Статор турбины высокого давления

Изобретение относится к статорам турбин высокого давления газотурбинных двигателей авиационного и наземного применения. Статор турбины включает установленные на внутреннем корпусе камеры сгорания опору соплового аппарата и передний хвостовик упругого фланца, а также диафрагму. Диафрагма закреплена болтовым соединением на опоре соплового аппарата своим внешним радиальным ребром. Внутренним радиальным ребром диафрагма соединена болтовым соединением с внешним и внутренним сотовыми фланцами и с задним хвостовиком упругого фланца. Центральная часть диафрагмы между внешним и внутренним ребрами выполнена упругой в радиальном направлении и цилиндрической в поперечном сечении, выпуклой в сторону внешнего сотового фланца. Между упругим фланцем и опорой соплового аппарата установлен Г-образный в поперечном сечении фланец, образующий совместно с опорой соплового аппарата щелевую кольцевую полость. Кольцевая полость на входе соединена с воздушной полостью камеры сгорания, а на выходе через каналы в опоре соплового аппарата - с воздушной полостью статора, образованной опорой соплового аппарата, упругим фланцем и диафрагмой. Величина отношения расстояния между болтовыми соединениями крепления диафрагмы к радиусу цилиндрической внутренней поверхности диафрагмы составляет 3…4. Изобретение позволяет повысить надежность статора турбины высокого давления. 1 ил.

 

Изобретение относится к статорам турбин высокого давления газотурбинных двигателей авиационного и наземного применения.

Известен статор турбины высокого давления, в котором внешний и внутренний сотовые фланцы лабиринтных уплотнений системы подвода охлаждающего воздуха на первую рабочую лопатку турбины закреплены болтовым соединением на внутреннем корпусе камеры сгорания (патент RU №2443882, F02C 7/12, 2010 г.).

Недостатком известной конструкции является ее низкая надежность, так как внутренний корпус камеры сгорания, имеющий значительные радиальные перемещения вследствие повышенной температуры, вызывает пластическую деформацию более холодных сотовых фланцев статора турбины.

Наиболее близким к заявляемому является статор турбины высокого давления, в котором внешний и внутренний сотовые фланцы лабиринтных уплотнений системы подвода охлаждающего воздуха на первую рабочую лопатку турбины закреплены болтовым соединением на корпусе подшипниковой опоры, а диафрагма между внешним сотовым фланцем и опорой первого соплового аппарата выполнена конической (патент RU №2261350, F02C 7/06, 7/12, 2003 г.).

Недостатком известной конструкции, принятой за прототип, является ее низкая надежность из-за разницы температур внешнего и внутреннего сотовых фланцев, конусной диафрагмы и подшипниковой опоры. Из-за значительных термических деформаций конической диафрагмы дополнительную нагрузку испытывают как болты крепления сотовых фланцев, так и болты крепления диафрагмы к опоре первого соплового аппарата, что приводит к их поломке. Недостатком конструкции являются также повышенные гидравлические потери подводимого по трубам в воздушную полость статора охлаждающего воздуха.

Технический результат заявленного изобретения заключается в повышении надежности статора турбины высокого давления путем уменьшения нагрузки на болтовые соединения крепления диафрагмы к опоре соплового аппарата и к внешнему сотовому фланцу и путем уменьшения деформации внешнего и внутреннего сотовых фланцев, а также в снижении гидравлических потерь подводимого в воздушную полость охлаждающего воздуха.

Указанный технический результат достигается тем, что в статоре турбины высокого давления, состоящем из установленных на внутреннем корпусе камеры сгорания опоры соплового аппарата и переднего хвостовика упругого фланца, а также из диафрагмы, закрепленной болтовым соединением внешним радиальным ребром на опоре соплового аппарата, а внутренним радиальным ребром болтовым соединением с внешним и внутренним сотовыми фланцами и с задним хвостовиком упругого фланца, центральная часть диафрагмы между внешним и внутренним ребрами выполнена упругой в радиальном направлении и цилиндрической в поперечном сечении, при этом выпуклой в сторону внешнего сотового фланца, а между упругим фланцем и опорой соплового аппарата установлен Г-образный в поперечном сечении фланец, образующий совместно с опорой соплового аппарата щелевую кольцевую полость, на входе соединенную с воздушной полостью камеры сгорания, а на выходе через каналы в опоре соплового аппарата - с воздушной полостью статора, образованной опорой соплового аппарата, упругим фланцем и диафрагмой, при этом отношение L/R=3...4, где L - расстояние между болтовыми соединениями крепления диафрагмы; R - радиус цилиндрической внутренней поверхности диафрагмы.

Выполнение центральной части диафрагмы между внешним и внутренним ребрами упругой в радиальном направлении позволяет за счет радиальной упругости диафрагмы снизить деформацию внешнего и внутреннего сотовых фланцев, а также исключить работу на срез болтов в болтовых соединениях диафрагмы с опорой соплового аппарата и с сотовыми фланцами.

Выполнение центральной части диафрагмы цилиндрической в поперечном сечении, выпуклой в сторону внешнего сотового фланца снижает напряжения и осевую деформацию диафрагмы под действием избыточного давления охлаждающего воздуха в полости статора турбины, образованной опорой соплового аппарата, диафрагмой и промежуточным упругим фланцем, а также исключает работу болтов в болтовых соединениях крепления диафрагмы на изгиб.

Установка между упругим фланцем и опорой соплового аппарата Г-образного в поперечном сечении фланца, образующего совместно с опорой соплового аппарата щелевую кольцевую полость, соединенную на входе с воздушной полостью камеры сгорания, а на выходе через каналы в опоре соплового аппарата - с воздушной полостью статора, образованной опорой соплового аппарата, упругим фланцем и диафрагмой, позволяет снизить гидравлические потери и повысить давление охлаждающего воздуха в воздушной полости статора, а также снизить количество загрязняющих частиц, поступающих с воздухом в воздушную полость статора.

При L/R<3 снижается надежность диафрагмы из-за концентрации напряжений в местах перехода от цилиндрической к радиальной части диафрагмы.

При L/R>4 снижаются упругие свойства диафрагмы в радиальном направлении.

На чертеже изображен продольный разрез статора турбины высокого давления.

Статор турбины высокого давления 1 состоит из установленных на внутреннем корпусе 2 камеры сгорания 3 опоры 4 соплового аппарата, Г-образного в поперечном сечении фланца 5 и упругого промежуточного фланца 6, а также диафрагмы 7, внешним радиальным ребром 8 соединенной болтовым соединением 9 с опорой 4 соплового аппарата, а внутренним радиальным ребром 10 соединенной болтовым соединением 11 с внешним сотовым фланцем 12, с внутренним сотовым фланцем 13 и с задним хвостовиком 14 промежуточного упругого фланца 6.

Г-образный фланец 5 и опора 4 соплового аппарата совместно образуют кольцевую щелевую полость 15, соединенную на входе с воздушной полостью 16 камеры сгорания 3, а на выходе через каналы 17 в опоре 4 - с воздушной полостью 18 высокого давления статора турбины 1, ограниченной опорой 4, упругим фланцем 6 и диафрагмой 7. Поток воздуха 19 в воздушной полости 16 камеры сгорания 3 несет с собой загрязняющие частицы 20, которые на входе в щелевую полость 15 вследствие резкого поворота потока проходят мимо щелевой полости 15 и уходят в проточную часть турбины (не показано), что способствует очищению охлаждающего воздуха в полости 18.

Диафрагма 7 в центральной своей части 21 выполнена упругой в радиальном направлении и цилиндрической в поперечном сечении, выпуклой в сторону внешнего сотового фланца 12 и в сторону воздушной полости пониженного давления 22, расположенной между опорой 4 соплового аппарата и внешним сотовым фланцем 12.

Работает устройство следующим образом.

При работе статора турбины высокого давления 1 диафрагма 7, выполненная выпуклой в поперечном сечении в сторону полости пониженного давления 22, испытывает под действием перепада давления минимальную деформацию, что повышает циклическую долговечность болтов 23 в болтовом соединении 9 и болтов 24 в болтовом соединении 11.

Статор турбины высокого давления, состоящий из установленных на внутреннем корпусе камеры сгорания опоры соплового аппарата и переднего хвостовика упругого фланца, а также из диафрагмы, закрепленной болтовым соединением внешним радиальным ребром на опоре соплового аппарата, а внутренним радиальным ребром болтовым соединением с внешним и внутренним сотовыми фланцами и с задним хвостовиком упругого фланца, отличающийся тем, что центральная часть диафрагмы между внешним и внутренним ребрами выполнена упругой в радиальном направлении и цилиндрической в поперечном сечении, при этом выпуклой в сторону внешнего сотового фланца, а между упругим фланцем и опорой соплового аппарата установлен Г-образный в поперечном сечении фланец, образующий совместно с опорой соплового аппарата щелевую кольцевую полость, на входе соединенную с воздушной полостью камеры сгорания, а на выходе через каналы в опоре соплового аппарата - с воздушной полостью статора, образованной опорой соплового аппарата, упругим фланцем и диафрагмой, при этом отношение L/R=3…4, где L - расстояние между болтовыми соединениями крепления диафрагмы; R - радиус цилиндрической внутренней поверхности диафрагмы.



 

Похожие патенты:

Газотурбинный двигатель содержит компрессор, камеру сгорания, ротор и статор турбины. Турбина содержит охлаждаемую ступень с сопловым аппаратом с полостями над ним и под ним.

Система снижения шума газотурбинного двигателя содержит глушитель выхлопа, расположенный вблизи выхлопного канала, проход для охлаждающего воздуха и средство создания потока охлаждающего воздуха в проходе.

Турбина газотурбинного двигателя содержит внешний, внутренний и промежуточный корпусы, ступень с сопловым аппаратом и рабочим колесом с кольцевой вставкой над рабочим колесом, системы охлаждения турбины, в том числе корпусов.

Двухконтурный газотурбинный двигатель содержит компрессор, имеющий по меньшей мере одну ступень, камеру сгорания, содержащую жаровую трубу, турбину, содержащую по меньшей мере одну охлаждаемую ступень с сопловым аппаратом с полостями над ним и под ним.

Турбина газотурбинного двигателя содержит внешний, внутренний и промежуточный корпуса, ступень с сопловым аппаратом и рабочим колесом с кольцевой вставкой над рабочим колесом, системы охлаждения турбины, в том числе корпуса.

Турбина двухконтурного газотурбинного двигателя содержит, по меньшей мере, одну охлаждаемую ступень с сопловым аппаратом, ротор и статор турбины. Сопловой аппарат выполнен с полостями над ним и под ним.

Система охлаждения турбины с первой секцией и второй секцией содержит первую линию для отведения первого потока из первой секции, имеющий первую температуру, вторую линию для отведения второго потока из первой секции, имеющий вторую температуру ниже первой температуры; и объединенную линию для направления объединенного потока, содержащего первый поток и второй поток во вторую секцию.

Турбина газотурбинного двигателя содержит внешний, внутренний и промежуточный корпуса, ступень с сопловым аппаратом и рабочим колесом с кольцевой вставкой над рабочим колесом, системы охлаждения турбины и корпуса, а также средство регулирования радиальных зазоров.

Изобретение относится к теплоэнергетическому машиностроению, в частности к конструкции турбины высокого давления газотурбинной установки. Турбина высокого давления содержит наружный кожух и торцевую стенку.

Изобретение относится к осевому компрессору для газовой турбины, содержащему кольцеобразный в сечении тракт течения для сжимаемой среды, причем тракт течения ограничен радиально снаружи наружной стенкой кольцеобразного сечения, корпус, который охватывает наружную стенку с образованием, по меньшей мере, одной промежуточной сборной камеры, по меньшей мере, одно отверстие отбора в наружной стенке для отвода в сборную камеру части протекающей по тракту течения среды и, по меньшей мере, одно отверстие в корпусе для удаления отведенной части среды из корпуса.

Изобретение относится к соединительной структуре корпуса турбины с корпусом подшипника работающего на отработавших газах турбокомпрессора согласно ограничительной части п.1 формулы изобретения и работающему на отработавших газах турбокомпрессору согласно ограничительной части п.11 формулы изобретения.

Изобретение относится к области регулирования зазора между вершинами подвижных лопаток и стационарным кольцевым узлом в газовой турбине. .

Изобретение относится к области энергетики, преимущественно к паротурбинным установкам (ПТУ) судов и электростанций. .

Изобретение относится к применению теплоизолирующего слоя для корпуса паровой турбины, чтобы повысить равномерность деформационного поведения различных деталей вследствие различных нагревов деталей.

Изобретение относится к газотурбинным установкам для привода электрогенератора или для механического привода. .

Изобретение относится к области энергетики и может быть использовано при создании цилиндров паровых турбин, в которых совмещены проточные части высокого и среднего давления.

Изобретение относится к газотурбостроению, а точнее - к устройствам газотурбинных установок (ГТУ) для привода внешней нагрузки. .

Изобретение относится к статорам высокотемпературных турбин газотурбинных двигателей авиационного и наземного применения. Статор высокотемпературной турбины включает размещенную в промежуточном корпусе сопловую лопатку и установленные ниже по потоку газа сектора разрезного кольца, выполненные с внутренней воздушной полостью. На внешней стороне каждого сектора разрезного кольца размещен полый патрубок, передним осевым цилиндрическим хвостовиком установленный в промежуточном корпусе. Внутренняя полость патрубка на входе соединена с воздушной полостью промежуточного корпуса, а на выходе - с внутренней полостью сектора разрезного кольца. Передний хвостовик сектора разрезного кольца установлен в сопловой лопатке соединением щип - паз с радиальными зазорами, а патрубок размещен по оси симметрии сектора разрезного кольца. Изобретение позволяет повысить надежность статора высокотемпературной турбины, за счет исключения паразитных утечек охлаждающего воздуха, поступающего на охлаждение секторов разрезного кольца. 5 ил.
Наверх