; B>C; (A+B)/С=1,1÷2; D зависит от положения выходного окна и угла отражения лучей от решетки, и при этом D=5÷200 мм, где: A, B, C, D - расстояния по оптической оси соответственно между оптическими элементами: лазерный диод - плоское зеркало, плоское зеркало - коллимирующий отражатель, коллимирующий отражатель - голографическая отражающая дифракционная решетка, голографическая отражающая дифракционная решетка - голограммный оптический элемент. Техническими результатами изобретения являются определение доверительных интервалов оптической системы голографического коллиматорного прицела, при соблюдении которых подобная система с разной эффективностью может иметь решение; определение оптимального соотношения исполнительных размеров оптической системы прицела для разных типоразмеров; выбор оптимальной компоновки оптических элементов в цилиндрическом корпусе голографического коллиматорного прицела; применение сферического отражающего зеркала, у которого радиусы отражающей (задней) поверхности и пропускающей (передней) поверхности имеют разные размеры для устранения аберраций; применение диафрагм разного типа и формы для ограничения светового потока от светодиода и формирования нужного по форме «пятна» освещения голографического элемента, что позволяет применять стандартные (серийно выпускаемые) светодиоды и разные параметры выходных окон; использование цилиндрического внешнего корпуса с целью повышения стойкости к внешнему удару, в том числе за счет устранения плоских поверхностей, внешний вид цилиндрического по форме прицела более удобен в сочетании с совместной работой увеличительных насадок и приборов ночного видения, имеющих также цилиндрическую форму, возможность изменения размеров прицела за счет установления доверительных интервалов соотношения размеров элементов оптической системы, что кроме того делает прибор более технологичным для производства. 2 з.п. ф-лы, 6 ил.

Изобретение относится к стрелковому оружию, в частности к оптическому прицелу и оружию для него. Прицел выполнен с оптической осью окуляра, смещенной вниз относительно объектива. Оружие для прицела содержит ствол, прицел, ручки и приклад. Оружие имеет откидной или постоянный второй приклад, расположенный ниже основного. В другом варианте оружие имеет управляемый дульный тормоз, имеющий открываемое вверх основное или дополнительное окно. В другом варианте оружие имеет одну оптическую часть объектива и сменные по крайней мере две насадки из четырех: окулярная, телевизионная, тепловизионная и ночного видения. Достигается повышение компактности и функциональности оружия. 3 н. и 1 з.п. ф-лы, 5 ил.

Изобретение относится к прицельному устройству, в частности к электронному прицельному устройству с получением изображений, предназначенному для огнестрельного оружия. Электронное прицельное устройство содержит комплект объектива для захвата оптического изображения заданной цели; датчик изображения для преобразования в электрические сигналы оптического изображения, захваченного объективом; процессор для приема преобразованных сигналов и обработки их и других данных; память для хранения различных программ и данных и сенсорный экран для операций по определению и регулировке градуировки, причем сенсорный экран выполнен с возможностью отправки соответствующей информации в процессор после приема операционных команд от пользователей, а также приема и выполнения команд из процессора, причем данные содержат данные о положении отверстия от первой пули на оптическом изображении, полученные посредством произведения выстрела первой пулей в направлении заданной цели, причем процессор выполнен с возможностью корректировки градуировки для осуществления выстрела второй пулей согласно данным о положении отверстия от первой пули на оптическом изображении так, чтобы улучшить точность прицела. Техническим результатом заявленного изобретения является усовершенствование электронного прицельного устройства. 2 н. и 12 з.п. ф-лы, 11 ил.

Изобретение относится к приспособлениям для крепления дополнительных приспособлений, в частности оптических прицелов, к стрелковому оружию. Кронштейн для крепления дополнительных приспособлений к колодке прицела стрелкового оружия, содержащий планку, имеющую сквозное, по существу, вертикальное отверстие для винта, винт и гайку, образующих винтовую пару, характеризующийся тем, что верхняя часть планки имеет продольные боковые выступы для крепления дополнительных приспособлений, нижняя часть планки имеет ширину, позволяющую ей входить в колодку без зазора между боковыми поверхностями нижней части планки и боковыми поверхностями колодки, и такую высоту, что при установке на колодку между нижней поверхностью планки и колодкой остается зазор для гайки, передняя поверхность нижней части планки имеет уклон и выполнена, по меньшей мере, частично конгруэнтной внутренней поверхности передней части колодки, гайка имеет кромки по бокам, выполненные таким образом, что они могут заходить в продольные пазы, расположенные изнутри в нижней части колодки, слева и справа. Технический результат - крепление кронштейна производится без использования винтов, продеваемых через проушины штатной колодки прицела и работающих на срез при отдаче. 6 з.п. ф-лы, 8 ил.

Изобретение относится к открытым прицелам для стрелкового оружия и предназначено для высокоточной стрельбы днем и в условиях ограниченной видимости. Технический результат - единое исполнение прицела как для стрельбы днем, так и в условиях ограниченной видимости, уменьшение габаритов, облегченная установка и крепление. Открытый прицел для стрелкового оружия имеет в качестве переднего прицела операционный экран (1) в жестком корпусе со шкалой боковых поправок (6) и двухмерной шкалой (8) определения дальности до цели, а в качестве заднего прицела - точку прицеливания. Прицел выполнен с возможностью перемещения в зависимости от ведущего глаза стрелка. С помощью винта с обратной двухсторонней резьбой осуществляется регулировка положения операционного экрана по высоте. Деления шкалы боковых поправок операционного экрана выполнены в виде равнобедренного треугольника с вершиной 68°53' и снабжены светодиодами с пониженным свечением. Задний прицел также выполнен в виде равнобедренного треугольника с вершиной 68°53' и снабжен светодиодом. Для визирования прицела по высоте используется либо нить накаливания, либо удлиненный светодиод. Размещенный в корпусе прицела блок питания содержит постоянный и переменный резисторы. 5 ил.

Группа изобретений относится к вооружению, а именно к корпусу (1) ручного огнестрельного оружия и монтажному приспособлению (4) для съемного крепления прицела на ручном огнестрельном оружии. Монтажное приспособление (4) для съемного крепления прицела на ручном огнестрельном оружии снабжено поддерживающим устройством (14). Поддерживающее устройство (14) содержит зажимные колодки (17, 19) и блокиратор (10) отдачи. Блокиратор (10) отдачи включает два элемента (28) зацепления, расположенные напротив друг друга. Блокиратор (10) отдачи с элементами (28) зацепления выполнен в виде мостика, охватывающего среднюю перемычку (13). Корпус (1) ручного огнестрельного оружия содержит крепежное устройство (6, 9) для монтажного приспособления (4). Крепежное устройство (6, 9) имеет две выемки (9), расположенные на расстоянии друг от друга и отделенные друг от друга средней перемычкой (13), для зацепления с двумя расположенными на расстоянии друг от друга элементами (28) зацепления блокиратора (10) отдачи. Технический результат заключается в повышении стабильности и точности крепления прицела при повторной установке прицела. 2 н. и 8 з.п. ф-лы, 4 ил.
Наверх