Способ определения ориентации подключения электронного калибратора к векторному анализатору цепей

Изобретение относится к измерительной технике и применяется для определения ориентации подключения электронного калибратора к измерительным портам векторного анализатора цепей при измерениях однопортовых и двухпортовых устройств, применяемых в радиоэлектронике, связи, радиолокации. Техническим результатом заявленного изобретения является автоматическое определение подключения порта электронного калибратора. Технический результат достигается благодаря тому, что способ основан на измерении двух наиболее различающихся по коэффициенту отражения нагрузок для каждого измерительного порта, затем осуществляется вычисление разности коэффициентов отражения, на основе полученных данных принимается решение о том, какой из портов ЭК подключен к измерительному порту ВАЦ. 2 ил.

 

Изобретение относится к измерительной технике и применяется для определения ориентации подключения электронного калибратора к измерительным портам векторного анализатора цепей при измерениях однопортовых и двухпортовых устройств, применяемых в радиоэлектронике, связи, радиолокации.

Основной технической задачей, на решение которой направлено предлагаемое техническое решение, является исключение возможности ошибки оператора при подключении электронного калибратора (ЭК) к векторному анализатору цепей (ВАЦ).

Основным техническим результатом является автоматическое определение подключения порта электронного калибратора.

Основная техническая задача достигается тем, что в способе определения ориентации подключения электронного калибратора к векторному анализатору цепей выбирают по две меры отражения для каждого порта, максимально различающиеся друг от друга по коэффициенту отражения, подключают поочередно к первому и второму порту электронного калибратора одну и вторую меру отражения и с помощью векторного анализатора цепей выполняют измерение комплексных коэффициентов отражения, и вычисляют разность коэффициентов отражения для первого и второго портов

,

,

где - разность коэффициентов отражения для первого порта,

- первый коэффициент отражения первого порта,

- второй коэффициент отражения первого порта,

- разность коэффициентов отражения для второго порта,

- первый коэффициент отражения второго порта,

- второй коэффициент отражения второго порта,

и сравнивают модули и .

Изобретение поясняется чертежами, где на фиг.1 представлена схема калибровки ВАЦ с использованием электронного калибратора, на фиг.2 приведен алгоритм определения ориентации подключения.

Схема калибровки включает векторный анализатор цепей 1, порты которого соединены с соответствующими тестовыми портами электронного калибратора 2, выходы векторного анализатора цепей 1 и электронного калибратора 2 соединены с входами в персональный компьютер 3.

Способ осуществляется следующим образом.

Электронный калибратор 2 имеет два тестовых порта, которые двумя способами могут быть подключены к двум измерительным портам векторного анализатора цепей (или к одному из портов). Допускается любое подключение измерительных и тестовых портов, но при точном указании какой тестовый порт электронного калибратора 1 подключен к измерительному порту векторного анализатора цепей. Автоматическое определение подключенного порта электрического калибратора 1 исключает возможность неверного указания пользователем варианта подключения электрического калибратора 1.

Выбирают две меры отражения, максимально различающиеся друг от друга по коэффициенту отражения. Например, меры холостого хода (Open) и короткого замыкания (Short). К первому тестовому порту электрического калибратора 1 подключают меру Open. С помощью векторного анализатора цепей 2 выполняют измерение комплексного коэффициента отражения , затем к первому тестовому порту электрического калибратора 1 подключают меру Short. С помощью векторного анализатора цепей 2 выполняют измерение коэффициента отражения и вычисляют разность коэффициентов отражения

,

ко второму тестовому порту электрического калибратора 1 также подключают меру Open, и с помощью ВАЦ выполняют измерение коэффициента отражения , затем ко второму тестовому порту подключают меру Short и с помощью ВАЦ выполняют измерение коэффициента отражения . Далее вычисляют разность коэффициентов отражения

и сравнивают модули и . Подключенным тестовым портом будем считать тот, который дал максимальное изменение коэффициента отражения. Если значение максимальной меньше некоторого порогового значения (зависящего от конкретной реализации электрического калибратора 1), то порты векторного анализатора 2 и электрического калибратора 1 не соединены.

Способ определения ориентации подключения электронного калибратора к векторному анализатору цепей, в котором выбирают по две меры отражения для каждого порта, максимально различающиеся друг от друга по коэффициенту отражения, подключают поочередно к первому и второму порту электронного калибратора одну и вторую меру отражения и с помощью векторного анализатора цепей выполняют измерение комплексных коэффициентов отражения, и вычисляют разность коэффициентов отражения для первого и второго портов
,
,
где - разность коэффициентов отражения для первого порта,
- первый коэффициент отражения первого порта,
- второй коэффициент отражения первого порта,
- разность коэффициентов отражения для второго порта,
- первый коэффициент отражения второго порта,
- второй коэффициент отражения второго порта,
и сравнивают модули и .



 

Похожие патенты:

Изобретение относится к измерительной технике, а более конкретно - к фотоэлектрическим устройствам, предназначенным для исследования дисперсных систем. Устройство предназначено для калибровки оптической аппаратуры, измеряющей средний диаметр дисперсных частиц, и содержит кювету с прозрачной жидкостью, измерительный канал, состоящий из микроскопа и фоторегистратора, и осветительный канал, содержащий два источника света с различными длинами волн.

Изобретение относится к измерительной технике. Способ заключается в выделении в преобразователе каналов измерения основной и дополнительной (влияющей) входных величин, градуировке каналов измерительного преобразователя при различных комбинациях значений его входных величин, формировании по результатам градуировки математической модели измерительного преобразователя в виде совокупности ее параметров, связывающей значения выходных величин со значениями входных величин, и определении значения основной входной величины по параметрам математической модели и текущим значениям выходных величин, причем при проведении градуировочного эксперимента стабилизируют основную входную величину в нескольких точках диапазона преобразования, в каждой точке стабилизации основной входной величины осуществляют ступенчатое изменение влияющей входной величины в пределах диапазона ее изменения с различными начальными значениями и различными по знаку и но амплитуде приращениями, фиксируют поведение во времени значений входных и выходных величин измерительных каналов основной и влияющей входных величин, организуют дополнительный виртуальный канал определения скорости изменения значений выходной величины канала измерения влияющей величины, после чего формируют математическую модель, связывающую выходные значения основного, дополнительного и виртуального каналов с входными величинами преобразователя, и, наконец, определяют текущее значение основной входной величины по параметрам математической модели и текущим значениям выходных величин основного, дополнительного и виртуального измерительных каналов.

Изобретение относится к вычислительной технике и может быть использовано для автоматизации поверки стрелочных измерительных приборов. Техническим результатом устройства является сокращение времени поверки стрелочных измерительных приборов.

Использование: для калибровки оптической измерительной аппаратуры при оценке среднего диаметра дисперсных частиц. Сущность: заключается в том, что проводят измерения характеристик дисперсной системы калибруемой аппаратурой и фоторегистрирующим прибором с последующим определением зависимости сигнала калибруемой аппаратуры от среднего диаметра частиц, определенного визуально, при этом воздействуют ультразвуком на жидкость, создавая дисперсную систему, освещают ее периодическими импульсами света длительностью Ти≤0,1Туз (где Туз - период ультразвуковых колебаний), синхронизованными с ультразвуковыми колебаниями, во время импульсов света измеряют калибруемой аппаратурой и определяют по результатам фоторегистрации средний диаметр дисперсных частиц (dср.а и dср.ф соответственно), изменяют сдвиг фаз между световыми импульсами и ультразвуковыми колебаниями, а также мощность ультразвука, после чего измерения и фоторегистрацию повторяют до получения требуемого количества калибровочных уровней, определяют калибровочную характеристику как зависимость величины dср.а от dср.ф.

Изобретение относится к измерительной технике и может быть использовано для определения фазовых погрешностей масштабных преобразователей, предназначенных для работы в широком частотном и динамическом диапазонах входных сигналов.

Изобретение относится к области магнитных измерений, в частности к измерениям компонент и полного вектора индукции магнитного поля Земли (МПЗ), а также к средствам калибровки магнитометров.

Изобретение относится к измерительной технике и может быть использовано для автоматической коррекции погрешностей измерительных устройств. .

Изобретение относится к области измерительной техники и может быть использовано для измерения неэлектрических величин при помощи тензометрических мостовых датчиков с инструментальными усилителями, запитанных постоянным током.

Изобретение относится к устройствам для испытания и калибровки приборов, в частности электромагнитных реле с контактами, поочередно размыкающимися и замыкающимися при последовательных включениях и отключениях электромагнита.

Изобретение относится к измерительной технике и может быть использовано для линеаризации градуировочных характеристик измерительных преобразователей, у которых градуировочная характеристика аппроксимируется полиномом второго порядка.

Изобретение относится к способам и устройствам для считывания положения зонда в теле. Способ заключается в установке в теле зонда с электродом на внешней поверхности, установке множества контактных накладных электродов на поверхности тела, измерении картирующих электрических токов, протекающих между электродом на внешней поверхности зонда и множеством контактных накладных электродов на поверхности тела посредством измерительных схем контактных накладных электродов, калибровке измерения посредством компенсации токов утечки, протекающих по пути, продолжающемся от электрода на внешней поверхности зонда через аблятор и контактный накладной электрод аблятора к множеству контактных накладных электродов, и вычислении положения зонда в теле на основании картирующих токов с использованием калиброванных измерений. Устройство выполнено с возможностью осуществления этапов способа. Использование изобретения обеспечивает точное определение местоположения объекта в теле пациента. 2 н. и 20 з.п. ф-лы, 5 ил.

Изобретение относится к электрическим измерениям и может быть использовано в качестве рабочего эталона при калибровке и поверке рабочих средств измерений переменного электрического поля. Устройство выполнено на основе окружающего рабочую зону 1 конденсатора в виде набора из соосно расположенных пяти тонкостенных, металлических пластинчатых колец 2, закрепленных на диэлектрических стойках. Кольца 2 имеют одинаковую высоту H и расположены на равных расстояниях h (по высоте) друг от друга. Каждое кольцо 2 разрезано на четыре равные части, отстоящие друг от друга по окружности на равные промежутки L. Части колец расположены друг над другом симметрично относительно соответствующих частей других колец. Каждые две части соседних колец образуют отрезок двухпроводной линии передачи, на концах которого включены согласованные нагрузки 3. Входами 4 высокочастотного напряжения являются зазоры между соответствующими частями соседних колец (посередине этих частей). У каждого входа предусмотрен согласующий переход 5 в зазоре между кольцевыми элементами. Технический эффект заключается в увеличении объема рабочей зоны и повышении верхней граничной частоты воспроизведения однородного электрического поля при сохранении относительно небольших габаритных размеров устройства. 3 ил.

Изобретение относится к электроизмерительной технике и предназначено для использования при реализации контроля высоких и сверхвысоких напряжений. Сущность: определяют показания измерительного устройства по значениям пробивного напряжения эталонного разрядного прибора, в качестве которого используют помещенный в вакуум между двумя электродами диэлектрик для различных расстояний между электродами. Один из электродов выполнен неподвижным и к нему механически прикрепляют один торец диэлектрика. Второй электрод, выполненный из эластичного проводящего материала и снабженный устройством перемещения, перемещают вдоль поверхности диэлектрика на некоторое расстояние от неподвижного электрода. Измеряют расстояние. Подают на электроды импульсы высокого напряжения. Увеличивают амплитуду каждого последующего импульса до тех пор, пока не произойдет пробой вдоль поверхности диэлектрика. При пробое регистрируют показание измерительного прибора. Затем второй электрод вновь перемещают вдоль поверхности диэлектрика на другое расстояние от неподвижного электрода. Вновь измеряют расстояние и подают на электроды импульсы высокого напряжения, увеличивая амплитуду каждого последующего импульса до тех пор, пока не произойдет разряд вдоль поверхности диэлектрика. При разряде вновь регистрируют показания измерительного прибора. Аналогичную процедуру повторяют не менее чем 5-7 раз, после чего по показаниям измерительного прибора строят градуировочный график. Технический результат: упрощение реализации, снижение трудоемкости. 2 ил.

Изобретение относится к области измерительной техники и может быть использовано для контроля микроструктуры металлической мишени. Варианты реализации настоящего изобретения предоставляют электромагнитный датчик (400) для детектирования микроструктуры металлической мишени, содержащий магнитное устройство (410, 420) для предоставления возбуждающего магнитного поля, магнитометр (430) для детектирования результирующего магнитного поля, индуцированного в металлической мишени; и схему (450) калибровки для создания калибровочного магнитного поля для калибровки электромагнитного датчика. Причем калибровочное магнитное поле создается электрическим током, индуцированным в схеме калибровки возбуждающим магнитным полем. Технический результат - повышение чувствительности датчика за счет исключения искажений его показаний, обусловленных помехами различной природы. 2 н. и 24 з.п. ф-лы, 10 ил.

Изобретение относится к метрологии, в частности к устройству для калибровки системы измерения мощности для силовых трансформаторов. Устройство содержит трансформатор высокого напряжения, преобразователь контрольного напряжения, контрольный измерительный кабель, устройство оценки контрольных результатов, сильноточный трансформатор, преобразователь контрольного тока, устройство, контейнер, сильноточную цепь, измерительные кабели, операторную, дверцы, удлиняемое сильноточное соединение, линию передачи данных. Трансформатор высокого напряжения, преобразователь контрольного напряжения, сильноточная цепь, сильноточный трансформатор, преобразователь контрольного тока, устройство оценки контрольных результатов и контрольные измерительные кабели расположены внутри контейнера. Калибруемые отдельные компоненты системы измерения мощности, а именно преобразователь напряжения, преобразователь тока и устройство оценки, находятся в таком активном электрическом соединении с сильноточной цепью, что тем самым в качестве калибровки системы может осуществляться калибровка на месте системы измерения мощности. Технический результат – повышение точности и оперативности диагностики. 11 з.п. ф-лы, 4 ил.

Изобретение относится к калибровке инструментов, используемых для измерения поведения сигналов. Технический результат – получение характеристики сети и выполнение калибровки сети с неподдерживаемыми типами разъема, которые не отслеживают в соответствии с известными стандартами. Для этого предусмотрены этапы, на которых: определяют характеристику всей сети [NT], имеющую первую индивидуальную сеть [N1] с множеством портов и вторую индивидуальную сеть [N2] с множеством портов, которые каскадно и взаимно соединены с использованием неподдерживаемого разъема, причем ‘:’ обозначает интерфейс неподдерживаемого разъема, a [NT] = [N1]:[N2]; определяют характеристику первой дополненной сети [M1] путем добавления первого адаптера [А1] к первой индивидуальной сети [N1] с множеством портов, причем [M1] = [N1]:[А1]; и определяют характеристику второй дополненной сети [М2] путем добавления второго адаптера [А2] ко второй индивидуальной сети [N2] с множеством портов, причем [М2] = [А2]:[N2]. 2 н. и 10 з.п. ф-лы, 9 ил.
Наверх