Устройство для контроля и юстировки объектива

Изобретение может быть использовано в оптических микроскопах для контроля и юстировки высот и несоосности оптических и механических осей микрообъективов при их сборке. Устройство содержит столик с сеткой, скрепленное со столиком приспособление для измерения величины его перемещения и соединенный с устройством визуализации регистратор положения изображения сетки, проектируемой юстируемым объективом в плоскость изображения. Столик установлен с возможностью перемещения вдоль оптической оси контролируемого объектива. Устройство снабжено размещаемым между столиком с сеткой и плоскостью изображения сетки тубусом с эталонной базовой поверхностью и резьбой для крепления контролируемого объектива, сетка размещена на столике на номинальном расстоянии от эталонной базовой поверхности тубуса и установлена с возможностью перемещения в перпендикулярном направлении относительно оси резьбы тубуса. Регистратор положения изображения сетки установлен в тубусе в плоскости изображения на номинальном расстоянии от эталонной базовой поверхности тубуса, центрирован относительно оси резьбы тубуса и установлен с возможностью перемещения вдоль этой оси. Технический результат - расширение номенклатуры контролируемых параметров объектива и типов объективов за счет контроля несоосности оптической и механической осей и высоты микрообъектива с одновременным упрощением конструкции устройства. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к области оптического приборостроения и может быть использовано при сборке и юстировке микрообъективов.

Одним из основных функциональных устройств микроскопов являются микрообъективы, создающие изображение объекта наблюдения, установленного в плоскости предмета, в плоскости изображения, сопряженную с фокальной плоскостью окуляра, либо где установлена ПЗС-матрица (в случае цифровых микроскопов). Так как при изготовлении микрообъективов возникают различные технологические погрешности, то создаваемое изображение собранным микрообъективом может быть расфокусировано (занимать неправильное положение вдоль оптической оси системы) и сдвинуто в радиальном направлении в плоскости изображения. Известно устройство для устранения или уменьшения этих дефектов (в пределах соответствующих допусков) при сборке микрообъектива - специальный станок, на котором осуществляют подрезку опорной торцевой поверхности его корпуса (см. учебное пособие для ВУЗов: С.М.Латыев Конструирование точных (оптических) приборов. - СПб, Политехника, 2007, с.459-460; либо Ельников Н.Т., Дитев А.У, Урусов И.К. Сборка и юстировка оптико-механических приборов. - М., Машиностроение, 1974, с.141-142).

Станок содержит полый шпиндель с патроном для крепления микрообъектива, который может наклоняться относительно шпинделя, объект наблюдения в виде, например, сетки с перекрестьем, шкалу, установленную в плоскости изображения на номинальном расстоянии от сетки, наблюдательный микроскоп для наблюдения шкалы и резец, закрепленный в суппорте станка. Добившись резкого изображения сетки осевыми подвижками суппорта и расположения изображения в центре шкалы наклонами патрона, производят подрезку резцом опорного торца корпуса микрообъектива. При такой подрезке выдерживается высота микрообъектива (расстояние от опорной торцевой поверхности его корпуса до плоскости предмета), равная 45 мм по стандарту DIN или 33 мм по стандарту RMS, а также обеспечивается совмещение механической оси микрообъектива (создаваемой опорной торцевой поверхностью и базовым резьбовым цилиндром корпуса) с его оптической осью (создаваемой линзовыми компонентами (см. Технические условия на микрообъективы ТУ 3-3. 870-83).

Обработка резанием опорной торцевой поверхности корпуса микрообъектива обладает тем недостатком, что требует не только наличия сложного станка, но приводит к тому, что опорная торцевая поверхность корпуса микрообъектива после обработки оказывается наклонной к его базовому резьбовому цилиндру, а качество изображения на краях поля зрения ухудшается (Скворцов Г.Е., Долинский И.М. Станок для юстировки и подгонки высоты микрообъективов. «Оптико-механическая промышленность», №9, 1966, с.17-20). Обусловлено это тем, что для приведения изображения в центр поля зрения окуляра микроскопа, который имеется в составе станка, микрообъектив на станке наклоняют с помощью специального патрона, совмещая эквивалентную узловую точку микрообъектива (а не его оптическую ось) с осью шпинделя станка. Кроме этого, обработка корпуса резанием нежелательна при автоматизированной сборке микрообъектива, так как не может осуществляться в «чистой» комнате, где положено собирать и контролировать показатели качества микрообъектива.

В связи с указанными недостатками появились микрообъективы, в которых обеспечение их высоты и совмещение оптической и механической осей («центровка») осуществляется регулировкой элементов конструкции самого микрообъектива. Однако для осуществления этой юстировки необходимо устройство, которое позволяет проконтролировать значения высоты и «центровку» юстируемого микрообъектива.

Известно устройство для контроля и юстировки рабочего расстояния фотообъектива (расстояния от опорного торца корпуса объектива до плоскости изображения), (С.М.Латыев Конструирование точных (оптических) приборов. - СПб, Политехника, 2007, с.458-459, рис.9.40), выбранное в качестве прототипа.

Устройство содержит коллиматор с сеткой, проектируемой юстируемым объективом в плоскость изображения, столик, на котором закреплен объектив или узел эталона рабочего расстояния, предусмотрена возможность подвижки столика вдоль оптической оси объектива, индикатор для измерения величины перемещения столика, микроскоп, настроенный на номинальное положение плоскости изображения фотообъектива.

Недостатками этого устройства является то, что в нем не предусмотрена возможность контроля совмещения оптической и механической осей объектива, а также то, что оно позволяет контролировать рабочее расстояние от опорного торца корпуса объектива до плоскости изображения, а не до предметной плоскости (т.е. не контролирует высоту), что требуется для микрообъективов. Кроме этого устройство является сложным и громоздким (содержит коллиматор, микроскоп).

Предлагаемое изобретение решает задачу расширения номенклатуры контролируемых параметров объектива и контролируемых типов объективов за счет контроля несоосности оптической и механической осей, контроля высоты микрообъектива с одновременным упрощением конструкции устройства.

Поставленная задача решается следующим образом.

Устройство для контроля и юстировки объектива содержит, столик с сеткой и соединенный с устройством визуализации регистратор положения изображения сетки, проектируемой юстируемым объективом в плоскость изображения, причем столик установлен с возможностью перемещения вдоль оптической оси контролируемого объектива, а также скрепленное со столиком приспособление для измерения величины его перемещения, устройство снабжено размещаемым между столиком с сеткой и плоскостью изображения сетки тубусом с эталонной базовой поверхностью и резьбой для крепления контролируемого объектива, сетка размещена на столике на номинальном расстоянии от эталонной базовой поверхности тубуса и установлена с возможностью перемещения в перпендикулярном направлении относительно оси резьбы тубуса, а регистратор положения изображения сетки установлен в тубусе в плоскости изображения на номинальном расстоянии от эталонной базовой поверхности тубуса, центрирован относительно оси резьбы тубуса и установлен с возможностью перемещения вдоль этой оси.

Устройство для контроля и юстировки объектива дополнительно снабжено, размещаемой между тубусом и регистратором, тубусной линзой.

Устройство обеспечивает контроль несоосности оптической и механической осей микрообъектива, благодаря наличию тубуса с эталонной поверхностью и резьбой для крепления юстируемого микрообъектива, причем относительно оси резьбы тубуса центрирована и сетка (установленная в предметной плоскости), и регистратор положения изображения сетки, установленный в плоскости изображения. Высота юстируемого микрообъектива контролируется благодаря тому, что сетка и регистратор изображения сетки установлены на номинальных расстояниях от эталонной базовой поверхности тубуса. Контроль микрообъективов с тубусом «бесконечность» (случай, когда предметная плоскость микрообъектива совпадает с его передней фокальной плоскостью) осуществляется благодаря вводимой в ход лучей тубусной линзы. Упрощение конструкции достигается благодаря тому, что в ней отсутствует коллиматор и микроскоп.

Сущность заявляемого изобретения поясняется чертежом, где представлена схема заявляемого устройства, на которой 1 - приспособление для определения перемещения столика, 2 - сетка, установленная на подвижном столике 3 на номинальном расстоянии (значении высоты) «рП» от эталонной базовой поверхности А тубуса 4, в который завинчивается по резьбе контролируемый микрообъектив 5, причем сетка 2 центрирована относительно посадочной резьбы тубуса 4; 6 - регистратор положения изображения сетки, установлен в тубусе в плоскости изображения на номинальном расстоянии «рИ» от эталонной базовой поверхности А, причем его поперечное положение центрировано (или определено) относительно оси резьбы тубуса, 7 - устройство визуализации, соединенное с регистратором изображения сетки, создаваемого микрообъективом.

Для контроля и юстировки микрообъективов с тубусом «бесконечность» в установке дополнительно установлена выключающаяся (т.е. с возможностью перемещения в перпендикулярном к оси резьбы тубуса направлении для ее вывода из хода оптического пучка лучей, создаваемого контролируемым микрообъективом, у которого значение тубуса имеет «конечное» значение) тубусная линза 8, а для обеспечения расстояния «рИ» предусмотрено сменное дистанционное кольцо 9.

Устройство работает следующим образом. Предварительно устройство настраивают на контроль микрообъектива, имеющего конкретные значения высоты (33 или 45 мм) и длины тубуса (бесконечность, 160 мм, 180 мм, 200 мм, 250 мм), например, с помощью эталонного микрообъектива (имеющего номинальное значение высоты и совмещенные оптическую и механическую оси), который устанавливается по резьбе на эталонную поверхность тубуса. При этом подвижками сетки 2 и регистратора положения изображения сетки 6 добиваются резкого изображения сетки 2 в центре (или вблизи него) регистратора 6. Отсчеты по приспособлению для измерения величины перемещения столика 1 и регистратора положения изображения сетки 6 обнуляют. Затем устанавливают вместо эталонного микрообъектива контролируемый и, устраняя расфокусировку осевой подвижкой столика 3, по отсчету приспособления 1 измеряют погрешность высоты контролируемого объектива. По величине сдвига изображения на регистраторе 6 определяют искомую несоосность: Δеу,х/(V-1), где Δу,х- - координаты положения изображения на регистраторе положения изображения сетки 6, V-линейное увеличение микрообъектива. Если значения высоты и несоосности выходят за пределы допусков, приступают к их юстировке соответствующими подвижками элементов микрообъектива.

В качестве примера конкретного выполнения предлагается устройство, содержащее столик с сеткой (маркой) в виде перекрестья, соединенный с устройством визуализации, например, монитором для наблюдения изображения сетки, создаваемого микрообъективом, регистратор положения изображения сетки, выполненный в виде ПЗС-матрицы.

Приспособление для определения величины перемещения столика может быть выполнено, например, в виде автоматизированного фотоэлектрического индикатора линейных перемещений «ЛИР 14», выпускаемого фирмой СКБ ИС (www.skbis.ru).

Подвижный столик может перемещаться как вручную, например классической зубчато-реечной или винто-рычажной передачей (см. монографию Скворцов Г.Е. и др. Микроскопы. - Л.: Машиностроение, 1969, с.274-276), либо автоматизированным управляемым приводом на основе шаговых и других электродвигателей, связанных с ПЗС-матрицей. В этом случае отпадает необходимость в фотоэлектрическом индикаторе линейных перемещений, так как измерение величины перемещения столика может осуществляться автоматизированным приводом.

Регистратор положения изображения сетки установлен в тубусе в плоскости изображения на номинальном расстоянии рИ от эталонной базовой поверхности тубуса, центрирован относительно оси резьбы тубуса и установлен с возможностью перемещения вдоль этой оси, что обеспечивается сменным дистанционным кольцом (либо так же, как и столик, вручную, или с помощью автоматизированного управляемого привода, связанного с ПЗС-матрицей).

Предлагаемое устройство по сравнению с прототипом позволяет при юстировке производить контроль несоосности оптической и механической осей микрообъектива, контроль его высоты, контролировать объективы с тубусом «бесконечность» и упростить конструкцию устройства.

1. Устройство для контроля и юстировки объектива, содержащее столик с сеткой и соединенный с устройством визуализации регистратор положения изображения сетки, проектируемой юстируемым объективом в плоскость изображения, причем столик установлен с возможностью перемещения вдоль оптической оси контролируемого объектива, а также скрепленное со столиком приспособление для измерения величины его перемещения, отличающееся тем, что устройство снабжено размещаемым между столиком с сеткой и плоскостью изображения сетки тубусом с эталонной базовой поверхностью и резьбой для крепления контролируемого объектива, сетка размещена на столике на номинальном расстоянии от эталонной базовой поверхности тубуса и установлена с возможностью перемещения в перпендикулярном направлении относительно оси резьбы тубуса, а регистратор положения изображения сетки установлен в тубусе в плоскости изображения на номинальном расстоянии от эталонной базовой поверхности тубуса, центрирован относительно оси резьбы тубуса и установлен с возможностью перемещения вдоль этой оси.

2. Устройство для контроля и юстировки объектива по п.1, отличающееся тем, что оно дополнительно снабжено размещаемой между тубусом и регистратором тубусной линзой.



 

Похожие патенты:

Изобретение относится к области оптического приборостроения и направлено на обеспечение возможности точной юстировки оптико-электронных модулей (ОЭМ) с матричными фотоприемными устройствами (МФПУ), а также их взаимозаменяемость в широком спектральном диапазоне от ультрафиолетового до инфракрасного, что обеспечивается за счет того, что при юстировке МФПУ, работающих в различных спектральных диапазонах, для обеспечения взаимозаменяемости задают точное положение фоточувствительной поверхности МФПУ относительно посадочных поверхностей: диаметра и посадочной плоскости.

Изобретение относится к контрольно-измерительной технике и направлено на повышение надежности и оперативности контроля юстировки двухзеркальных центрированных оптических систем при их сборке и юстировке, а также в штатном режиме, в процессе их эксплуатации в условиях обсерваторий, что обеспечивается за счет того, что устройство содержит монохроматический источник света, коллиматор и светоделитель для формирования опорной и рабочей ветвей.

Изобретение относится к контрольно-измерительной технике и может быть использовано в оптическом производстве при сборке и юстировке двухзеркальных центрированных оптических систем, содержащих компоненты как со сферическими, так и асферическими зеркальными поверхностями, в том числе и с внеосевыми.

Изобретение относится к области оптического приборостроения и предназначено для юстировки оптических элементов в оптических системах, где важно точно поворачивать оптические элементы с минимальными отклонениями их оси вращения.

Изобретение относится к области контрольно-измерительной техники, более конкретно - к устройствам для контроля параметров лазерных каналов управления приборов наведения при их сборке, юстировке и испытаниях.

Изобретение относится к области оптического приборостроения и предназначено для юстировки оптических элементов в оптических системах, где важно прецизионно линейно перемещать оптические элементы параллельно самим себе с отклонениями не более 4 угловых секунд.

Изобретение относится к электромеханическим линейным исполнительным механизмам и может быть использовано в приводах точных линейных перемещений, в подвижных системах приборов, в частности, для юстировки оптических элементов, установленных в оправах.

Изобретение относится к приборостроению и может быть использовано в геодезическом приборостороении. .

Изобретение относится к контрольно-измерительной технике и используется при сборке, юстировке, испытаниях и ремонте систем передачи информации, наведения и управления по лучу, в частности для центрировки оси пучка излучения с осью информационного канала управления.

Изобретение относится к контрольно-измерительной технике, более конкретно к устройствам для контроля центрировки лазерного пучка оптического канала управления приборов наведения при их сборке, юстировке и испытаниях.

Изобретение относится к приборостроению и может быть использовано для юстировки приборов, датчиков и других оптико-механических устройств, а также для соединения световода с излучателем. Юстировочное устройство выполнено в виде корпуса с местами для размещения оптических элементов и механизма регулировки. Изобретение направлено на повышение точности юстировки и сокращение времени установки на юстируемый оптический модуль. Для чего в корпус устройства введено основание с выполненными на внешней поверхности базовыми отверстиями и закрепленными магнитами, а механизм регулировки содержит поворотный узел, образованный двумя прозрачными шайбами, соосно закрепленными между стойками, и зеркало оператора, установленное на магнитных шарах в поворотном узле с возможностью вращения в двух плоскостях. 4 ил.

Изобретение может быть использовано для автоматизированной юстировки элементов усилительного канала лазерных установок. Способ включает получение изображений юстировочного лазерного пучка и маркеров контрольных элементов оптической системы, центр которых определяется по паре маркеров, расположенных по обе стороны от центра на одинаковом расстоянии от него. Осуществляют случайный наклон контрольных оптических элементов, контролируют изменение положения изображений маркеров и юстировочного лазерного пучка путем вычисления отклонения центра масс этих изображений от оптической оси системы, вычисляют управляющие сигналы, которые подают на приводы исполнительных механизмов контрольных оптических элементов. Для вычисления управляющих сигналов используют стохастический параллельный градиентный (СПГ) алгоритм, целевая функция в котором зависит от отклонения центров масс изображений от оптической оси системы. Параметр, контролирующий темп сходимости СПГ алгоритма, определяется текущим значением отклонения центра масс изображения от положения оптической оси. Технический результат - упрощение и повышение надежности автоматизированной юстировки оптической системы. 1 з.п. ф-лы, 1 ил.

Изобретение относится к оптическому приборостроению и может быть использовано для создания крепежных и юстировочных устройств. Устройство содержит малую оптическую направляющую с профилем «ласточкин хвост», основание рейтера с таким же профилем, направляющую вращательного движения с цилиндрической рабочей поверхностью, содержащую цапфу, опорную втулку. Также оно содержит малую направляющую с профилем «ласточкин хвост» и основание рейтера того же профиля, имеющее резьбовое отверстие, а также осевой винт с резьбой на конце. При этом ребра малой направляющей и пазы профиля «ласточкин хвост» основания рейтера выполнены с возможностью параллельного расположения и установки нескольких малых направляющих одна над другой стопкой с соединением стопорным винтом для возможности регулировки высоты положения оптического элемента над основанием рейтера, или взаимно перпендикулярного расположения, и создания рабочих площадок с обеих сторон основания рейтера при поперечной установке малой направляющей с возможностью увеличения площади этих рабочих площадок при установке нескольких малых направляющих. Кроме того, осевой винт, резьбовое отверстие в основании рейтера и втулка в геометрическом центре малой направляющей выполнены с возможностью образования вращательной направляющей цилиндрического типа с обеспечением возможности поворота малой направляющей вокруг вертикальной оси на любой угол при отпущенном осевом винте. Технический результат заключается в расширении функциональных возможностей устройства, увеличении диапазона регулировок. 8 ил.

Способ юстировки включает предварительную сборку объектива по геометрическим базам, формирование автоколлимационного изображения путем установки фокальной точки объектива интерферометра на оси главного зеркала в фокусе объектива и анализирование волнового фронта объектива в автоколлимационной схеме с плоским зеркалом в двух расположенных симметрично относительно центра точках поля зрения. Изменяют положение вторичного зеркала до достижения симметрии комы и астигматизма в этих точках путем его угловых и линейных поперечных перемещений на величину, обратную рассчитанным наклону и смещению вторичного асферического зеркала по двум координатам относительно оси главного зеркала. Расчет осуществляют по значениям синусных и косинусных составляющих аберрационных коэффициентов Цернике - астигматизма и комы, вызванных децентрировкой. Анализируют волновой фронт объектива в центре поля зрения, определяют аберрационный коэффициент сферической аберрации третьего порядка, по его значению рассчитывают осевое смещение вторичного зеркала относительно номинального положения. Осевое перемещение вторичного зеркала осуществляют на величину, обратную осевому смещению. Технический результат - повышение точности юстировки и ее упрощение. 3 ил.
Изобретение относится к области лазерной техники и может быть использовано для проведения юстировки элементов лазерных установок, в том числе при наличии оптических аберраций в тракте. Способ автоматизированной юстировки оптической системы основан на визуализации картины маркеров на выходе системы и последующей обработке полученного изображения с целью вычисления управляющих сигналов при отсутствии информации о положении оптической оси системы. Управление оптическими элементами организовано с помощью модернизированного стохастического параллельного градиентного алгоритма. Технический результат изобретения заключается в упрощении и повышении надежности процедуры автоматизированной юстировки оптической системы с помощью маркеров. 3 з.п. ф-лы.

Изобретение относится к области лазерной техники и касается устройства юстировки оправы оптического элемента. Устройство содержит закрепленный на кронштейне корпус, в отверстии которого установлен оптический элемент, фиксирующие элементы, фиксатор юстировки и пружину. В корпусе выполнены отверстия для установки фиксирующих элементов, оптический элемент установлен в корпусе в оправе. Фиксирующие элементы выполнены в виде подпружиненного со стороны кронштейна и зафиксированного крышкой штока и штырей. Шток и штыри расположены равномерно относительно оправы с возможностью взаимодействия с ней. В качестве фиксатора юстировки используется клей, который размещен в посадочном отверстии для оправы. Технический результат заключается в повышении точности юстировки с последующей фиксацией настройки. 4 ил.

Устройство содержит главное зеркало (ГЗ) 4, вторичное зеркало (ВЗ) 5, первое плоское зеркало-имитатор 6 оптической оси ГЗ 4, жестко связанное с ГЗ 4 и перпендикулярное оптической оси ГЗ 4, и второе плоское зеркало-имитатор 7 оптической оси ВЗ 5, жестко связанное с ВЗ 5 и перпендикулярное его оптической оси; первый автоколлиматор фотоэлектрический (АКФ) 8; первую перископическую систему 9; два привода наклонов 10, 11 и три привода линейных смещений 12, 13, 14 ВЗ 5; первую 16 и вторую 17 пентапризмы. Первое 6 и второе 7 зеркала-имитаторы оптически связаны с первым АКФ 8. Устройство включает объектив с центральным осевым отверстием 18, жестко связанный с ГЗ 4, светящуюся марку 19, жестко связанную с ВЗ 5, расположенную на его оптической оси вблизи его вершины и в фокальной плоскости объектива 18; третье плоское зеркало-имитатор 20 оптической оси ГЗ 4, жестко связанное с ГЗ 4 и перпендикулярное его оптической оси; второй АКФ 21, первую и вторую поворотные ромб-призмы 22 и 24 с приводами 23 и 25, оптически связанные со вторым АКФ 21, диагональное зеркало 26 с двумя приводами наклонов 27 и 28 между ГЗ 4 и ВЗ 5. Технический результат – сохранность в автоматическом режиме юстировки двухзеркальной телескопической системы и параллельности вышедших из системы лучей оптической оси ГЗ. 4 з.п. ф-лы, 3 ил.

Способ монтажной настройки элементов оптической системы содержит два этапа. Сначала путем перемещения настраиваемых элементов устанавливают их в соответствии с заданной геометрической осью и заданными расстояниями между элементами оптической системы. Далее устраняют погрешности настройки этого этапа путем перемещения настраиваемых элементов относительно геометрической оси в поперечном направлении. Для этого используют пары меток, на основании которых определяют рассогласование положений настраиваемых элементов. При этом все пары оптических меток устанавливают с угловым или радиальным смещением относительно друг друга. Техническим результатом заявляемого изобретения является повышение точности настройки. 2 ил., 1 табл.
Наверх